A Rule-Based Querying and Updating Language for XML

Wolfgang May Institut für Informatik Universität Freiburg Germany

may@informatik.uni-freiburg.de

DBPL Workshop Frascati, 9.9.2001

LANGUAGES

- Addressing/Selection:
 XPath
- Querying and Transformation
 - XSLT (Transformation): XPath
 - XML-QL (1998)
 - * XML Patterns
 - * Problem: dereferencing only supportable by joins
 - * no notion of XML's axes
 - Quilt/XQuery (1999/2000)
 - * FLWR-Clauses
 - * XPath
- Generation
 - instantiating XML Patterns
- W3C XML Query Requirements/Data Model/Algebra
- no XML update language
 "Updating XML" @ SIGMOD 2001
- XML data integration: MIX, based on XMAS/XML-QL

Introduction 1

DESIGN DECISIONS

- experiences with F-Logic for semi-structured data and data integration
- extend XPath
- XPath-Logic: describing and reasoning in XML structures
- Horn Fragment: XPathLog declarative rule-based language with bottom-up semantics use XPath for updating and generating XML
- graph model, overlapping trees, multiple parents

Introduction 2

TOPICS OVERVIEW

- XPathLog as an XML Database Programming Language:
 DBPL '01
- Considerations on the Data Model: FMLDO/FMII '01 independent from the programming language

Data Integration

- objects of different sources represent the same real-world object
- ⇒ Fusing objects, merging their properties
 - not compatible with XML Data Model (DOM, XML Query Data Model)
 - graph data model
- Application in "intelligent" data integration: KRDB '01
- Implementation: LoPiX
 VLDB Demonstration Track

Introduction 3

EXAMPLE: MONDIAL

```
<mondial>
 <country car_code="B" capital="cty-Brussels"</pre>
         memberships="org-eu org-nato ...">
   <name>Belgium</name>
   <population>10170241/population>
   <city id="cty-Brussels" country="B">
      <name>Belgium</name>
      <population year="95">951580</population>
   </city>
 </country>
 <country car_code="D" capital="cty-Berlin"</pre>
         memberships="org-eu org-nato ...">
 </country>
 <organization id="org-eu" seat="cty-Brussels">
  <name>European Union</name> <abbrev>EU</abbrev>
  <members type="member" country="GR F E A D I B L ..."/>
  <members type="membership applicant" country="AL CZ ..."/>
 </organization>
 <organization id="org-nato" seat="cty-Brussels"...>
 </organization>
</mondial>
```

XPATHLOG BY EXAMPLES

Pure XPath expressions

?- //country[name/text() = "Belgium"]//city/name/text(). true

Output Result Set

?- //country[name/text() = "Belgium"]//city/name/text()→N.
N/"Brussels"
.

Additional Variables

?- //country[name/text()→N1 and @car_code→C]//city/name/text()→N2. N2/"Brussels" C/"B" N1/"Belgium"

Local Variables

?- //country[name/text() \rightarrow N1]//city[population/text() \rightarrow _P] /name/text() \rightarrow N2,

 $_{-}P > 100000.$

Dereferencing

?- //organization[@seat = members/@country/@capital]
/@seat/name/text()→N.

XPATHLOG BY EXAMPLES

Metadata: Tag Variables and Schema querying

Navigation Variables

?- //Type→X[name/text()→"Monaco"].

Type/country X/country-monaco

Type/city X/city-monaco

Schema Querying

?- //city/N.

N/name

N/population

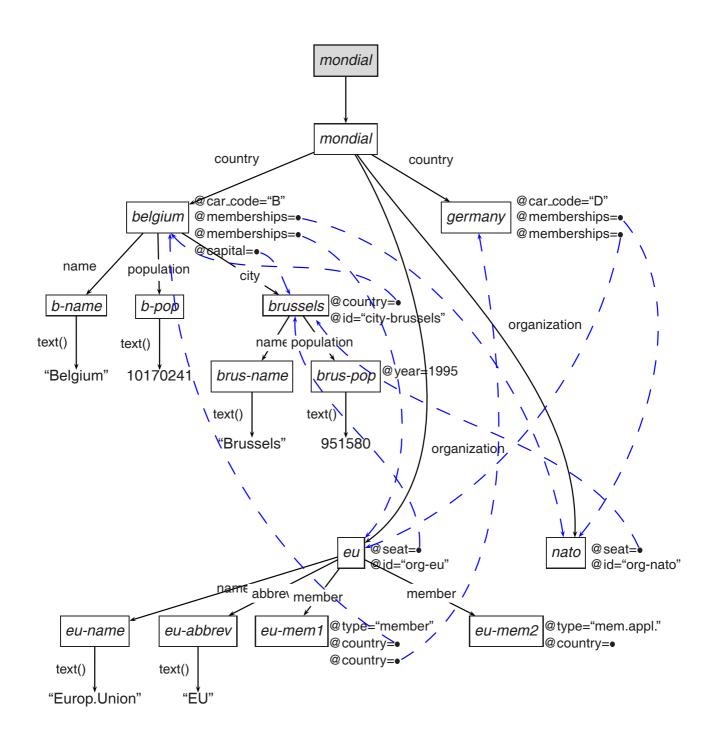
•

XPATH-LOGIC: SYNTAX

• XPathLog: Horn Fragment of XPath-Logic

Extends the XPath syntax

XPath-Logic reference expressions are XPath location paths


Extend LocationSteps

- navigation by dereferencing IDREF attributes
- predicates over reference expressions
- quantifiers

DATA MODEL: XTREEGRAPH

- extends DOM/XML Query Data Model
- element nodes,
- subelement relationship,
- attributes:
 - multivalued attributes (NMTOKENS, IDREFS) are split
 - reference attributes (IDREF) are resolved
- ⇒ stores only child and attribute axis (DOM-style)
- $\mathcal{A}_{\mathcal{X}}(\mathsf{child}, x)$: list of (name, element) pairs, including (text, string).
- $\mathcal{A}_{\mathcal{X}}(\mathsf{attribute}, x)$: set of (name, value) and (name, element) pairs
- Mapping: XML instance → canonical XTree
- may become a graph through updates:
 element.INSERT contents {before after} child

EXAMPLE: MONDIAL XTREEGRAPH

FORMAL SEMANTICS

XPath-Logic: model-theoretic semantics, extends semantics for XPath by P.Wadler (1999)

$$\mathcal{S}_{\mathcal{X}}: \mathsf{Ref_Exprs} \to (\mathcal{V} \cup \mathcal{L} \cup \mathcal{N})^{\mathbb{N}}$$

$$\mathcal{Q}_{\mathcal{X}} \subseteq \mathsf{Pred_Exprs} \times \mathcal{V} \times \mathsf{Var_Assignments}$$

Theorem 1

For variable-free expressions (i.e., XPath expressions) without

- navigating along reference attributes and
- splitting NMTOKENS attributes

the semantics coincides with the one given in [wadler-99]: For every such XPath expression expr,

$$S_{\mathcal{X}}(expr) = S[[expr]](x)$$

(for arbitrary x) where S[[expr]] is as defined in [wadler-99] and enumerated wrt. document order.

join variables restrict the result set.

XPATHLOG RULES

$$head(V_1, \ldots, V_n) := body(V_1, \ldots, V_n)$$

- Evaluation of rule bodies = queries
- Constructive semantics for XPathLog atoms in rule heads

Head: definite XPathLog atoms:

- use only the child, sibling, and attribute axes,
- no negation, disjunction, function applications, and proximity position predicates

BODIES/QUERIES: ANSWER SET SEMANTICS

Annotated result list

- (i) a result list, and
- (ii) with every element of the result list, a list of variable bindings is associated.

Example

SEMANTICS

Algebraic semantics

Extends S and Q:

$$\begin{split} \mathcal{SB}_{\mathcal{X}}: & (\mathsf{Ref_Exprs} \times \mathsf{Var_Bindings}) \to \mathsf{AnnotatedResults}^{\mathbb{I}\mathbb{N}} \\ & (\mathsf{Axes} \times \mathcal{V} \times \mathsf{Ref_Exprs} \times \mathsf{Var_Bindings}) \\ & \to \mathsf{AnnotatedResults}^{\mathbb{I}\mathbb{N}} \\ \mathcal{QB}_{\mathcal{X}}: & (\mathsf{Literals} \times \mathsf{Var_Bindings}) \to \mathsf{Var_Bindings} \\ & (\mathsf{Pred_Exprs} \times \mathcal{V} \times \mathsf{Var_Bindings}) \to \mathsf{Var_Bindings} \end{split}$$

• Left-to-Right propagation of variable bindings (*sideways* information passing strategy):

```
\mathcal{SB}_{\mathcal{X}}(axis,node,refExpr,Bdgs)
```

mirrors the generation of answer sets by algebraic evaluation: Bdgs may contain bindings for free variables in refExpr:

- *Bdgs* serves as join variables
- Bdgs is completed by evaluating refExpr
- evaluate negation as a relational "minus" operator:
 exclude some bindings

CORRECTNESS

Theorem 2

For every XPathLog expression expr,

$$\operatorname{Res}(\mathcal{SB}_{\mathcal{X}}(expr)) = \bigcup_{\beta \in (\mathcal{V} \cup \mathcal{L} \cup \mathcal{N})^{\operatorname{free}(expr)}} \mathcal{S}_{\mathcal{X}}(expr, \beta)$$

More detailed, for all $x \in \mathcal{V} \cup \mathcal{L} \cup \mathcal{N}$,

$$(x \in \operatorname{Res}(\mathcal{SB}_{\mathcal{X}}(expr)) \text{ and } \beta \in \operatorname{Bdgs}(\mathcal{SB}_{\mathcal{X}}(expr), x)) \Leftrightarrow$$

$$x \in \mathcal{S}_{\mathcal{X}}(expr, \beta)$$

Constructive semantics of XPath expressions

- Definite XPathLog atoms:
 - use only the child and sibling axes
 - no negation, function applications, aggregation, and proximity position predicates

"/" and "[...]" act as constructors:

- $host[property \rightarrow value]$ modifies host
- $ullet \ host/property\ remainder$ inserts new element host/property which satisfies remainder
- property of the form
 - child::name
 - child(i)∷name
 - preceding/following-sibling::name
 - preceding/following-sibling(i)::name
 - attribute::name
- ⇒ unambiguous insertions

Attributes

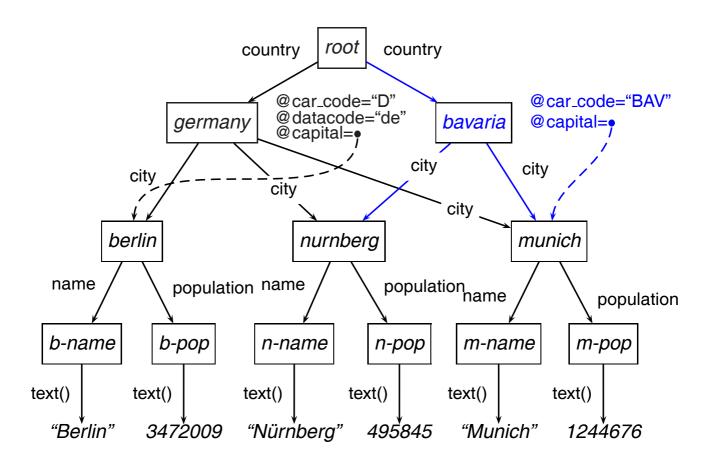
```
C[@datacode→"de"], C[@memberships→O]:-
//country→C[@car_code="D"],
//organization→O[abbrev/text()→"EFTA"].

<country datacode="de" car_code="D"
memberships="org-eu org-un org-efta ...">
:
</country>
```

- C: host element
- O: target of reference
- extends $A_{\mathcal{X}}$ (attribute, *germany*)

Create "free" elements

/country[@car_code→"BAV"].


<country car_code="BAV"> </country>

Add subelement relationships

```
C[@capital\toX and city\toX and city\toY]:-
//country\toC[@car_code\to"BAV"],
//city\toX[name/text()="Munich"],
//city\toY[name/text()="Nurnberg"].
```

- city elements are *linked* as subelements.
- extends $A_{\mathcal{X}}(\text{child}, \textit{bavaria})$ with (munich, city) and (nurnberg, city).
- crucial for efficient in-place restructuring and integration

Example: Linking

elements may have multiple parents

Generation of Elements by Path Expressions

```
C/name[text()→"Bavaria"]:-
//country→C[@car_code="BAV"].

<country car_code="BAV" capital="city-munich">
<city>...</city>
<city>...</city>
<name>Bavaria</name>
</country>
```

Atomized:

```
C[name\rightarrow_N], _N[text()\rightarrow"Bavaria"] :-
root[descendant::country\rightarrowC], C[@car_code="BAV"].
```

FORMAL SEMANTICS OF RULE HEADS

- bottom-up semantics with T_P -operator
 - Atomize complex expressions in the head (only definite expressions) into atoms of the forms

 $node[axis::nodetest \rightarrow X]$ and $node[axis(i)::nodetest \rightarrow X]$ and extend $\mathcal{A}_{\mathcal{X}}(\mathsf{child}, node)$ and $\mathcal{A}_{\mathcal{X}}(\mathsf{attribute}, node)$

• Negation: (user-defined) stratification

XPATHLOG: EXTENSIONS

- XPathLog supports class hierarchy and non-monotonic value inheritance
- Signatures: "lightweight" signature formalism:

```
country[@car_code⇒string].
country[@area⇒numeric].
country[@capital⇒city].
country[city⇒city].
```

used for defining tree projections of the internal database

INTEGRATION: "THREE-LEVEL" MODEL

"Warehouse" strategy, "global-as-view"

access multiple sources

- "basic" layer: source(s) provide tree structures,
- optionally with namespaces

merge data from different sources

- "internal" layer: XTreeGraph
 - overlapping trees
 - multiple parents
 - references
- fuse elements/merge subtrees
- add subelement links
- generate elements
- synonyms for properties

"export" layer: result trees views defined as projections

- root node
- signature

Integration 23

RESULTS

- declarative semantics for generating XML with XPath
- powerful, flexible language
 - metadata/schema querying
 - specialized data integration operations
 (e.g., element creation, element fusion, synonyms)
- first available implementation of XML updates
- implementation: LoPiX (using major components of Florid)
- practicability: case study
- graph data model suitable & necessary for integration
- extension concepts (classes, signatures)

Conclusion 24

Contents

\overline{c}	Conclusion	25
	Extensions	22
21	Formal Semantics of Rule Heads	21
20	Semantics of Rule Heads	20
18	Semantics of Rule Heads	18
17	Semantics of Rule Heads	17
16	Semantics of Rule Heads	16
15	Semantics of Rule Heads	15
	Rule Heads	15
14	Correctness	14
13	Semantics	13
12	Bodies/Queries: Answer set semantics	12
11	XPathLog Rules	11
	XPathLog	11
10	Formal Semantics	10
9	Example: Mondial XTreeGraph	g
8	Data Model: XTreeGraph	8
7	XPath-Logic: Syntax	7
6	XPathLog by Examples	6
5	XPathLog by Examples	5
4	Example: Mondial	4
3	Topics Overview	3
2	Design Decisions	2
1	Languages	1

A Rule-Based Querying and Updating Language for XML

24	Results	24
	Results	24
23	Integration: "Three-level" model	23
22	XPathLog: Extensions	22

Conclusion 26