
Efficient Cache Answerability for XPath Queries

Pedro José Marrón and Georg Lausen

University of Freiburg
Institute of Computer Science

Georges-Köhler-Allee,
79110 Freiburg, Germany

{pjmarron,lausen}@informatik.uni-freiburg.de

Abstract. The problem of cache answerability has traditionally been studied over conjunc-
tive queries performed on top of a relational database system. However, with the proliferation
of semistructured data and, in particular, of XML as the de facto standard for information
interchange on the Internet, most of the assumptions and methods used for traditional sys-
tems – and cache answerability is no exception – need to be revisited from the point of view
of the semistructured data and query model. In this paper, we present a formal framework
for the efficient processing of XPath queries over XML documents in a cache environment
that is based on the classic rewriting approach. Furthermore, we provide details on the
implementation of our formal methods on top of HLCaches, an LDAP-based distributed
caching system for XML, and argue that our approach is more efficient than traditional
query rewriting algorithms while, at the same time, supporting the full expressive power of
XPath queries.

Keywords: Semistructured data, cache answerability, query rewritability, XML, XPath,
LDAP

1 Introduction

Cache answerability has been traditionally studied in the realm of conjunctive predicates and
queries performed on top of relational database systems [Lev00], but the increasing interest in
recent years on the characteristics and capabilities of semistructured models and, in particular,
XML [BPSMM00], have lead to the restatement of the cache answerability problem in terms of
the semistructured data and query model [CGLV00,KNS99,PV99]. Furthermore, the proliferation
of techniques to perform data integration (let it be semistructured or not) on the Internet strive
the need for efficient cache mechanisms.

The use of XPath [CD99] and XPath-based models for the querying and processing of semistruc-
tured data has changed the focus of the rewriting algorithms from conjunctive predicates to regular
path queries [CGLV00], or other query languages specifically designed for a particular semistruc-
tured data model [PV99].

Other query caching systems, like [LRO96], [DFJ+96] or [QCR00], do not take into consid-
eration semistructured data, and although interesting in their approach, cannot be used in the
context our model can be brought up.

The approach we take in our work, and therefore, the focus of this paper, is on the definition
of a very simple, but highly efficient general-purpose formal model that allows us to tackle the
problem of cache answerability for XML from a more pragmatic perspective than the one usually
taken by traditional papers on the topic. The generality of our model enables its implementation
on any XPath-aware caching system, and in order to show its feasibility, we have implemented it
as part of HLCaches [ML01,Mar01], a hierarchical LDAP-based caching system for XML.

In our system, the methods and algorithms described throughout this paper serve as the basis
for the efficient processing of XPath queries in the distributed caching environment offered by
HLCaches, since it allows the definition of partial XPath query evaluation techniques, query
preprocessing mechanisms, and parallel processing routines that are crucial for the maintenance of
the level of availability and processing capabilities expected from an distributed caching system.

2

Axis Name Considered Nodes

ancestor Any node along the path to the root

ancestor-or-self Same, but including the current node

attribute Consider only attribute nodes in the tree

child Any node directly connected to the current node

descendant Any node from the subtree rooted at the current node

descendant-or-self Same, but including the current node

following Any node with id greater than the current node,
excluding its descendents

following-sibling Any same-level node with id greater than the current node

parent The direct predecessor of the current node

preceding Any node with id lower than the current node,
excluding its ancestors

preceding-sibling Any same-level node with id lower than the current node

self The current node

Table 1. Allowed Axis Expressions in XPath

This paper is structured as follows: Section 2 presents a formal description of the XPath query
model needed to understand the reformulation of the cache answerability problem detailed in
section 3. Section 4 provides an insight in some of the more important implementation issues
related to our model, and section 5 concludes this paper.

2 XPath Query Model

As specified in the XPath standard [CD99], the primary purpose of the XPath query language
is to address parts of an XML document, usually represented in the form of a tree that contains
element, attribute and text nodes.

An XPath Query QX is formed by the concatenation of path expressions that perform walk-like
operations on the document tree retrieving a set of nodes that conform to the requirements of the
query. Each expression is joined with the next by means of the classical Unix path character ’/’.

Definition (XPath Query) An XPath Query QX is defined as: QX = /q0/q1/ . . . /qn, where qi

is an XPath subquery defined below, and ’/’ the XPath subquery separator. �

Definition (XPath Subquery) An XPath Subquery qi is a 3-tuple qi = (Ci, wi, Ci+1), where:

– Ci is a set of XML nodes that determine the input context.
– wi is the Path Expression to be applied to each node of the input context (defined below).
– Ci+1 is a set of XML nodes resulting from the application of the path expression wi onto the

input context Ci. Ci+1 is also called the output context. �

Definition (XPath Path Expression) A Path Expression wi is a 3-tuple wi = ai :: ei[ci], such
that:

– ai is an axis along which the navigation of the path expression takes place (see table 1 for a
complete list).

– ei is a node expression that tests either the name of the node or its content type.
– ci is a boolean expression of conditional predicates that must be fulfilled by all nodes in the

output context. �

Example The query QX = /child :: mondial/child :: country[attribute :: car code = “D”] is
composed of two subqueries whose combination selects all country nodes directly connected to
the mondial child of the document root, that have an attribute car code with value “D”. �

3

More formally, and using the classic predicate-based approach found in most rewriting papers,
the evaluation of a query QX , can be defined in terms of the evaluation of its respective subqueries
by means of the following predicate:

Definition (XPath Subquery Evaluation) Given an XPath subquery qi = (Ci, wi, Ci+1),
where Ci is the input context, wi is a path expression, and Ci+1 the evaluation of wi on Ci (also
called the output context), we define its evaluation by means of the eval predicate, as follows:

Ci+1 = eval(Ci, wi)

where the eval predicate is simply an abbreviation of the following expression:

eval(Ci, wi) =
⋃

n∈Ci

(evalNode(n, wi))

where evalNode performs the evaluation of wi over a single input node, returning all other nodes
in the document that satisfy wi. �

Definition (XPath Query Evaluation) Given the XPath query QX = /q0/ . . . /qn/, its eval-
uation is defined in terms of the eval predicate as follows:

QX = Cn+1 = eval(Cn, wn), where
Ci+1 = eval(Ci, wi), 0 ≤ i ≤ n

The result of the query is simply the last output context from subquery qn, that in turn,
depends on the output context of qn−1, and so on.

As defined in the XPath standard [CD99], C0 is said to contain only the root of the document
tree. �

Given the highly serial characteristics of the XPath query model, the evaluation process for a
given XPath query can be easily visualized using the graphical representation of figure 1, where,
as an example, the evaluation process of a query consisting of seven subqueries is depicted. The
ovals inside each context between two subqueries indicate the individual XML nodes that satisfy
the subquery at each point.

q0
q1 q2 q3 q4 q5 q6

C0 C1 C2 C3 C4 C5 C6 C7 = Result

Fig. 1. XPath Query Evaluation Example

It is worth mentioning at this point that the evaluation of a given subquery qi involves the
application of qi on each one of the individual nodes contained in the previous context, so that it
is possible to keep track of which node in context Ci generates what set of nodes from Ci+1.

4

3 Cache Answerability

Cache answerability is the basis for more complex problems whose solution usually implies the more
efficient processing of queries on a given system. As we have already mentioned in the introduction,
data integration, and in particular semistructured data integration is becoming more and more
common, and requires efficient cache solutions that must rely on efficient cache answerability
algorithms.

The problem of cache answerability is usually reduced to determining, given a particular query,
whether or not there exists a rewriting for the query in terms of elements or predicates already
known to the cache, assuming that the retrieval of results from the cache can be performed more
efficiently than their repeated evaluation. Of course, this is only the case if the collection and
maintenance of information in the cache can be implemented in such a way that the path taken
by the query for its evaluation is not slowed down by the data gathering phase used as the basis
for the query rewriting algorithms.

In our case, in order to fully support the rewriting of XPath queries, we only need to store the
output context of each subquery in our cache as it is evaluated in the first place. The predicate
cache(I, wc), defined in exactly the same way the eval predicate was introduced in the previous
section, is stored in the cache, and contains the set of path expressions with their respective input
and output contexts that have been evaluated by the cache thus far. The difference between the
eval and cache predicates lies in the efficiency of their implementation. Whereas the former needs
to invoke a parser on the subquery expression and evaluate it on top of the document tree, the
latter simply performs a look up on the current contents of the cache to immediately retrieve the
answer to the subquery.

Using these definitions, and taking into account that the nature of XPath expressions allows
us to perform rewritings at the subquery level, we obtain the following definitions:

Definition (Equivalent Rewriting) Given an XPath subquery qi = (Ci, wi, Ci+1) that needs
to be evaluated by the application of an eval(Ci, wi) predicate, an equivalent rewriting is another
predicate cache(Ic, wc), such that the following properties hold:

– w = wc; and
– Ci = Ic.

The evaluation of the subquery qi is then, Ci+1 = cache(Ic, wc). �

However, looking at this definition, it is clear that we can relax the second constraint to allow
for a greater number of equivalent rewritings to be detected.

Definition (Weak Equivalent Rewriting) Given an XPath subquery qi = (Ci, wi, Ci+1) that
needs to be evaluated by the application of an eval(Ci, wi) predicate, a weak equivalent rewriting
is another predicate cache(Ic, wc), such that the following properties hold:

– w = wc; and
– Ci ⊆ Ic.

The evaluation of the subquery qi, and therefore, the contents of Ci+1 is then the set of nodes
in the output context generated as a consequence of the evaluation of wi on the input context Ci,
that is, Ci+1 = cache(Ci, w

c).
In other words, if our cache contains a superset of the answers needed to provide a rewriting

for the subquery qi, we are still able to evaluate the subquery qi only with the contents of our
cache. �

Finally, we can define what it means for a rewriting to be partial:

Definition (Partial Equivalent Rewriting) Given an XPath subquery qi = (Ci, wi, Ci+1)
that needs to be evaluated by the application of a eval(Ci, wi) predicate, a partial equivalent
rewriting is another predicate cache(Ic, wc), such that the following properties hold:

5

– w = wc; and
– Ci ⊇ Ic.

Then, the evaluation of the subquery qi is the set of nodes in the output context found in the
partial equivalent rewriting, plus the set of nodes that needs to be evaluated by means of the eval
predicate, that is, Ci+1 = cache(Ic, wc) ∪ eval(Ci \ Ic, w). �

These definitions allow us to create a framework where, independently of the storage model
used for XML documents, and taking only the characteristics of the XPath query language into
account, the problem of finding equivalent rewritings for a given query and, by extension, the
problem of cache answerability can be very easily solved.

Let us illustrate the functionality of our framework with an example:

Example Let us assume that our cache contains an instance of the mondial database [May],
where various pieces of information about geopolitical entities is stored. Let us also assume that
the query Q1 = /mondial/country//city has already been evaluated, and its intermediate results
stored in our cache by means of several cache predicates, namely:

cache contents = cache(C0, “/mondial”),
cache(Oc

1, “/country”),
cache(Oc

2, “//city”)

where Oc
1 and Oc

2 are the stored results of the evaluation of “/mondial” on C0 and “/country”
on Oc

1, respectively.
In order to evaluate the query QX = /mondial/country[car code = “D”]//city using the eval

predicate, we need to solve the following expression:

QX = C3 = eval(C2, “//city”), where
C2 = eval(C1, “/country[car code = “D”]”)
C1 = eval(C0, “/mondial”)

However, the evaluation of Q1 provided us with a series of cache predicates that we can use in
order to rewrite QX as follows:

QX = C3 = cache(C2, “//city”), where
C2 = eval(C1, “/country[car code = “D”]”)
C1 = cache(C0, “/mondial”)

As we can see from the cache contents detailed above, we can find two equivalent rewritings,
one for the first subquery, and another one for the last subquery. The subquery in the middle does
not exist in our cache, and therefore, needs to be evaluated by means of the eval predicate.

In this example, we can see two different kinds of rewritings: an equivalent rewriting for the
/mondial subquery, since the contents of C0 are fixed and defined to be the root of the XML data,
and a weak equivalent rewriting for the //city subquery, since the contents of C2 are a subset
of the contents of Oc

2 defined in the cache. This is obvious since the query /country retrieves all
country nodes in the document, whereas /country[car code = “D”] selects only one country node
from all existing countries. �

4 Implementation Issues

As we have already mentioned, our model has been implemented as part of the query evaluation
engine of the HLCaches system, whose basic structure and evaluation algorithms have been

6

published in [ML01]. However, the generality of the model described in the previous section allows
for our mechanisms to be implemented and deployed not only in HLCaches, whose XML storage
model is based on LDAP [WHK97,HSG99], but on any XPath processing system that follows the
XPath standard [CD99].

In order to provide an implementation of our model, the following functionality needs to be
provided:

XML Data Model: An efficient storage and retrieval mechanism for XML.
XPath Evaluation Model: The implementation of the eval predicate in such a way, that the

evaluation of a subquery is completed before the evaluation of the next subquery starts. This
requirement is needed due to the highly serial nature of the XPath evaluation model.

Cache Data Model: Storage of cache contents (the cache predicate) in structures that allow for
their efficient checking and retrieval.

Cache Evaluation Model: Algorithms or query types used to determine the result of a partic-
ular cache predicate.

In HLCaches, we have implemented this model using the following approaches:

4.1 XML Data Model

LDAP is used in HLCaches as the underlying representation model for the encoding of arbitrary
XML documents. The exact representation, as well as the internal details of the storage mechanisms
fall out of the scope of this paper, but the interested reader is referred to the aforementioned
publications.

For the purposes of our discussion regarding the implementation of our model, it suffices
to know that an LDAP server maintains the directory schema model (equivalent to a DTD
[BPSMM00] or XMLSchema [Fal01,TBMM01] representation), and the directory data model.

The directory schema model manages the meta-data about the contents of the LDAP tree,
which implies the storage of mainly three types of information:

LDAP Schema Class Hierarchy: Contains information about the required and allowed at-
tributes a particular class of nodes are able to store, as well as the hierarchical relationships
among the different classes of nodes in the tree.

Valid Attributes: Represent the set of recognized attributes as well as their type, which deter-
mines the kind of search and modify operations allowed on a specific attribute.

Type Definition: Stores the set of allowable types that can be given to a specific attribute.

The directory instance, on the other hand, manages a set of nodes and their respective at-
tributes whose representation, similarly to XML, is a tree-based structure that can be stored and
retrieved very efficiently. The hierarchical structure of an LDAP directory is kept by means of two
special purpose attributes: object class (or oc for short) that stores the set of classes a node
belongs to, and a distinguished name (or dn for short), defined below:

Definition (LDAP Distinguished Name) An LDAP distinguished name is a comma sepa-
rated sequence of attribute-value pairs that uniquely identifies a particular node in the LDAP
tree.

A distinguished name for a particular entry is formed by taking the distinguished name of the
parent node in the hierarchy, and prepending an attribute-value pair unique to all the siblings of
the corresponding node. This attribute-value pair is referred to as the relative distinguished
name. �

Since the distinguished name contains each relative distinguished name from a particular node
up to the root, and there is only one parent for each node, the distinguished name is enough to
uniquely identify a particular entry in the instance hierarchy.

As it can be seen in the following example, attributes in LDAP are multivalued, that is, there
is no restriction on the number of values a particular attribute in a specific node is allowed to

7

take. This allows the oc attribute to store all the (potentially many) classes a particular node in
the LDAP tree is an instance of.

Example (LDAP Directory Instance) Figure 2 contains a graphical representation of an in-
stance in an LDAP directory, where both, the use of distinguished names to represent the hierar-
chical relationships, and the purpose of attribute names to store information about a particular
node is explicitly stated. �

root

cache Person

dn: dc=top

Docs John Smith

dn: ou=Person,dc=topdn: ou=Cache,dc=top

dn: ou=Docs,ou=Cache,dc=top dn: cn=John,ou=Person,dc=top

cn: John
sn: Smith
email: js@somewhere.com
email: john@else.com
oc: Person

Fig. 2. LDAP Directory Instance Example

The similarities between the LDAP and XML model allow us to store XML documents with-
out the need to provide cumbersome transformations like the ones needed to represent XML in
relational databases, making LDAP the ideal underlying data model for implementation on a
cache.

4.2 XPath Evaluation Model

Similarly, the Lightweight Directory Access Protocol offers a querying model based on filter spec-
ification that happens to be very close in nature to that of native XPath, so that, as detailed in
[ML01], every XPath query can be translated into LDAP queries of the form:

Definition (LDAPQL Query) An LDAPQL Query QHL is a 4-tuple

QHL = (bQHL,sQHL , fQHL , pQHL)

such that:

– bQHL is the distinguished name of the base entry in the directory instance where the search
starts from.

– sQHL is the scope of the search, which can be:
base if the search is to be restricted to just the first node,
onelevel if only the first level of nodes is to be searched,
subtree if all nodes under the base should be considered by the filter expression,
ancestors if all the ancestors of the node up to the root are to be searched.

– fQHL is the filter expression defined as the boolean combination of atomic filters of the form
(a op t), where:
• a is an attribute name;
• op is a comparison operator from the set {=, �=, <,≤, >,≥};

8

• t is an attribute value.
– pQHL is an (optional) projection of LDAP attributes that define the set of attributes to be

returned by the query. If pQHL is empty, all attributes are returned. �

Example (LDAPQL Query) The LDAPQL query

QL = (“cn=Queries,cn=Cache,dc=top”, subtree, (oc = XMLQuery), {hash})

retrieves the hash attribute from all XMLQuery nodes stored under the “cn=Queries,cn=Cache,
dc=top” node. �

For the purposes of this paper, it suffices to know that the eval predicate explained in the
previous sections is implemented by means of generic algorithms that translate an arbitrary XPath
expression into an LDAPQL construct and evaluates it, following the serial approach depicted in
figure 1.

R0

R1

Ri

...

M0 R0

R1

Rj

...

M1 R0

R1

Rk

...

Mn

C0 C1 C2

/ a0 :: e0 [c0] / a1 :: e1 [c1] / ... / an :: en [cn] /XPath

LDAPQL

Cn+1 = ResultCn

Fig. 3. XPath Evaluation

More specifically, given the nature and structure of the XPath model and of our evaluation
algorithm, we can summarize the process involved in the translation and evaluation of XPath
queries with the picture represented in figure 3. In it, we can see that each subquery evaluation
involves the generation of two types of queries:

1. Main queries, depicted in the figure by queries M0 . . . Mn at each step; and
2. refinement queries, represented, for example, by the R0 . . . Ri set in the first subquery.

The output context of a specific step is uniquely determined by evaluating the set of main
and refinement queries on the input context at each step of the computation. For example, C2 is
computed by evaluating M1 and R0 . . . Rj on C1.

At any given path step wi, there is one unique main query M that captures the semantics of
the axis ai and node expression ei, and a set of refinement queries {Ri} that correspond to each
boolean predicate in ci.

Example (LDAPQL Evaluation Example) Given the following query extracted from the Mon-
dial database [May]: QX = /child :: mondial/child :: country[attribute :: car code = “D”], the
application of the evaluation algorithm, produces the following results:

– q0 = /child :: mondial/
• C0 = {dn(root)}, since we start at the beginning of the document.
• w0 = child :: mondial[]
• C1 = {dn(mondial)}

9

– q1 = child :: country[attribute :: car code = “D”]
• C1 = {dn(mondial)}
• w1 = child :: country[attribute :: car code = “D”]
• C2 = {dn(Germany)}, since Germany is the only country in Mondial whose car code

attribute has the value “D”.

The evaluation of the first subquery w0, produces the following LDAP queries:

– w0 = child :: mondial[]
• M0 = (dn(root), onelevel, (&(oc = XMLElement)(name = “mondial”)), {})
• R0 = {}

Since w0 = child :: mondial[] has no conditional predicates, the set of refinement queries R0

is empty.
The evaluation of the second subquery w1, on the other hand, produces the following queries:

– w1 = child :: country[attribute :: car code = “D”]
• M1 = (dn(mondial), onelevel, (&(oc = XMLElement)(name = “country”)), {})
• R1 = {(dn(country), onelevel, (&(oc = XMLAttribute)(&(name = “car code”)

(value = “D”))), {})}

In this case, the set of refinement queries is not empty because w1 contains the predicate
attribute :: car code = “D”.

The only query in R1 is generated by our algorithms because the first term of the equality
testing predicate is a path expression, and the second term a simple value (the constant “D”). �

Therefore, the evaluation of XPath queries, independently of the underlying model used for
their computation (LDAPQL, DOM [ea00,HHW+00], etc.) consists of two phases that occur at
every step:

1. A (possibly) expansive phase, represented by the set of main queries.
2. A (definitely) implosive phase, represented by the set of refinement queries.

4.3 Cache Data Model

The core of the cache data representation lies in the specification of the custom-defined XMLQuery
class in the LDAP directory schema to allow for the storage of the cache relation.

XMLQuery OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {oc,hash,context,scope,xpathquery,result}

TYPE oc OBJECT-CLASS

TYPE hash STRING

TYPE context DN

TYPE scope STRING

TYPE xpathquery STRING

TYPE result (DN, DN)

}

Fig. 4. LDAP Class for Query Representation

Figure 4 contains the complete representation of the XMLQuery node, where the oc, hash,
context, scope, xpathquery and result attributes are stored.

10

The meaning of the oc attribute has already been defined in the previous section. It simply
contains the name of the LDAP class a particular node belongs to. In our case, all nodes used to
represent either a query or part of it, have a value of XMLQuery in their oc attribute.

The hash attribute contains the MD5 encoded string [MvOV97] that uniquely identifies a
query, and is used to very efficiently determine whether or not there are any XMLQuery nodes in
the system that contain the previously cached result for a particular set of nodes.

The next four attributes, context, scope, xpathquery and result define a query or subquery
in terms of the characteristics described in the XPath specification [CD99].

The context attribute stores the set of nodes in the input set of the cache predicate, and the
result attribute, a tuple that stores each input node with its corresponding output node. In other
words, the contents of the result attribute is a set of distinguished name tuples (dni, dnj), such
that dnj is the result of applying the query stored in the xpathquery attribute under the scope
defined in the scope attribute on the node dni from the context of the query.

Finally, the scope and xpathquery attributes simply contain the human-readable form of the
stored query to be used for control and debugging purposes.

4.4 Cache Evaluation Model

Combining the models we have seen so far and the fact that, in our particular implementation of
the HLCaches system, we are dealing with an LDAP system, we can redefine what it means for
a rewriting to be equivalent, weak equivalent or partial equivalent as follows:

Definition (HLCaches Equivalent Rewriting) Given an XPath subquery qi = (Ci, wi, Ci+1),
an equivalent rewriting is an LDAP node n in an directory instance, such that all of the following
properties hold:

1. oc(n) = XMLQuery,
2. Ci = context(n), and
3. hash(wi) = hash(n).

The functions oc(n), context(n) and hash(n) simply return the value or values the correspond-
ing attribute has stored at node n.

We further assume that the hash function used to create the entry in the LDAP node and
the hash of the path expression wi normalize the expression before applying the encoding so that
equivalent expressions like a ∧ b and b ∧ a are encoded to the same string. �

The evaluation of an equivalent rewriting in HLCaches is thus performed in a very efficient
way, since the result is already stored in the XMLQuery node.

Definition (HLCaches Equivalent Rewriting Evaluation) Let qi = (Ci, wi, Ci+1) be an
XPath subquery, and n its equivalent rewriting for a specific directory instance. Then, the evalu-
ation of the subquery, and therefore, the contents of Ci+1 are Ci+1 = result(n). �

Following the same approach, we have the following definition for weak equivalent rewritings:

Definition (HLCaches Weak Equivalent Rewriting) Given an XPath subquery qi, defined
as usual qi = (Ci, wi, Ci+1), a weak equivalent rewriting is an LDAP node n in a directory instance,
such that all of the following properties hold:

1. oc(n) = XMLQuery,
2. Ci ⊆ context(n), and
3. hash(wi) = hash(n).

The same restrictions and remarks given for the definition of equivalent rewritings hold. �

Given the new definition of weak equivalency, we need to redefine what it means to evaluate and
compute the result set of a weak equivalent rewriting, since the contents of the result attribute
in the rewriting are (possibly) a superset of the required solution.

11

Definition (HLCaches Weak Equivalent Rewriting Evaluation) Given an XPath subquery
qi = (Ci, wi, Ci+1) and a weak equivalent rewriting n for a specific directory instance, the evalua-
tion of the subquery, and therefore, the contents of Ci+1 are computed by means of an LDAPQL
query, as follows:

Ci+1 = LDAP(n, base, {(&(oc = XMLQuery)(result = (Ci, ∗)))}, {result}) �

This definition assumes, as we have already mentioned, that each of the result entries in the
rewriting are stored in the form of a tuple relation where the first tuple is the individual LDAP
node evaluated, and the second one of the possibly many result nodes.

Finally, we can redefine what it means for a rewriting in HLCaches to be partial:

Definition (HLCaches Partial Equivalent Rewriting) Given an XPath subquery qi, defined
as usual qi = (Ci, wi, Ci+1), a partial equivalent rewriting is an LDAP node n in a directory in-
stance, such that all of the following properties hold:

1. oc(n) = XMLQuery,
2. Ci ⊃ context(n), and
3. hash(wi) = hash(n).

The same restrictions and remarks given for the previous definitions hold. �

Therefore, and following the same mechanism used for the evaluation of weak equivalent rewrit-
ings, we have:

Definition (HLCaches Partial Equivalent Rewriting Evaluation) Given a subquery qi, de-
fined as usual qi = (Ci, wi, Ci+1), and a partial equivalent rewriting n for a specific directory in-
stance, the partial evaluation of the subquery, and therefore, partial contents of Ci+1 are computed
by means of the following LDAP query:

Ci+1 = LDAP(n, base, {(&(oc = XMLQuery)(result = (context(n), ∗)))}, {result}) �

Given the set of definitions detailed above, it remains to determine how to find equivalent
rewritings in an efficient way. Following the view materialization approach, other researchers have
developed rather complicated algorithms that try to achieve this goal [LMSS95,LRO96], although
the efficiency of their approaches is not that impressive. The bucket algorithm [LRO96], for ex-
ample, uses what could be considered a purely brute force approach after performing a quite
rudimentary pruning of candidate views. Even after this pruning, the complexity of the bucket
algorithm is still O(|V | · |Q|), where |V | is the number of views in the system, and |Q| the size of
the query in terms of individual predicates. Furthermore, their approach is tailored exclusively for
conjunctive queries, whose expressiveness is definitely a subset of that of XPath queries.

HLCaches, on the other hand, is not limited to conjunctive queries, allows the full expressive
power of XPath, and is able to find equivalent rewritings very efficiently at the subquery level.
Figure 5 contains pseudocode for the FIND EQUIVALENT algorithm whose purpose is to look for
equivalent subqueries applying the previous definitions in an efficient way.

The advantages of such an algorithm in comparison to the classical algorithms that try to find
equivalent rewritings is twofold:

1. The search can be performed using just one LDAP query, and a simple subset test to re-
move partial equivalent rewritings. Given the nature of the MD5 encoding [MvOV97] used to
implement the hash function, the number of nodes having the same hash is very limited in
practice.

2. The search and evaluation of the rewriting are performed in one step, thus eliminating the
need for an extra (costly) evaluation procedure.

3. The nature of LDAP instances, where information is stored in hierarchical trees, allows us to
define the “cn=Queries, cn=Cache, dc=top” node to be the root of all stored queries, thus
speeding up the process of finding equivalent rewritings.

12

Algorithm FIND EQUIVALENT (qi /* XPath subquery */)

Let qi be an XPath subquery of the form qi = (Ci, wi, Ci+1)
Let Result be a set of nodes that holds the result
Let t = “cn=Queries, cn=Cache, dc=top” be the cache top node

/* Perform an LDAP query to find all candidate rewritings */
Result = LDAP(t, subtree, (&(oc = XMLQuery)(hash = hash(wi))), {})
/* Test each candidate for equivalency */
for each candidate c ∈ Result

if (not Ci ⊆ context(c))
/* Remove non-equivalent rewritings */
Result = Result \ c

return Result

Fig. 5. FIND EQUIVALENT algorithm

For illustration purposes, the FIND EQUIVALENT algorithm shown here only accepts equivalent
rewritings, but it can be very easily modified to also return partial equivalent rewritings, simply
by removing the extra subset checking at the end of the procedure. Such an algorithm, besides
providing us with partial equivalent rewritings, also allows us to implement partial evaluation of
XPath queries.

5 Conclusion

In this paper, we have provided a formal model to efficiently solve the problem of cache answerabil-
ity for XPath queries when performed over XML data. The generality of our model is backed-up by
the fact that it can be represented and studied independently of the storage model used for XML,
but we have also provided examples and details about the implementation of such a model in the
context of HLCaches, an LDAP-based distributed caching system developed by the authors for
the efficient processing of XPath queries.

The efficiency of our implementation lies on the fact that the underlying representation model
(LDAP) is very similar to the storage model defined by XML. Furthermore, the results and imple-
mentation details given on our LDAP-based implementation show that the checking, and evalua-
tion of rewritings at the subquery level for XPath expressions can be performed in a very efficient
way, as opposed to more classic approaches, where the efficiency of their query containment and
query rewriting algorithms depend exponentially on the number of views stored in the system.

References

[BPSMM00] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, and Eve Maler. Extensible markup lan-
guage (XML) 1.0 (second edition). http://www.w3.org/TR/2000/REC-xml-20001006, Octo-
ber 2000.

[CD99] James Clark and Steve DeRose. XML path language (XPath) version 1.0. http://www.w3c.

org/TR/xpath, November 1999.
[CGLV00] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-based

query processing for regular path queries with inverse. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 58–66,
Dallas, Texas, USA, May 2000. ACM Press.

[DFJ+96] Shaul Dar, Michael J. Franklin, Björn Jónsson, Divesh Srivastava, and Michael Tan. Semantic
data caching and replacement. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan,
and Nandlal L. Sarda, editors, Proceedings of 22th International Conference on Very Large

13

Data Bases (VLDB) 1996, pages 330–341, Mumbai, Bombai, India, Septemter 1996. Morgan
Kaufmann.

[ea00] L. Wood et al. Document object model (DOM) level 1 specification (2nd ed.). http://www.
w3.org/TR/2000/WD-DOM-Level-1-20000929/, September 2000.

[Fal01] David C. Fallside. XML Schema part 0: Primer. http://www.w3.org/TR/xmlschema-0/, May
2001.

[HHW+00] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike
Champion, and Steve Byrne. Document object model (DOM) level 2 core specification.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/, November 2000.

[HSG99] T. A. Howes, M. C. Smith, and G. S. Good. Understanding and Deploying LDAP Directory
Services. Macmillan Network Architecture and Development. Macmillan Technical Publishing
U.S.A., 1999.

[KNS99] Yaron Kanza, Werner Nutt, and Yehoshua Sagiv. Queries with incomplete answers over
semistructured data. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 227–236, Philadelphia, Pennsylvania,
USA, May 1999. ACM Press.

[Lev00] A. Levy. Logic-based techniques in data integration. In J. Minker, editor, Logic-Based Arti-
ficial Intelligence. Kluwer Publishers, 2000.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 95–104, San Jose, California, USA,
May 1995. ACM Press.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information
sources using source descriptions. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan,
and Nandlal L. Sarda, editors, Proceedings of 22th International Conference on Very Large
Data Bases (VLDB) 1996, pages 251–262, Mumbai, Bombai, India, Septemter 1996. Morgan
Kaufmann.

[Mar01] Pedro José Marrón. Processing XML in LDAP and its Application to Caching. PhD thesis,
Universität Freiburg, October 2001.

[May] Wolfgang May. Mondial database. http://www.informatik.uni-freiburg.de/~may/

Mondial.
[ML01] Pedro José Marrón and Georg Lausen. On processing XML in LDAP. In Proceedings of the

27th International Conference on Very Large Data Bases (VLDB), pages 601–610, Rome,
Italy, September 2001. Morgan Kaufmann.

[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[PV99] Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting for semistructured data. In
Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors, Proceedings of the
ACM SIGMOD International Conference 1999, pages 455–466, Philadephia, Pennsylvania,
USA, June 1999. ACM Press.

[QCR00] Luping Quan, Li Chen, and Elke A. Rundensteiner. Argos: Efficient refresh in an XQL-based
web caching system. In Proceedings of the Third International Workshop on the Web and
Databases, pages 23–28, Dallas, Texas, May 2000.

[TBMM01] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. Xml schema
part 1: Structures. http://www.w3.org/TR/xmlschema-1/, May 2001.

[WHK97] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol (v3). RFC 2251,
December 1997.

