A Formal Analysis of the Lightweight Directory
Access Protocol

Fang Wei and Georg Lausen

University of Freiburg, Institute for Computer Science, Germany
{fwei,lausen}@informatik.uni-freiburg.de

Abstract. LDAP (Lightweight Directory Access Protocol) directories
are being widely used on the Web, for white pages information, user
profiles, etc. The advantages LDAP offers are (i) the support for highly
distributed data on the Web while still keeping a uniform data model; (ii)
the flexibility of a semi-structured data model, i.e. a flexible data type
definition enabling the presentation and manipulation of heterogeneous
data entries in a natural manner. Although many implementations of
the LDAP protocol exist, the still lacking logical formalization prohibits
a formal analysis and makes it difficult to make use of the numerous
results developed for relational databases. In this paper, we give a first-
order logic semantics of LDAP and discuss the expressive power of LDAP.
In particular, schema typing constraints are interpreted as semantic in-
tegrity constraints. We apply our framework to the containment problem
of LDAP queries with schema constraints; we reduce this problem to the
containment problem of Datalog in the presence of integrity constraints.

1 Introduction

LDAP (Lightweight Directory Access Protocol) directories are being widely used
on the Web. Besides the traditional directory application like white pages infor-
mation, user profiles, etc, it has been deployed in a number of commercial direc-
tory server implementations [12] (also see [11] for a survey). The Internet Engi-
neering Task Force (IETF) has standardized the Lightweight Directory Access
Protocol (LDAPv3) for modeling and querying network directory information
[22].

An LDAP-based network directory can be viewed as a highly distributed
database, in which the directory entries are organized in a hierarchical namespace
and can be accessed using database-style search functions. The advantages LDAP
offers are (i) the support for highly distributed data on the Web while still
keeping a uniform data model; (ii) the flexibility of a semi-structured data model,
i.e. a flexible data type definition enabling the presentation and manipulation of
heterogeneous data entries in a natural manner. Due to the similarities of the
data model of LDAP and XML, there have been works on the transformation
from XML to LDAP [15].

In spite of the various implementations of the LDAP protocol, the still lacking
logical formalization prohibits a formal analysis and makes it difficult to make
use of the numerous results developed for relational databases. In this paper, we
seek to analyze the first order semantics of a full-fledged LDAP query language
and make the following contribution:

— We give a formal description of the LDAP directory data model in Section
2, analyze the expressive power of the LDAP query language, and present a
complete algorithm to transform LDAP queries to Datalog.

— Query optimization is of general interest in traditional databases. Since de-
termining equivalence of queries is one of the most fundamental query opti-
mization problems, we demonstrate the query equivalence or query contain-
ment problem of LDAP in the first order logic semantics (Section 2.3).

— Integrity constraints are crucial in semantic query optimization and view
updating. In Section 3 we transform the LDAP schema information into a
form of generalized integrity constraints and tackle the containment problem
in the presence of such integrity constraints.

Section 4 compares our results to previous work in the literature, and finally
Section 5 concludes this paper.

2 LDAP Directory Model

The formal description of LDAP directory can be found in [4, 7] and the informal
one in [10]. However, the form and syntax of these descriptions make them ex-
tremely difficult to be directly applicable to the techniques and results found in
the literature. Therefore, we need to abstract the peculiarities of the LDAP syn-
tax (Section 2.1), to then reconstruct the model in standard logical terminology
(Section 2.2).

2.1 General Model

An LDAP directory consists of the following two main components:

Directory Schema: Defines a finite set of classes, attributes, and types. Each
attribute has exactly one type, and each class specifies a set of required
and allowed attributes.

Directory Instance: Contains a finite set of entries organized in a forest, where
each entry

— belongs to at least one class,
— has a non-empty set of (possibly) multivalued attribute-value pairs that
conform to the schema definition,

— defines at least attributes oc and dn, where oc determines what classes
the entry belongs to, and dn provides a unique distinguished name for
the entry,

— is placed in the instance hierarchy based on its distinguished name.

In order to show an example of LDAP schema and instance, we take directly
from [7]. All the examples refer to the schema given in Table 1, which shows
how an LDAP schema is defined. Figure 1 gives an LDAP instance; note each
entry has a unique distinguished name (DN) which acts as a path expression in
the semi-structured data model. The directory describes the whole organization,
contains sub-directories for e.g. persons, groups, etc. The bottom entry describes
a person, and it is the instance of the class inetOrgPerson and external which is
defined in Table 1 (Here the attribute oc means ObjectClass). Furthermore, it
has a set of (attribute, value) pairs. Note that multi-value attributes are allowed
here, e. g. the entry has two values for the attribute sn, cluet and verduron.

Table 1. Schema of an example LDAP directory

|class [[external inetOrgPersonlinternal |residentialPerson]
requires||oc, mail, uniqueld|oc,sn,cn oc,uniqueld,cn |oc,sn,cn,|oca|ity
allowes ||cn tel,mail,age maiI,sn,gender,locality,tel|te|

In addition, LDAP offers a rather limited query facility based on filter definitions.
A query is defined by a filter, which consists of the following four components:

Base: The distinguished name (DN) of the entry in the directory instance where
the search will start. The DN is a sequence [s1,...,8,], where each of the
s; is an attribute-value pair (attr,val). The first pair, s, is called relative
distinguished name (RDN), which distinguishes the entry from its sibling
entries. For example, the DN of the bottom entry of Figure 1 is: [(name,cluet),
(ou,people), (o0,att.com)], its RDN is (name, cluet).

Scope: Can be base !, if the search is to be restricted to just the first node, one,
if only the first level of nodes is to be searched, or sub, if all nodes under the
base should be considered by the filter expression.

Filter Expression: Defined as the boolean combination of atomic filters of the
form (a op t), where:

— a is an attribute name;

— op is a comparison operator out of the set {=,<,<,>,>};

— t is an attribute value, or x, used to test for existence of an attribute.
The boolean operators are and (&), or (|) and not (!).

! It is different from the Base above. We write from now on Base for the root entry
and base for the scope.

dn: [(0,att.com)]
ou,groups),(o,att.com)]

/* subdir. contains pgrSons */ . contains groups */

: 00 :

dn: [(name,cluet),(ou,people),(0,att.com)]

(oc: inetOrgPerson \

oc: external
sn: cluet
sn: verduron
mail: cluet@inria.fr
cn: sophie cluet
uniqueld: scluet

\ tel: 1234 /

Fig.1. LDAP instance example

Projection: Defines a set of attribute names that determines what data should
be returned from each matching entry.

Example 1. Consider the query defined by the LDAP filter
([(ou,people), (o,att.com)], sub, {&(sn = olgax)(age < 25)}, {oc, sn})

would start the search at the [(ou,people), (0,att.com)] entry, test all its descen-
dants against the filter expression, and return only the oc and sn attribute-value
pairs.

2.2 Logical Framework

In order to build our logical framework, we first need to formalize the elements
that make up the definition of the directory schema and the directory instance
as far as they are relevant for our purposes. Based on these definitions we give
a logical reformulation of an LDAP directory schema and instance. Later we
shall introduce a set of additional axioms that capture the nature of an LDAP
directory more comprehensively.

Definition 1 (Directory Schema). A directory schema S is a 4-tuple S =
(C, A, D,p), such that:

— C is a finite set of classes.

— A is a finite set of attributes such that {oc,dn} C A.

— D (Domain) is an infinite ordered set containing all possible values an LDAP
attribute can take. In particular, this set contains all class names, attribute
names, and distinguished names.

— pis a pair of functions py, p> : C — 24 that specify what attributes are needed
for each class. p1 defines the required attributes and ps the allowed attributes.
Moreover, p1(c) N p2(c) =0 and {oc,dn} C p1(c), for all c € C. O

Definition 2 (Directory Instance). A directory instance I is a 4-tuple I =
(&,7,90,a), such that:

— & is a finite set of directory entries.

— v is a function of the form v : & — 2C that associates each entry with a
non-empty set of classes from C.

— 0 assigns a unique distinguished name to each entry in £.

— a is a function of the form a : £ — 24P A" = A\ {oc,dn}, that associates
a set of attribute-value pairs to each entry. O

Ezxample 2. Consider the entry in Figure 1, we have:

a([(ou,people), (o,att.com)]) =
{(sn,cluet), (sn, verduron), (mail,cluet@inria.fr),
(cn, sophie cluet), (uniqueld,scluet), (tel, 1234)}

O

A logical reformulation of an LDAP directory schema and instance then can be
stated as follows:

Definition 3 (LDAP Relations). Let S = (C,A,D,p) be an LDAP schema
and I = (£,v,0,a) a LDAP instance to S.

— An LDAP schema S is represented by a relation schema(class, attr,req),
where class € C, attr € A, and req is a boolean value that indicates whether an
attribute attr is required or allowed by class. An instance of schema is defined
according to p: schema(c, a,true) iff a € p1(c), respectively, schema(c, a, false)
iff a € p2(c), where c € C and a € A.

— An LDAP instance I is represented by a relation inst(entry, attr, val), where
entry € £, attr € A, and val € D. Instances of inst are defined according to
v, & and a. (e,oc,v) € inst iff v € v(e), (e,dn,v) € inst iff v = &(e), and
(e,a,v) € inst iff (a,v) € a(e), wheree € £, a € A, andv € D. O

The unique schema, information in LDAP makes the query processing and op-
timization a more difficult task than for conjunctive queries over a relational
schema: there are several hidden rules implied by the schema definition which
do not exist in the traditional relational model (e.g. the attribute of a class can
be either required, or allowed). In Section 3 a set of integrity constraints orig-
inated from LDAP schema will be logically formalized and play an important
role in semantic query optimization.

Multivalue attributes. As introduced above, when an entry has multi-valued
attributes, then the transformation of the operator ’!’ is not trivial any more.
Consider the example entry in Figure 1 where the attribute sn has two val-
ues cluet and verduron. To illustrate, let the filter be !(sn = cluet), then it
is semantically not equal to the transformation inst(X,sn,Z),Z # cluet. The
first one will yield “false”, whereas the second one returns the answer X =
[(name,cluet), (ou,people), (o,att.com)], Z = verduron. Instead, we have to cope
with the following cases: (i) the entry does not have sn as attribute, that is, the
attribute sn is not defined; (ii) even if the entry has sn defined as attribute, but
it has two values for it (like in our example), then the transformation will yield
false results too. As a result, we need to define the additional predicates shown
in Definition 4 and 5.

Taking into account that attributes may or may not be defined for certain
entries, we are now going to introduce two further relations def and undef as
follows:

Definition 4 (Definedness). Let def(entry, attr) and undef(entry, attr) be rela-
tion schemata, where entry is of type € and attr is of type A. Instances to def
and undef are given by:

— defX,Y) iff 3Z : inst(X,Y, Z).
— undef(X,Y) iff AZ :inst(X,Y, 7).

In both cases the domain of quantification of the variables X,Y,Z is £, A, re-
spectively, D. O

Note, that according to this definition def and undef are guaranteed to be finite.
We can understand undef as a safe negation of def, i.e., VX € E,VY € A :
(—def(X,Y) = undef (X,Y)).

In order to give the negation operator
introduce a set of predicates:

"I’ the correct semantics, we have to first

Definition 5 (Arithmetics). Let eq(entry, attr, val), greater(entry, attr, val),
less(entry, attr, val), and greater_eq(entry, attr, val), less_eq(entry, attr, val) be rela-
tions, where entry € £, attr € A, and val € D. Instances of the relations are

given by:

eq(X,Y,V) - inst(X,Y,Z),Z = V.
greater(X,Y,V) ~inst(X,Y,Z),Z > V.
less(X,Y, V) ~inst(X,Y,Z2),Z < V.
greater eq(X,Y,V) - inst(X,Y,Z),Z > V.
less.eq(X,Y,V) ~inst(X,Y,Z),Z <V.
(See also Example 5).]

Formulas in our framework are built over the relations inst, schema, def, undef,

eq

, greater, less, greater_eq, less_eq and arithmetic predicates as used in the LDAP

filter language. It will suffice to restrict our logical language to formulas in DNF
(Disjunctive Normal Form), as we shall see soon. Moreover, because of the filter
syntax, all arithmetic predicates have the semi-interval property [13].

F.

In the sequel, we denote an LDAP filter by F™* and its filter expression by
Any LDAP filter expression F' can be transformed into the logical model as

follows:

4.

In the following, X denotes a distinguished variable reused in any transfor-
mation step; in contrast, variable Z in any transformation step will represent
a new variable, say Z;,Zs, ..., distinct from all variables previously intro-
duced.

Replace &’ by ’A’, ’|” by ’V’, and ’!I’ by '=’, and transform the resulting
formula into DNF.

. Transform every positive occurrence of (a = x) into inst(X, a, Z), every neg-

ative occurrence !(a = %) to undef (X, a).

Consider now expressions different to (a = #). Transform every positive
occurrence of (a op v) into the conjunction (inst(X,a, Z) A (Z op v)), and
every negative occurrence !(a op v) into the formula = f(op)(X,a,v) 2.
Reestablish disjunctive normal form and call the resulting expression X(F).

Ezxample 3. Following the transformation algorithm, the filter

is

In

is

& (uniqueld = olgax) (I(mail = %))
transformed to
inst(X, uniqueld, Z) A (Z = olgax) A undef (X, mail).
contrast, the filter
& (uniqueld = olgax)(!(mail = olgax))
transformed to
inst(X, uniqueld, Z1) A (Z1 = olgax) A —eq(X, mail, olgax).

O

% where f(op) is the function of the five operators as the following: f(=) = eq, f(>

) = greater, f(<) = less, f(>) = greater_eq, and f(<) = less_eq.

Next the Scope and Base parts of the LDAP query are considered. We borrow
the list expression syntax of Prolog to represent the DN, such that each DN of
any entry is a list, in which each element is an attribute-value pair. As a result,
we introduce two new predicates one and sub which have the meaning of child
and descendant in XPath respectively.

Definition 6 (LDAP Scope Relation). The semantics of one(dnl,dn2) and
sub(dnl,dn2) are logically described as follows: where dnl € £ and dn2 € E:

— one(Parent,[RDN |Parent]). (fact)
— one(X,Y) — sub(X,Y). (base)
one(X,Y),sub(Y,Z) = sub(X, Z). (trans)

Together with fact, the rule trans can be rewritten to the following constraint
which means that if Z is the descendant of one node, then it is also the descendant
of the parent of that node:

— sub([RDN|Parent], Z) — sub(Parent, Z). (trans’)
O

Note that the rules fact and trans’ have the form of inclusion dependencies. In
[25], a generalized form of inclusion dependencies called referential constraints
is introduced and the query containment problem in the presence of such con-
straints is studied. In the later part of the paper, we will give an example to show
how the referential constraints affect the LDAP query containment checking.

The transformation of the Base and Scope is simple. The additional pred-
icate sub(Base, X) for the scope sub and one(Base, X) for one is added to the
filter expression F' respectively. Note that the variable X is the same one as in
the filter expression, and Base is always the DN of the given root entry. As for
the scope base, one arithmetic predicate (X = Base) is needed to be added in
F', where X must also be the same variable as that in F'.

The complete transformation.

XY (F) is the disjunction of the form {G1,...,Gx}(k > 1) and each G;(1 < i < k)
has the form:

Ri(Y1) A e ARy (Y) A=PL(Wh) A .. A=Py (W) A Cg

in which Ry,...,R,(n > 1) are taken from the relations {inst, def, undef, sub,
one}; Pi,...,P,(m > 0), are predicates as given in Definition 5; and Cg is
composed of predicate expressions ufv, where § € {=,#,<,>,<,>}, u is the
element of Y7,...,Y,, and v is a constant. Furthermore, for the sake of safe
negation, we have {Wy, ..., W,,} C {Y1,...,Y,,}, to ensure that all the variables
in negated predicates appear in the positive ones.

Now the projection part of an LDAP filter has to be taken into account.
In the logical model, any projected attribute gives rise to a conjunctive query.
In particular, because X(F') can be considered a set of conjunctions, for each
projected attribute a we get a set Q, = {Qa1,-- -, Qar} of conjunctive queries,
each Q,;, 1 <14 <k, has the form

Go;(X,a,7) :-inst(X,a,Z) N\ G;.

For each conjunctive query the variable Z is distinct from X and from all vari-
ables in the respective G, and is used to copy the value of the projected attribute
into the query result.> The domain of quantification of variable X is the set of
entries £, where for the Y’s and Z the domain is the set of possible values. To
simplify notation, quantifiers are omitted and ’A’ is replaced by comma. The set
of conjunctive queries corresponding to an LDAP filter F'* is denoted by X (F™).

Up to now, we have completely transformed LDAP into the logical formalization.
The final transformation is demonstrated by the following example:

Example 4. Again considering the Example 1, the LDAP query is transformed
into two conjunctive queries since two attributes oc and sn should be projected.
We have then two queries with oc and sn at the head respectively.

q1(X,oc, Z1) :- sub([(ou,people),(o,att.com)], X), inst(X, oc, Z1),inst(X,sn, Z2),
inst(X, age, Z3), Z2 = olgax, Z3 < 25.

q2(X,sn, Z2) :- sub([(ou,people),(0,att.com)], X), inst(X, sn, Z2),
inst(X, age, Z3), Z2 = olgax, Z3 < 25.

O

Theorem 1. Without considering the LDAP schema, the LDAP query can be
equivalently transformed to Datalog with arithmetic comparison and stratified
negation. O

2.3 Containment of LDAP Queries

As long as the transformation of LDAP queries to Datalog is complete, we can
conclude that the containment problem of LDAP can be reduced to an equivalent
containment problem of Datalog, which is unfortunately undecidable [19]. How-
ever, the only recursions which cause the undecidability are the transitive closure
rules, namely base and trans’ in Definition 6. We argue that since we regard the
definitions by referential constraints on the one and sub relations, instead of rules
which define these IDB relations, the transformed query is non-recursive Datalog
together with referential constraints for which query containment is decidable.

Theorem 2. Containment of basic LDAP queries is decidable, and it is poly-
nomially equivalent to the containment problem of non-recursive Datalog. O

3 If the literal inst(X, a, Z) is already contained in Gj, it is omitted.

The general query containment problem in Datalog has been extensively stud-
ied [19,6]. However, several interesting cases originating from the LDAP query
model are worth of discussing here.

Containment of queries with stratified negation. The containment of Dat-
alog with stratified negation is studied in [14], however, the algorithm provided
in [14] tests uniform equivalence of Datalog queries and actually, the algorithm
would fail to prove in the above example that Q1 C @2, which is obviously true.
In [24], an algorithm is given to check the containment for (i) conjunctive queries
with safe negation, and (ii) non-recursive Datalog with stratified negation which
is the case here.

Example 5. Let the filters of two LDAP queries be the following:
f1: &((sn =) l(tel = %)),
f2 1 &((sn = *) I(tel = 1234x)).

Let both queries have sn as projected attribute.

Q@1 and @2 can then be built up as the following (to simplify the queries, we
assume that the Scope and Base of the queries are identical, so that they are
omitted here):

Q1 :q(X,sn, Z) : —inst(X,sn, Z),undef (X, tel).
Q2 :q(X,sn, Z) : —inst(X,sn, Z),—eq(X, tel, 1234x).

Note that according to Definition 5, eq(X, tel, 1234x) holds if X has any attribute
value for tel which matches 1234x. O

Containment of queries with scope constraints. As we noticed in the
LDAP scope definition, the referential constraints are introduced to represent
the transitive closure of the sub relation (see the rules base and trans’ in Def-
inition 6). As a result, the containment problem in the presence of integrity
constraints must be considered. In [25], an algorithm for checking conjunctive
query containment together with implication constraints and referential con-
straints is given. Due to the size limit of the paper, we only state it informally
as the following: if the containment of queries @1 and Q2 (Q1 C Q=) is to be
checked, we first expand the query @1 by referential expansion using the refer-
ential constraints according to [25], and then the normal containment checking
is executed.

The following example shows how the algorithm is applied in the LDAP logic
model.
Example 6. Consider the following LDAP queries L@, and LQ2:
LQ; : (Jou=people,o=att.com],one, {(sn =)}, {sn})
LQ- : ([o=att.com],sub, {(sn =)}, {sn})
The queries are rewritten as the following ()1 and Q2

Q1 : ¢(X,sn, Z) :- one([(ou,people),(0,att.com)], X), inst(X, sn, Z).
Q2 : q(X,sn, Z) :- sub([(o,att.com)], X), inst(X,sn, Z).

Query ()1 asks for entries with attribute sn and are children of the starting entry
[(ou,people),(o,att.com)]; while Q)2 asks for entries which are decendants of the
starting entry [(o,att.com)]. From the transitive closure it is easy to see that the
answer set of () is contained in that of ()5 since the scope of @)1 is a subtree of
that of Q2.

Formally described, we first expand the atom one(Jou,people),(0.att.com)], X)
in the body of Q1. Due to the referential constraints base and trans’ above,
the expanded conjunction:

{one([ou,people),(o.att.com)], X), sub([ou,people),(0.att.com)], X),
sub([(o0.att.com)], X)}.

is semantically equivalent to the original atom above. Then, it is not hard to
obtain that Q1 C Q2 — in the presence of the referential constraints. O

3 Schema Integrity Constraints in LDAP

The LDAP data model can represent heterogeneity of entities in a very natu-
ral and flexible manner, however, the gain of such flexibility does not come for
free. In order to capture the semantics of the LDAP schema, we need to for-
malize them as integrity constraints, namely disjunctive referential constraints
and implication constraints which will be introduced below. Integrity constraints
in traditional databases are used for semantic query optimization, cooperative
query answering, and view updating, etc [8]. In the rest of the section, we first
describe the disjunctive referential constraints and implication constraints in the
case of LDAP model, then the algorithm of containment checking in the presence
of such integrity constraints is given.

Definition 7 (Constraints in LDAP).

Disjunctive Referential Constraint 1: If an entry has values for attribute
Attr, then it must belong to at least one class for which Attr is an attribute:

inst(X, Attr, Val) — \V} inst(X, oc, c).
cec,schemac, Attr,_)

Disjunctive Referential Constraint 2: Fach entry must belong to at least

one class:
undef(X, Attr) — \/ inst(X, oc,c).
ceC

Implication Constraint: An entry must have at least one value for each of
the required attributes of its classes:

inst(X, oc, C) A schema(C, Attr, true) A undef(X, Attr) — .

Note (Syntaz): an implication constraint is a formula of the form:
V(Yi,..Y0m) [r1(Y1), s m(Ym), Co — false].

or simply B -
r1(Y1), .., rm(Ym), Co — .

where the predicates of the body are the same as that of the conjunctive query.
The only difference is that the head of every implication constraint is either
false or simply empty. They describe the unsatisfiability of queries. In [8],
this syntaz is used as the generalized form of integrity constraints.

O

Note that disjunctive referential constraints are a generalized form of referential
constraints in [25], integrity constraints formalized in [8], and embedded depen-
dencies in [3].

The general form of disjunctive referential constraints (DRC) is as follows:
V(Y1 Vo) [r1 (Y1) ooy i (Yim) = HZ1y ooy Zi) p1(X1) Voo V (X))

where p1,...,pn(1 < n), and r1,...,7,,(0 < m) are predicate names; X1, ..., X,,,
Y1,...,Y,, are tuples of variables and constants; {Z1,..., Zx} = {X1,..., Xn} \
{Y1,...,Y;,}. Note that if m = n = 1, the constraint will be reduced to a refer-
ential constraint as described in [25].

We show in [23] that instead of the standard referential expansion as de-
scribed in [25], we need a disjunctive referential expansion to expand the query
to a set of sub-queries which is semantically equivalent to the original query but
includes the schema information. At the same time, each expanded sub-query
is guaranteed to be minimal in the sense that it is not contained in any other
sub-query in the set. The formal proof can be found in [23], we give here an ex-
ample to illustrate how the integrity constraints affect the containment checking
of queries in LDAP.

Ezxample 7. Given the queries (); and ()2 where ()1 asks the value of uniqueld
of each entry that has no attribute cn,)2 asks also the value of uniqueld of all
entries which are instances of the class external.

Q1 : ¢(X, uniqueld, Z) :- sub(Jo,att.com], X), inst(X, uniqueld, Z), undef (X, cn).
Q2 : ¢(X, uniqueld, Z) :- sub(Jo,att.com], X), inst(X, uniqueld, Z), inst(X, oc, external).

It is not hard to see that without the integrity constraints, (); is not contained
in Q2. However, if we first expand @); using DRC1 above (in conjunction with
the schema given in Table 1), the two sub-queries are obtained as follows:

Q} : ¢(X, uniqueld, Z) :- sub([o,att.com], X), inst(X, uniqueld, Z),
undef(X, cn), inst(X, oc,external).

! : ¢(X, uniqueld, Z) :- sub([o,att.com], X), inst(X, uniqueld, Z),
undef (X, cn),inst(X, oc,internal).

Note that semantically, we have Q1 =prc @} U @Y, which means: any entry

satisfies the query (); must be the instance of either external or internal, or

both. Consequently, we can test that Q) C @2 and QY C Q- in the presence

of the implication constraint given in Definition 7. The latter case should be

explained: in QY the node should not have cn as attribute but it is an instance

of internal which has cn as required attribute — which is a contradiction. Thus
Y is unsatisfiable.

As aresult, we get Q1 C @2 in the presence of the integrity constraints, which
could not hold otherwise. O

Theorem 3. The containment problem of LDAP queries with schema con-
straints is decidable. O

As shown in [25], the complexity of testing query containment of conjunctive
queries in the presence of referential constraints and implication constraints is
polynomially equivalent to that of conjunctive queries, which is []5-complete
(with arithmetic comparison) [21].

4 Related Work

Semi-structured data models like XML have been intensively studied recently
[2]. It is more difficult to give a relational semantics to the query language
XPath, since its path expressions are not first-order expressible [1]. However,
there have been several works on the relational semantics of the query languages
(mostly a fragment of) XPath [1], XML-QL [17], and XQuery [20]. The early
semi-structured data model SML can be transformed to Datalog with function
symbols allowed [16]. Compared with the semi-structured data model, LDAP
data model deploys the elegant distinguished name (DN) to express the path
expression of entries of LDAP while at the same time keeping the first-order
semantics.

The method of adding semantics of class schema constraints to the query
processing first appears in [5] for the object-oriented data model. Disjunctions
are applied to a single query to generate a set of terminal queries with class
information for each object variable in the body of the query. However, the
algorithm is more pragmatic and can be applied only for the object-oriented
data model. Our method is the natural extension of the generalized integrity
constraints and therefore can be applied more broadly.

In [1] disjunction (disjunctive embedded dependencies) is applied to the in-
tegrity constraints in the relational transformation of XPath, However, an ex-
tension of the traditional chase algorithm is applied which is different from our
logical method.

[7] is the first paper concerning the query rewriting problem in LDAP. How-
ever, the data model and query model of LDAP are not built upon first-order

logic so that algorithms are pragmatic. We notice that query containment check-
ing is the crucial point in dealing with query rewriting [9]. We believe that the

results of this paper will be helpful in tackling the query rewriting problems in
LDAP.

5 Conclusion

With the growing popularity of directories services in the World Wide Web,
LDAP directory enabled networking is being promoted by companies including
AT&T, Cisco, and IBM. Our focus on this paper, has been to present a first-
order logic semantics of the LDAP query language. A complete transformation
of LDAP queries to Datalog with generalized integrity constraints is given and
the complexity of query containment of LDAP query model is analyzed with and
without integrity constraints respectively.

Though independent of the implementation system, our results can be applied
into any LDAP directory enabled systems. Actually, due to many benefits from
using relational databases as storage systems for LDAP data, there have been
implementations of LDAP that use the IBM DB2 database [18]. Our transfor-
mation of LDAP data model and query model provides the possibilities to cope
with relational databases and LDAP enabled directories in a seamless platform
in the data integration system.

The integrity constraints we analyzed in this paper can be used for query
processing, semantic query optimization or semantic caching in LDAP systems.
Furthermore, the problems of rewriting query using views which arise recently
in the data integration system, can also substantially benefit from our results.

References

1. A. Deutsch and V. Tannen. Containment and Integrity Constraints for XPath
Fragments. In KRDB, 2001.

2. S. Abiteboul, P. Buneman, and D. Suciu. Data on the web. Morgan Kaufmann,
2000.

3. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley
Publishing Company, 1995.

4. S. Amer-Yahia, H. Jagadish, L. Lakshmanan, and D. Srivastava. On Bounding-
schemas for LDAP Directories. Tech. Report, Concordia University, 1999.

5. E. P. F. Chan. Containment and Minimization of Positive Conjunctive Queries
in OODB’s. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS). ACM Press, 1992.

6. S. Chaudhuri and M. Y. Vardi. On the Equivalence of Recursive and Nonrecur-
sive Datalog Programs. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. ACM Press, 1992.

7. S. Cluet, O. Kapitskaia, and D. Srivastava. Using LDAP Directory Caches. In
Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systemns. ACM Press, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity constraints: Semantics and
applications. In Jan Chomicki and Gunter Saake, editors, Logics for Databases and
Information Systems. Kluwer, 1998.

A. Halevy. Answering Queries Using Views: A Survey. To appear in VLDB Journal,
2001.

T. Howes, M. Smith, and G. Good. Understanding and Deploying LDAP Directory
Services. Macmillan Technical Publishing, 1999.

Innosoft. Innosoft’s Resources for Directory Deployments. "http://www.
innosoft.com/ldap_survey".

H. V. Jagadish, Laks V. S. Lakshmanan, Tova Milo, Divesh Srivastava, and Dimitra
Vista. Querying Network Directories. In SIGMOD. ACM Press, 1999.

A. Klug. On conjunctive queries containing inequalities. In J. ACM 35:1, pp.
146-160, 1988.

A. Y. Levy and Y. Sagiv. Queries Independent of Updates. In 19th International
Conference on Very Large Data Bases, 1993.

P. J. Marron and G. Lausen. On Processing XML in LDAP. In Proceedings of the
VLDB, 2001.

Y. Papakonstantinou. Query processing in heterogeneous information sources. PhD
thesis, Dept. of Computer Science, Stanford University, 1996.

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In Proceedings of 25th International Conference on Very Large
Data Bases, 1999.

S. S. B. Shi, E. Stokes, D. Byrne, C. F. Corn, D. Bachmann, and T. Jones. An
enterprise directory solution with DB2. IBM Systems Journal, 39(2):360-383, 2000.
O. Shmueli. Decidability and Expressiveness of Logic Queries. In Proceedings of
the Sizth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. ACM, 1987.

I. Tatarinov, Zachary Ives, Alon Halevy, and Dan Weld. Updating XML. In Proc.
of ACM SIGMOD Conf. on Management of Data, 2001.

R. van der Meyden. The Complexity of Querying Indefinite Information: Defined
Relations. Ph.D thesis, Rutgers University, 1992.

M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3). Re-
quest for Comments 2251. http://www3.innosoft.com/ldapworld/rfc2251.txt,
1997.

F. Wei and G. Lausen. Conjuctive query containment in the presence of disjunctive
integrity constraints. Submitted.

F. Wei and G. Lausen. Query Containment for Conjunctive Queries and Datalog
with Negation. Technical Report. "http://www.informatik.uni-freiburg.de/
“fwei/paper/containment.ps".

X. Zhang and Z. Meral Ozsoyoglu. Implication and referential constraints: A new
formal reasoning. TKDE, 9(6):894-910, 1997.

