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Abstract

The problem of cache answerability has traditionally been studied over conjunctive
queries performed on top of a relational database system. However, with the proliferation
of semistructured data and, in particular, of XML as the de facto standard for information
interchange on the Internet, most of the assumptions and methods used for traditional
systems – and cache answerability is no exception – need to be revisited from the point
of view of the semistructured data and query model. In this paper, we present a formal
framework for the efficient processing of XPath queries over XML documents in a cache
environment that is based on the classic rewriting approach. Furthermore, we provide
details on the implementation of our formal methods on top of HLCaches, an LDAP-
based distributed caching system for XML, and show that our approach is more efficient
than traditional query rewriting algorithms while, at the same time, supporting the full
expressive power of XPath queries.
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1 Introduction

Cache answerability has been traditionally studied in the realm of conjunctive predicates and
queries performed on top of relational database systems [Lev00], but the increasing interest in
recent years on the characteristics and capabilities of semistructured models and, in particular,
XML [BPSMM00], have lead to the restatement of the cache answerability problem in terms
of the semistructured data and query model [CGLV00, KNS99, PV99]. Furthermore, the
proliferation of techniques to perform data integration (let it be semistructured or not) on
the Internet strive the need for efficient cache mechanisms.

The use of XPath [CD99] and XPath-based models for the querying and processing of
semistructured data has changed the focus of the rewriting algorithms from conjunctive pred-
icates to regular path queries [CGLV00], or other query languages specifically designed for a
particular semistructured data model [PV99].

Other query caching systems, like [LRO96] or [DFJ+96] or [QCR00], do not take into
consideration semistructured data, and although interesting in their approach, cannot be
used in the context our model can be brought up.

The approach we take in our work, and therefore, the focus of this paper, is on the
definition of a very simple, but highly efficient general-purpose formal model that allows us
to tackle the problem of cache answerability for XML from a more pragmatic perspective than
the one usually taken by traditional papers on the topic. The generality of our model enables



its implementation on any XPath-aware caching system, and in order to show its feasibility,
we have implemented it as part of HLCaches [ML01, Mar01], a hierarchical LDAP-based
caching system for XML.

In our system, the methods and algorithms described throughout this paper serve as the
basis for the efficient processing of XPath queries in the distributed caching environment
offered by HLCaches, since it allows the definition of partial XPath query evaluation tech-
niques, query preprocessing mechanisms, and parallel processing routines that are crucial
for the maintenance of the level of availability and processing capabilities expected from an
distributed caching system.

This paper is structured as follows: Section 2 presents a formal description of the XPath
query model needed to understand the reformulation of the cache answerability problem de-
tailed in section 3. Section 4 provides an insight in some of the more important implementation
issues related to our model, and section 5 concludes this paper.

2 XPath Query Model

As specified in the XPath standard [CD99], the primary purpose of the XPath query language
is to address parts of an XML document, usually represented in the form of a tree that contains
element, attribute and text nodes.

An XPath Query QX is formed by the concatenation of path expressions that perform
walk-like operations on the document tree retrieving a set of nodes that conform to the
requirements of the query. Each expression is joined with the next by means of the classical
Unix path character ’/’.

Definition (XPath Query) An XPath Query QX is defined as: QX = /q0/q1/ . . . /qn,
where qi is an XPath subquery defined below, and ’/’ the XPath subquery separator. �

Definition (XPath Subquery) An XPath Subquery qi is a 3-tuple qi = (Ci, wi, Ci+1),
where:

• Ci is a set of XML nodes that determine the input context.

• wi is the Path Expression to be applied to each node of the input context (defined
below).

• Ci+1 is a set of XML nodes resulting from the application of the path expression wi

onto the input context Ci. Ci+1 is also called the output context. �

Definition (XPath Path Expression) A Path Expression wi is a 3-tuple wi = ai :: ei[ci],
such that:

• ai is an axis along which the navigation of the path expression takes place (see table 1
for a complete list).

• ei is a node expression that tests either the name of the node or its content type.

• ci is a boolean expression of conditional predicates that must be fulfilled by all nodes
in the output context. �



Axis Name Considered Nodes
ancestor Any node along the path to the root
ancestor-or-self Same, but including the current node
attribute Consider only attribute nodes in the tree
child Any node directly connected to the current node
descendant Any node from the subtree rooted at the current node
descendant-or-self Same, but including the current node
following Any node with id greater than the current node,

excluding its descendents
following-sibling Any same-level node with id greater than the current node
parent The direct predecessor of the current node
preceding Any node with id lower than the current node,

excluding its ancestors
preceding-sibling Any same-level node with id lower than the current node
self The current node

Table 1: Allowed Axis Expressions in XPath

Example The query QX = /child :: mondial/child :: country[attribute :: car code = “D”]
is composed of two subqueries whose combination selects all country nodes directly connected
to the mondial child of the document root, that have an attribute car code with value “D”.�

More formally, and using the classic predicate-based approach found in most rewriting
papers, the evaluation of a query QX , can be defined in terms of the evaluation of its respective
subqueries by means of the following predicate:

Definition (XPath Subquery Evaluation) Given an XPath subquery qi = (Ci, wi, Ci+1),
where Ci is the input context, wi is a path expression, and Ci+1 the evaluation of wi on Ci

(also called the output context), we define its evaluation by means of the eval predicate, as
follows:

Ci+1 = eval(Ci, wi)

where the eval predicate is simply an abbreviation of the following expression:

eval(Ci, wi) =
⋃

n∈Ci

(evalNode(n,wi))

where evalNode performs the evaluation of wi over a single input node, returning all other
nodes in the document that satisfy wi. �

Definition (XPath Query Evaluation) Given the XPath query QX = /q0/ . . . /qn/, its
evaluation is defined in terms of the eval predicate as follows:

QX = Cn+1 = eval(Cn, wn), where
Ci+1 = eval(Ci, wi), 0 ≤ i ≤ n



The result of the query is simply the last output context from subquery qn, that in turn,
depends on the output context of qn−1, and so on.

As defined in the XPath standard [CD99], C0 is said to contain only the root of the
document tree. �

Given the highly serial characteristics of the XPath query model, the evaluation process
for a given XPath query can be easily visualized using the graphical representation of figure
1, where, as an example, the evaluation process of a query consisting of six subqueries is
depicted. The ovals inside each context between two subqueries indicate the individual XML
nodes that satisfy the subquery at each point.

q0
q1 q2 q3 q4 q5 q6

C0 C1 C2 C3 C4 C5 C6 C7 = Result

Figure 1: XPath Query Evaluation Example

It is worth mentioning at this point that the evaluation of a given subquery qi involves
the application of qi on each one of the individual nodes contained in the previous context,
so that it is possible to keep track of which node in context Ci generates what set of nodes
from Ci+1.

3 Cache Answerability

Cache answerability is the basis for more complex problems whose solution usually implies
the more efficient processing of queries on a given system. As we have already mentioned
in the introduction, data integration, and in particular semistructured data integration is
becoming more and more common, and requires efficient cache solutions that must rely on
efficient cache answerability algorithms.

The problem of cache answerability is usually reduced to determining, given a particular
query, whether or not there exists a rewriting for the query in terms of elements or predicates
already known to the cache, assuming that the retrieval of results from the cache can be
performed more efficiently than their repeated evaluation. Of course, this is only the case if
the collection and maintenance of information in the cache can be implemented in such a way
that the path taken by the query for its evaluation is not slowed down by the data gathering
phase used as the basis for the query rewriting algorithms.

In our case, in order to fully support the rewriting of XPath queries, we only need to store
the output context of each subquery in our cache as it is evaluated in the first place. The
predicate cache(I, wc), defined in exactly the same way the eval predicate was introduced in
the previous section, is stored in the cache, and contains the set of path expressions with their



respective input and output contexts that have been evaluated by the cache thus far. The
difference between the eval and cache predicates lies in the efficiency of their implementation.
Whereas the former needs to invoke a parser on the subquery expression and evaluate it on
top of the document tree, the latter simply performs a look up on the current contents of the
cache to immediately retrieve the answer to the subquery.

Using these definitions, and taking into account that the nature of XPath expressions
allows us to perform rewritings at the subquery level, we obtain the following definitions:

Definition (Equivalent Rewriting) Given an XPath subquery qi = (Ci, wi, Ci+1) that
needs to be evaluated by the application of an eval(Ci, wi) predicate, an equivalent rewriting
is another predicate cache(Ic, wc), such that the following properties hold:

• w = wc; and

• Ci = Ic.

The evaluation of the subquery qi is then, Ci+1 = cache(Ic, wc). �

However, looking at this definition, it is clear that we can relax the second constraint to
allow for a greater number of equivalent rewritings to be detected.

Definition (Weak Equivalent Rewriting) Given an XPath subquery qi = (Ci, wi, Ci+1)
that needs to be evaluated by the application of an eval(Ci, wi) predicate, a weak equivalent
rewriting is another predicate cache(Ic, wc), such that the following properties hold:

• w = wc; and

• Ci ⊆ Ic.

The evaluation of the subquery qi, and therefore, the contents of Ci+1 is then the set of
nodes in the output context generated as a consequence of the evaluation of wi on the input
context Ci, that is, Ci+1 = cache(Ci, w

c).
In other words, if our cache contains a superset of the answers needed to provide a rewriting

for the subquery qi, we are still able to evaluate the subquery qi only with the contents of our
cache. �

Finally, we can define what it means for a rewriting to be partial:

Definition (Partial Equivalent Rewriting) Given an XPath subquery qi = (Ci, wi, Ci+1)
that needs to be evaluated by the application of a eval(Ci, wi) predicate, a partial equivalent
rewriting is another predicate cache(Ic, wc), such that the following properties hold:

• w = wc; and

• Ci ⊇ Ic.

Then, the evaluation of the subquery qi is the set of nodes in the output context found in
the partial equivalent rewriting, plus the set of nodes that needs to be evaluated by means of
the eval predicate, that is, Ci+1 = cache(Ic, wc) ∪ eval(Ci \ Ic, w). �



These definitions allow us to create a framework where, independently of the storage model
used for XML documents, and taking only the characteristics of the XPath query language
into account, the problem of finding equivalent rewritings for a given query and, by extension,
the problem of cache answerability can be very easily solved.

Let us illustrate the functionality of our framework with an example:

Example Let us assume that our cache contains an instance of the mondial database [May],
where various pieces of information about geopolitical entities is stored. Let us also assume
that the query Q1 = /mondial/country//city has already been evaluated, and its intermedi-
ate results stored in our cache by means of several cache predicates, namely:

cache contents = cache(C0, “/mondial”),
cache(Oc

1, “/country”),
cache(Oc

2, “//city”)

where Oc
1 and Oc

2 are the stored results of the evaluation of “/mondial” on C0 and “/coun-
try” on Oc

1, respectively.
In order to evaluate the query QX = /mondial/country[car code = “D”]//city using the

eval predicate, we need to solve the following expression:

QX = C3 = eval(C2, “//city”), where
C2 = eval(C1, “/country[car code = “D”]”)
C1 = eval(C0, “/mondial”)

However, the evaluation of Q1 provided us with a series of cache predicates that we can
use in order to rewrite QX as follows:

QX = C3 = cache(C2, “//city”), where
C2 = eval(C1, “/country[car code = “D”]”)
C1 = cache(C0, “/mondial”)

As we can see from the cache contents detailed above, we can find two equivalent rewrit-
ings, one for the first subquery, and another one for the last subquery. The subquery in the
middle does not exist in our cache, and therefore, needs to be evaluated by means of the eval
predicate.

In this example, we can see two different kinds of rewritings: an equivalent rewriting for
the /mondial subquery, since the contents of C0 are fixed and defined to be the root of the
XML data, and a weak equivalent rewriting for the //city subquery, since the contents of
C2 are a subset of the contents of Oc

2 defined in the cache. This is obvious since the query
/country retrieves all country nodes in the document, whereas /country[car code = “D”]
selects only one country node from all existing countries. �



4 Implementation Issues

As we have already mentioned, our model has been implemented as part of the query evalua-
tion engine of the HLCaches system, whose basic structure and evaluation algorithms have
been published in [ML01]. However, the generality of the model described in the previous
section allows for our mechanisms to be implemented and deployed not only in HLCaches,
whose XML storage model is based on LDAP [WHK97, HSG99], but on any XPath processing
system that follows the XPath standard [CD99].

In order to provide an implementation of our model, the following functionality needs to
be provided:

XML Data Model: An efficient storage and retrieval mechanism for XML.

XPath Evaluation Model: The implementation of the eval predicate in such a way, that
the evaluation of a subquery is completed before the evaluation of the next subquery
starts. This requirement is needed due to the highly serial nature of the XPath evalua-
tion model.

Cache Data and Evaluation Model: Storage of cache contents (the cache predicate) in
structures that allow for their efficient checking and retrieval.

In HLCaches, we have implemented this model using the following approaches.

4.1 XML Data Model

LDAP is used in HLCaches as the underlying representation model for the encoding of
arbitrary XML documents. The exact representation, as well as the internal details of the
storage mechanisms fall out of the scope of this paper, but the interested reader is referred
to the aforementioned publication.

For the purposes of our discussion regarding the implementation of our model, it suffices
to know that the LDAP data model, similarly to XML, offers a tree-based representation of
data that can be stored and retrieved very efficiently. The hierarchical structure of an LDAP
directory is kept by means of a distinguished name, that we define below:

Definition (LDAP Distinguished Name) An LDAP distinguished name is a comma sep-
arated sequence of attribute-value pairs that uniquely identifies a particular node in the LDAP
tree.

A distinguished name for a particular entry is formed by taking the distinguished name
of the parent node in the hierarchy, and prepending an attribute-value pair unique to all the
siblings of the corresponding node. This attribute-value pair is referred to as the relative
distinguished name. �

Since the distinguished name contains each relative distinguished name from a particular
node up to the root, and there is only one parent for each node, the distinguished name is
enough to uniquely identify a particular entry in the hierarchy.

The similarities between the LDAP and XML model allow us to store XML documents
without the need to provide cumbersome transformations like the ones needed to represent
XML in relational databases, making LDAP the ideal underlying data model for implemen-
tation on a cache.



4.2 XPath Evaluation Model

Similarly, the Lightweight Directory Access Protocol offers a querying model based on filter
specification that happens to be very close in nature to that of native XPath, so that every
XPath query can be translated into LDAP queries of the form [ML01]:

Definition (LDAPQL Query) An LDAPQL Query QHL is a 4-tuple

QHL = (bQHL,sQHL
, fQHL

, pQHL
)

such that:

• bQHL
is the distinguished name of the base entry in the directory instance where the

search starts from.

• sQHL
is the scope of the search, which can be:

base if the search is to be restricted to just the first node,

onelevel if only the first level of nodes is to be searched,

subtree if all nodes under the base should be considered by the filter expression,

ancestors if all the ancestors of the node up to the root are to be searched.

• fQHL
is the filter expression defined as the boolean combination of atomic filters of the

form (a op t), where:

– a is an attribute name;

– op is a comparison operator from the set {=, �=, <,≤, >,≥};
– t is an attribute value.

• pQHL
is an (optional) projection of LDAP attributes that define the set of attributes to

be returned by the query. If pQHL
is empty, all attributes are returned. �

Example (LDAPQL Query) The LDAPQL query

QL = (“cn=Cache,dc=top”, subtree, (oc = XMLQuery), {hash})

retrieves the hash attribute from all XMLQuery nodes stored under the “cn=Cache, dc=top”
node. �

For the purposes of this paper, it suffices to know that the eval predicate explained in the
previous sections is implemented by means of generic algorithms that translate an arbitrary
XPath expression into an LDAPQL construct and evaluates it, following the serial approach
depicted in figure 1.



XMLQuery OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {oc,hash,context,scope,xpathquery,result}
TYPE oc OBJECT-CLASS
TYPE hash STRING
TYPE context DN
TYPE scope STRING
TYPE xpathquery STRING
TYPE result (DN, DN)

}

Figure 2: LDAP Class for Query Representation

4.3 Cache Data and Evaluation Model

The core of the cache data representation lies in the specification of a custom-defined LDAP
class – a XMLQuery node – that stores the contents of the cache relation.

Figure 2 contains the complete representation of the XMLQuery node, where the hash,
context and result attributes are stored. The hash attribute contains the MD5 encoded
string [MvOV97] that uniquely identifies a query, and is used to very efficiently determine
whether or not there are any XMLQuery nodes in the system that contain the previously cached
result for a particular set of nodes. The context attribute stores the set of nodes in the input
set of the cache predicate, and the result attribute a tuple that stores each input node with
its corresponding output node.

Following this approach, by means of the hash, context and result attributes, the
semantics of the cache predicate are implemented. Furthermore, thanks to the flexibility of
the LDAPQL model described above, we can check for the existence of a rewriting for a given
subquery qi = (Ci, wi, Ci+1) simply by means of the following query:

R = (“cn=Cache,dc=top”, subtree, (&(oc = XMLQuery)(hash = hash(wi)), {})

where “cn=Cache,dc=top” represents the root node of the cache.
The query returns a list of possible rewriting candidates that need to be tested based

on the contents of the context attribute following the definitions given in section 3, that is,
testing whether or not the contents of the context attribute are either a subset or a superset
of Ci, the input context of subquery qi.

Finally, given a rewriting for a query r, its evaluation is simply the retrieval of the result
attributes that correspond to the input context. This operation is performed in the following
way:

Ci+1 = (r, base, {(&(oc = XMLQuery)(result = (Ci, ∗)))}, {result})

for a (weak) equivalent rewriting, or

Ci+1 = (r, base, {(&(oc = XMLQuery)(result = (context(r), ∗)))}, {result})

for a partial rewriting.



5 Conclusion

In this paper, we have provided a formal model to efficiently solve the problem of cache
answerability for XPath queries when performed over XML data. The generality of our
model is backed-up by the fact that it can be represented and studied independently of the
storage model used for XML, but we have also provided examples and details about the
implementation of such a model in the context of HLCaches, an LDAP-based distributed
caching system developed by the authors for the efficient processing of XPath queries.

The efficiency of our implementation lies on the fact that the underlying representation
model (LDAP) is very similar to the storage model defined by XML. Furthermore, the results
and implementation details given on our LDAP-based implementation show that the checking,
and evaluation of rewritings at the subquery level for XPath expressions can be performed
in a very efficient way, as opposed to more classic approaches, where the efficiency of their
query containment and query rewriting algorithms depend exponentially on the number of
views stored in the system [Lev00].
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