
Adaptive Evaluation Techniques
for Querying XML-based E-Catalogs

Georg Lausen and Pedro José Marrón
Universität Freiburg, Institut für Informatik

Georges-Koehler-Allee, Geb. 51, 79110 Freiburg, Germany
flausen,pjmarrong@informatik.uni-freiburg.de

Abstract

The integration of electronic catalogs (eCatalogs) is one
of the most important aspects for the successful deployment
of electronic commerce systems, since they are usually the
only communication channel between buyers and suppliers.
In this paper, we propose an XML-based global eCatalog
integration platform whose query model allows us to avoid
the costly problem of finding rewritings for each local eCat-
alog in the system, while at the same time, providing reli-
able answers to a wide range of XPath queries. Our imple-
mentation relies on the following characteristics to achieve
its goals: the intrinsic properties of the XPath model; the
applicability and efficiency of an extensible fitness function
used to evaluate each answer; and the hierarchical nature
of product catalogs.

Keywords: E-Commerce, E-Catalog, XML, XPath, LDAP.

1 Introduction

Electronic Catalogs (eCatalogs) are a crucial compo-
nent for Electronic Commerce (eCommerce) on the Inter-
net, since they list, describe and, more importantly, cate-
gorize the kinds of products and services suppliers offer to
their customers. ECatalogs are, therefore, the main com-
munication channel between buyers and suppliers, only sur-
passed in importance by the proper and correct administra-
tion of diverse groups of catalogs from different suppliers,
whose transparent integration constitutes one of the key as-
pects of the successful deployment of electronic commerce
nowadays.

Various forms of catalog integration have been proposed
in the literature [4, 1, 7] and some of them are available as
commercial products, but whether they propose a central-
ized integrated platform as their solution, or merely a means
to establish a direct channel between buyers and suppliers,

the importance of projecting a uniform, integrated image to
the potential customers is crucial for electronic commerce
[6].

In this paper, we propose an eCatalog integration plat-
form that can be considered similar in spirit to the local-
as-view schema, where queries are formulated following a
predefined global catalog (gCatalog) and forwarded to the
appropriate local catalogs for evaluation. As opposed to
the classical view approach to catalog integration [3], our
methodology does not rely on finding rewritings to per-
form individual queries on local catalogs, but in an adaptive
query evaluation strategy that allows us to perform the same
query on all local catalogs and still obtain reliable answers.
The gist of our approach relies on three main factors:

1. The intrinsic properties of XPath queries over XML-
based catalogs;

2. the flexibility of a fitness function that allows us to dis-
criminate more accurate solutions from others; and

3. the nature of the conceptual hierarchy on which prod-
uct catalogs are based.

The combination of these factors allows us to perform
the evaluation of XPath queries on top of XML-based cata-
logs in a very efficient way.

The rest of this paper is organized as follows. Section
2 briefly describes the XPath and XML models and intro-
duces the running example we will use throughout this pa-
per. Section 3 explains the details of our adaptive query
evaluation model and how it can be used to provide catalog
integration capabilities, leaving the discussion of the advan-
tages and limitations of our approach, as well as some ap-
propriate possible solutions for such disadvantages for sec-
tion 4. Finally, section 5 concludes this paper.

2 XML, XPath and eCatalogs

Consider the scenario, originally described in [8], where
a group of electronics companies decide to offer their prod-

1



ucts on-line by means of a common, integrated site. The dif-
ferences in the range and type of products they sell, are re-
flected in their individual local catalogs, but they manage to
agree on a common global catalog to implement on the site.
Company SESP [2], for example, only sells mobile phone
jammers, as can be seen in its local catalog (left-hand side
of figure 1), whereas company BIGGER contains a richer
variety of products ranging from computers, to phone jam-
mers, etc. (right-hand side of figure 1).

After several meetings, they agree that the global cat-
alog should contain a combination of the individual con-
cepts (represented by XML tags) that provide a generic rep-
resentation of their business model. They agree that they
have products, organized in different departments, and each
product may contain internally a description of its features
in terms of company names, product names, price, etc. Fig-
ure 2 contains the hierarchical representation of the con-
cepts found in their local catalogs, and figure 3 represents
the global catalog.

If we were to use the classic XPath model to perform a
query on the global catalog, we would need to know how to
rewrite this query in terms of the local catalogs so that we
can obtain the desired answers.

Example Let the query Qglobal �

�department�mobile�products�jammer�price � ����

be a valid XPath query performed on the global cata-
log to request all jammers in the system whose price lies
below 200 EUR. Its evaluation using the classic approach
involves the creation of two equivalent queries QSESP and
QBIGGER and their evaluation in their respective local cat-
alogs, collecting the answers for further presentation to the
user.

Given the catalogs in figures 2 and 3, we cannot
simply forward QSESP � QBIGGER � Qglobal to
SESP and BIGGER, because SESP does not contain a
department node and BIGGER does not have a prod-
ucts node. Therefore, we need to make QSESP �
�products�jammer�price � ���� and QBIGGER �
�department�mobile�jammer�price � ���� if we want
to obtain an answer. This is the classic problem of query
rewriting in mediator systems that, in the semistructured
world, would imply analyzing the current query and adapt it
to either a DTD that describes the contents of each local data
repository, or to the data itself, if the DTD is non-existent.

�

The reason we need to provide a rewriting in the pre-
vious example lies on the XPath query evaluation model,
where an XPath query Q is formed by the concatenation of
path expressions that perform walk-like operations on the
document tree, retrieving a set of nodes that conform to the

requirements of the query. Each expression is joined with
the next by means of the character ' /' .

A formal characterization of this model, originally pro-
posed in [9], is as follows:

Definition (XPath Query) An XPath QueryQX is defined
as:

QX � q��q�� � � � �qn

where qi is an XPath subquery defined below, and ' /' the
XPath subquery separator. �

Furthermore,

Definition (XPath Subquery) An XPath Subquery qi is a
3-tuple

qi � �Ci� wi� Ci���

where:

� Ci is a set of XML nodes that determine the input con-
text;

� wi is the Path Expression to be applied to each node of
the input context (defined below); and

� Ci�� is a set of XML nodes resulting from the appli-
cation of the path expression wi onto the input context
Ci. Ci�� is also called the output context. �

Finally,

Definition (XPath Path Expression) A Path Expression
wi is a 3-tuple

wi � ai �� ei�ci�

such that:

� ai is an axis along which the navigation of the path
expression takes place (see table 1 for a complete de-
scription)1;

� ei is a node expression that tests either the name of the
node or its content type; and

� ci is a boolean expression of conditional predicates that
must be fulfilled by all nodes along the path. �

Example The XPath query QX � �child ��
mondial�child �� country�attribute �� car code � 	D”�
is composed of two subqueries whose combination selects
all country nodes directly connected to the mondial
node having an attribute car code with value “D”. �

1Only the child and ancestor axis are considered in our adaptive
evaluation algorithm

2



<products>
<jammer>

<company>SESP</company>
<name>VHP Jammer </name>
<price><onrequest/></price>
<case><type>Mobile Attache Case
</type></case>

</jammer>

<jammer>
<company>SESP</company>
<name>Full Milspec. Portable

HP Jammer</name>
<price><onrequest/></price>
<case><type>Rugged military
</type></case>
<booster><range>1km</range>
</booster>
<supplement>39</supplement>

</jammer>
...

<department>
<mobile>

<jammer>
<name>Static HP Jammer</name>
<company>BIGGER</company>
<price>250 EUR</price>

</jammer>
<jammer>

<name>Personal Jammer</name>
<company>JamLogic</company>
<price><onrequest/></price>

</jammer>...
</mobile>
<computing>

<computer>
<make>Dell Infinion</make>
<cpu>Pentium 4</cpu>
<memory>128 MB</memory>...

</computer>...
</computing>
...

Figure 1. Local Catalogs for companies SESP (left) and BIGGER (right)

products

jammer

company name price

department

computing mobile ...

jammer

company name price

Figure 2. Concept hierarchy for SESP (left), and BIGGER (right)

The usual processing methodology of XPath queries im-
plies the evaluation of each subquery qi on each element
of its corresponding input context Ci in order to gener-
ate each element of the output context Ci��. However, as
a special case, if the path expression wi of a given sub-
query qi is empty, represented as wi � �, the evalua-
tion of qi � �Ci� �� Ci��� is simply performed by assign-
ing the output context to the contents of the input context:
Ci�� � Ci.

Figure 4 contains a graphical representation of the eval-
uation process of a query consisting of six subqueries. The
ovals inside each context between two subqueries indicate
the individual XML nodes that satisfy the subquery at each
point.

Therefore, given the serial evaluation model of XPath
and the structure of the SESP local catalog that lacks the
department and mobile nodes, the execution ofQglobal with
no modifications onto the SESP local catalog produces no
answers, since the output context C� of the �department�
subquery is empty. The same problem appears querying
BIGGER.

3 Adaptive Query Evaluation Strategy

Our adaptive XPath query evaluation strategy has been
designed with the purpose of avoiding the need for the kind
of rewriting mechanisms detailed in the previous example,

3



Axis Name Considered Nodes
ancestor Any node along the path to the root
ancestor-or-self Same, but including the current node
attribute Consider only attribute nodes in the tree
child Any node directly connected to the current node
descendant Any node from the subtree rooted at the current node
descendant-or-self Same, but including the current node
following Any node with id greater than the current node, excluding its descendents
following-sibling Any same-level node with id greater than the current node
parent The direct predecessor of the current node
preceding Any node with id lower than the current node, excluding its ancestors
preceding-sibling Any same-level node with id lower than the current node
self The current node

Table 1. Allowed Axis Expressions in XPath

while at the same time, obtaining the set of answers we
would retrieve had we performed the appropriate rewriting.

department

computing mobile ...

products

jammer

personnel

company name price

Figure 3. Concept hierarchy: global catalog

We assume that each local catalog provides a mapping
between the concepts found in the glogal catalog and its
own local representation, so that discrepancies that might
appear as a result of using synonyms, or other languages for
the same concepts are easily solved. The benefit of such a
mapping mechanism is manyfold:

� Each concept can be translated independently of its lo-
cation in the submitted query, so that no structural re-
organization needs to be performed.

� Each local catalog may decide entirely on its own how
to direct a specific concept or query inside its catalog,
allowing the support of synonyms or other languages

simply by the implementation of a dictionary-like sys-
tem.

For example, if the BIGGER catalog in figure 2 had a
portable node, instead of mobile, but wanted that all queries
directed towards mobile products go through the portable
node, it would only have to replace every occurrence of
mobile with portable without any further structural or se-
mantical consideration.

The gist of our strategy is the application and evaluation
of three possible subquery transformations on each of the
subqueries in the original XPath query, and on the metric
provided by a fitness function for every possible answer to
enable the discrimination of one set of solutions over an-
other.

Definition (Subquery Transformations) The three possi-
ble transformations performed on a given subquery by our
adaptive query evaluation algorithm are:

No transformation: Where the query is evaluated as it was
originally specified by the user;

Subquery generalization: Where the axis of a particular
subquery is augmented according to the contents of ta-
ble 2;

Subquery elimination: Where a subquery is eliminated
from the original XPath query if its result set (output
context) is empty, allowing for the further evaluation
of the following queries as if it had never been on the
original query in the first place. �

Predicates that appear as part of a subquery are evalu-
ated in the normal way and are, therefore, not subject to
the transformations we just described. We further assume
that predicates contain only simple path expressions that

4



Original Axis Augmented Axis
child descendent
parent ancestor

Table 2. Subquery Generalization Strategy

test properties and attributes of a node that, following the
DOM model [11], are stored as direct descendents of such
elements. We could, of course, allow the adaptive search
of path expressions in predicates, but then we need to de-
fine what it means for a predicate match to happen after a
generalization, which could lead to inconsistencies in the
result set. For this reason, and taking into account that the
purpose of the use of predicates and the above mentioned
transformations is opposite to each other, we have opted to
only allow simple path expressions at the predicate level.

The difficulty in the evaluation process lies in determin-
ing the correct sequence of transformations to apply at each
subquery so that accurate results are produced. In order to
do this, given a subquery qi with input context Ci, we eval-
uate it with respect to each subquery transformation, so that
from each input context Ci, we generate three output con-
texts: Cn

i��, Cg
i�� and Ce

i�� that correspond, respectively,
to the application of the no transformation, subquery gener-
alization and subquery elimination transformations defined
above.

Following this technique, each context Ci�� � Cn
i�� �

Cg
i�� � Ce

i�� is formed by the union of the result contexts
obtained by the application of each one of the three trans-
formations. Figure 5 contains a graphical representation of
the evaluation of a query with six subqueries using our tech-
nique. The dark-shaded nodes are the ones generated by the
evaluation of a subquery as such, the light-shaded ones by
the generalized subquery, and the white ones by the elimi-
nation of the subquery.

The purpose of the fitness function, defined below, is to
assign a metric to each one of the nodes generated in the
process above so that we can distinguish which one of the
transformations provides us with more accurate results.

Definition (Fitness function) Let qi be the current sub-
query to be evaluated, and Ci its associated input con-
text. Each node n � Ci is augmented to have a value
vn resulting from the evaluation of the previous subqueries
q� � � � qi��. We already know that the new context Ci�� �
Cn
i�� � Cg

i�� � Ce
i�� is composed by the union of the in-

dependent result sets of the three possible evaluation tech-
niques. Furthermore, we know that each new node in Ci��
is the result of the evaluation of qi on a node n � Ci.

Then, the fitness function assigns a value vm to each new
node in m � Ci�� generated by a node n � Ci as follows:

� if m � Cn
i��, then vm � b�l 
 vn;

� if m � Cg
i��, then vm � bl 
 vn; and

� if m � Ce
i��, then vm � � 
 vn.

where bl � � is an integer that represents the base of the
fitness function at a given level in the computation.

If a noden has been generated by the application of more
than one strategy, for example, n � Cn

i�� and n � Cg
i��, the

final context Ci�� only contains the instance of n with the
biggest value vn. Originally, the value of the root node is
initialized to 1: vroot � �. �

Of course, this definition is simply one of many possi-
ble implementations of a strictly monotonic function, whose
purpose is the correct ranking of intermediate and final re-
sults generated by the evaluation procedure. A more in-
volved representation of such a fitness function where the
term bl becomes a function of the current node bl � f�m�,
as opposed to a function of the current level in the evalua-
tion procedure, would allow a specific local catalog to di-
rect the query towards certain nodes and to rank “weekly
specials” higher simply by selecting the appropriate values
for those particular nodes.

As can be deduced from the definition of the fitness func-
tion, nodes generated as a result of the evaluation of a sub-
query in its original state have a higher fitness value than
those generated by the generalization of the subquery, or
those obtained by its elimination. The reason behind this
choice is to favor the original query over transformation op-
erations that might abstract away the intention of the user.
Therefore, the elimination of a subquery is valued as the
worst possible alternative in the series of transformations
because if a particular subquery has been specified, it should
be used before it is tossed away. Otherwise, the empty query
would always have a good chance of becoming part of the
answer set, which makes no real sense. The final result of
the query is, therefore, the node or set of nodes whose score
at the end of the evaluation process is highest.

Using this definition, our original example is evaluated
as follows:

Example In order to evaluate Qglobal �

�department�mobile�products�jammer�price � ����

using the technique just explained, the two local catalogs
SESP and BIGGER would have to perform the following
operations:

Assuming that root denotes the root node of the SESP
catalog, the first step is to set QSESP to Qglobal with-
out performing any transformation on it. Then, q� �
�department is evaluated on the initial input contextC� �
frootg, that contains only the root node, yielding Cn

� � �,
since there are no department nodes as direct children
from the root. The next step is to evaluate the generalized

5



q0
q1 q2 q3 q4 q5 q6

C0 C1 C2 C3 C4 C5 C6 C7 = Result

Figure 4. Example of a classic XPath query evaluation

q0
q1 q2 q3 q4 q5 q6

C0 C1 C2 C3 C4 C5 C6 C7 = Result

Figure 5. Example of our adaptive query evaluation technique

subquery q� � ��department on C�, that also produces
no results Cg

� � �, since there are no department nodes
anywhere in the SESP catalog. Finally, q� � � is evalu-
ated on C�, generating Ce

� � frootg, where vroot � � at
this point. The same exact process happens in the evalua-
tion of q� � �mobile since there are no mobile nodes in
the catalog, thus producing C� � frootg, with vroot � �.
The evaluation of q� � �products, on the other hand, has
a non-empty Cn

� , since as it can be seen in the catalog of
figure 1, products is a direct child of the root. The value
of each node n � Cn

� is, according to our fitness function
definition, vn � ��� 
 � � ���, assuming that bl � �� at
all levels and that, as it is the case, all nodes in Cn

� come
from the only (root) node in C�. The evaluation of the gen-
eralized query q� � ��products produces Cg

� � Cn
� , that

is, since there are no other nodes in the catalog, the descen-
dents of the root node are just its direct children. Further-
more, since the value of the nodes in Cn

� is greater than that
of the nodes in Cg

� , we merge the result set to only contain
the one instance of a given node with the bigger value. Fi-
nally, the evaluation of q� � � yields Ce

� � frootg, where

vroot � 
.
The evaluation of q� � �jammer�price � ���� uses

C� as its input context, where some of the nodes, namely
those that have satisfied the previous subquery, contain a
higher value than the root node, for example, that has
been generated simply by the elimination of all previous
subqueries q� � � � q�. Therefore, Cn

� will be composed of
the direct jammer children from C� whose price is less
than 200 EUR. So if n � Cn

� and its preceding node
m � Cn

� , as it will probably be the case, the value of n
is: vn � ��� 
 ��� � ���. On the other hand, if a node n
is generated by the root, whose value is vroot � 
, as we
have seen, its new value would be vn � ��� 
 
 � ��
.

At the end of this process, the result of the query is
represented by the group of nodes in C� whose value is
greatest. It is not very hard to see from the example that
the best obtained value for each of the nodes in C� cor-
respond to the nodes generated by the query QSESP �
�products�jammer�price � ����, which is exactly the
optimal rewriting obtained intuitively by inspection of the
local SESP catalog.

6



The processing and evaluation of QBIGGER is analo-
gous. �

4 Properties of our Approach

The simplicity of our approach is both, its main strength
and its major limitation, since the structural complexity of
catalogs in the real world may lead our algorithm to produce
incorrect results. Nevertheless, the advantages of using the
system we just detailed outweigh the possible limitations,
as can be seen in the next sections.

4.1 Advantages

Due to space constraints, we cannot develop each advan-
tage of our approach in detail in this paper, but the following
list gives an overview of the benefits the deployment of such
a system as the core technology of an integrated electronic
catalog system would produce.

� A rewriting for a query formulated agains a global cat-
alog does not need to take into account the structural
differences present in each local catalog. Therefore,
the evaluation of queries is independent of the number
of local catalogs registered in the system, making our
approach efficient and, more importantly, scalable to
any number of local catalogs.

� By selecting an appropriate fitness function and a con-
cept translation mechanism, each local catalog can
tweak a specific query to produce different results de-
pending on the current state of their catalog. This prop-
erty enables local catalogs to very easily implement
strategies that direct customers to special offers, or new
products.

� Each local catalog is able to perform the evaluation of
the query in parallel, thus benefiting from a distributed
architecture.

� The use of a base for the exponential part of the fitness
function that depends on the level at a given catalog,
allows for the flexible tailoring of the query evaluation
process at the local catalogs in an independent fashion.

� If a group of local catalogs agree on the parameters
of the fitness function, a homogeneous ranking for the
evaluation of independent answers is achieved at no
extra cost, directing the user naturally to the more ac-
curate answers of her query.

� A number of semantic relationships among related el-
ements in the catalog can be implemented by means
of the fitness function. If, for example, the concept

accessories should always be related to its parent cate-
gory CPU, the local catalog could select a relatively
small value for the accessories node, so that acces-
sories would only be selected as part of the result set if
CPU is also in the set.

� The use of the fitness function and our evaluation strat-
egy enables the efficient search of the right combi-
nation of transformation operations without incurring
in the exponential overhead typical of such a search,
where at each step of the computation, one out of three
choices needs to be made. By means of the result unifi-
cation process where only one instance of a given node
with the highest score is maintained as part of the result
set, we are able to reduce an exponential search prob-
lem (O��n�, where n is the number of subqueries) into
a linear one (O�� � n�).

Although it could be possible to conceive a general
evaluation strategy where, for example, all queries are
generalized and if no result is found, eliminated, in or-
der to avoid the cost of searching for a better strategy,
general strategies are likely to produce inferior results,
since they only explore a subset of the solution space,
and might skip nodes that are important for the correct
evaluation of the query.

� The nature and efficiency of our adaptive evalua-
tion strategy eliminates the need to check each query
against one or more DTDs that might describe the con-
tents of each local catalog, which leads to further ad-
vantages:

1. DTDs are no longer indispensable, allowing the
integration of “legacy” catalogs that do not have
a DTD;

2. local catalogs can be maintained more efficiently
without the need to check each new addition to
the catalog against a DTD; and

3. different document structures may coexist in the
same catalog without incurring in the additional
overhead needed to reformulate each query in the
terms of each DTD.

Finally, it is worth mentioning that our algorithms have
been implemented on top of an LDAP-based XML process-
ing system [9, 10, 5] producing quite promising results.

4.2 Limitations and Possible Solutions

The kinds of limitations found in our approach are par-
ticularly related to the simplicity of our algorithms, as we
have mentioned above. It is exactly for this reason that our
adaptive evaluation procedure cannot guarantee the optimal

7



rewriting of a particular query under all conditions, produc-
ing under some circumstances less than optimal results, or
results that belong to different categories that those meant
by the user. The two other key factors that contribute to this
problem are:

1. The quality of the fitness function used for the adaptive
evaluation is a critical factor in the process that may
lead to unexpected results if not configured properly.

2. Structural differences between the global and a partic-
ular local catalog can also affect negatively the quality
of results produced by our approach.

As an example of the first limitation, suppose that our
adaptive evaluation algorithm is instructed to search for
CPU accessories on a series of local catalogs by issuing the
global query: Qglobal � �hardware�CPU�accessories.
Let us assume that one of the local catalogs (catalog A) has
no explicit category for CPU accessories and that all the
CPU related products are listed under �hardware�CPU .
Let us further assume that another local catalog (catalog B)
only contains printer articles and printer accessories, where
�hardware�printers�accessories is part of the catalog
specification.

The application of the subquery generalization and
elimination transformations on each one of these cat-
alogs produces the following two syntactically cor-
rect queries: QA � �hardware�CPU and QB �
�hardware��accessories, but although QA generates the
desired result, QB returns accessories that have nothing to
do with CPU articles. This is in itself not a problem, since
our algorithm has found the best possible match for a query
that has no correct answer in catalog B. However, even if
both catalogs use the fitness function previously described
in this paper, the printer accessories of catalog B might re-
ceive a higher fitness value than the CPU articles of catalog
A.

In order to avoid such semantic inconsistencies, it is nec-
essary to extend the fitness function in the way described in
section 3 to allow for the specification of a function value
at each node that depends not only on the level it is located
with respect to the query, but on the characteristics of the
current node.

A fitness function of the form defined above, where
bl � f�m� and m is the current node, could assign ac-
cessories nodes a very small value compared to their pre-
cedessors (in this case printers nodes) to convey the seman-
tic relationship between both concepts. In other words, the
presence of an accessories node in the result set should be
almost negligible unless it appears in combination with its
parent node.

As for the second inherent limitation of our approach,
because of the conceptual simplicity, it is obvious that our

algorithm will not be able to capture every structural dif-
ference between arbitrary global and local catalogs. We as-
sume that notational or semantic differences that appear as a
result of using synonyms, or equivalent names for the same
kind of concepts is solved by means of a dictionary-type
structure acting on the global query. However, there are
other types of structural differences that appear at the tree
level as a consecuence of modeling decissions taken by the
maintainers of a particular catalog that cannot be so easily
solved.

company

support

staff info

company

staff

support developer

Figure 6. Organization of Company A and B

Figure 6 shows the concept hierarchy of the organiza-
tion of two fictitional companies. Both organizational rep-
resentations are correct in themselves, but compared to each
other, the nodes support and staff play completely different
roles in each representation. While in the first description
the staff node is a child of the support node, in the second,
their relationship is reversed. In the first case, support is an
aggregation of staff and info, whereas in the second case
staff is a generalization of support and developer.

Such structural discrepancies could arise between the
global catalog and one or more local catalogs, which would
lead to non-optimal answers from our adaptive algorithm.
The bigger problem by such queries is that it is not even
clear what the correct answer should be. For example, the
query Qglobal � �company�support�sta� would pro-
duce the desired result in the first “catalog” in figure 6, re-
turning information about the staff nodes, whereas the sec-
ond catalog generates staff nodes by eliminating �support
from the query and evaluatingQB � �company�sta� , and
support nodes by generalizing �support to ��support and
thus evaluating QB � �company��support. What spe-
cific set of nodes has been assigned a bigger value by the fit-
ness function depends on its specific parameters and could
lead to the return of support nodes as a first fit, where, in
reality, the user wanted information about staff.

Assume we adapted the fitness function by assigning
subquery elimination a higher value than subquery gener-
alization. Then staff nodes will take precedence over sup-
port nodes. An interesting question is then, what will hap-
pen with a possible continuation of the query, e.g. of the
form �company�support�sta� �q�� � � � �qn. Since the fit-

8



ness function uses only local information, each node in
the output context of �company��support�sta� �q� and
�company�sta� �q� will have the same values with respect
to q�� � � � �qn. In the first case, the elimination of the �sta�
query will provide us with the expected result, while in the
second case the generalization of �q� to ��q� will do the
job.

Another potential problem deals with discrepancies be-
tween information stored as either an element or an attribute
node in the XML description of a catalog. The same con-
cept can appear as an element in the global catalog and as
an attribute in one of the local catalogs. The main problem
by such a configuration is that, by definition [11], attributes
have no descendants. Therefore, even if we extended our
adaptive algorithm to perform subquery generalization and
elimination on attributes, instead of just elements, no further
searching of the catalog would stem from attribute nodes.

A simple solution to this problem, and one that we are
currently in the process of implementing and evaluating,
would be to perform an “upgrade” transformation on the
corresponding attribute node a to allow for further process-
ing. Such an operation would include the parent of the cur-
rent attribute node in the intermediate result set Ci�� of a
given subquery qi if, searching for concept c, a contains the
desired concept c either as part of its name or its value.

Using this technique, it is possible to perform the follow-
ing kinds of transformations:

� a�b�c� �� �a�d � “b”��c; or

� a�b�c� �� �a�b � “*”��c,

automatically and with negligible cost for the adaptive pro-
cedure described in previous sections, since the application
of a conditional transformation at each intermediate step
does not significantly slow our algorithm down.

The integration of the “upgrade” operation into our over-
all procedure, as well as an analysis of the quality of its
results is part of the kind of future work planned on the sys-
tem.

5 Conclusion

In this paper we have introduced the concept of adaptive
XPath evaluation that allow us to query XML-based cata-
logs following the classical local-as-view approach, without
incurring in the costly query rewriting techniques needed
thus far in order to obtain a reasonable answer to a query
formulated on top of the global catalog.

Our techniques are based on the application of two non-
trivial transformations on the original query: subquery gen-
eralization and subquery elimination, and on the properties
of a fitness evaluation function that allows us to distinguish
what answers correspond to the best possible rewriting of

a given query. The main advantage of our approach lies
in the fact that it eliminates the need to provide an a-priori
rewriting of the global query before it can be evaluated by
each local catalog, thus speeding up the evaluation process.
Additionally, there is only a linear overhead in terms of the
work each local catalog needs to perform in order to pro-
vide an answer to the query, as opposed to the more naive
approach where the search for the optimal strategy would
be exponential.

Finally, the simplicity of our procedure allows us to eas-
ily extend our algorithms to incorporate other transforma-
tions that might prove benefitial for our purposes.

References

[1] A. Corporation. cXML User's Guide, 2000. White Paper.
[2] S. Corporation. http://sesp.co.uk/4.htm.
[3] D. Florescu, A. Levy, and A. Mendelzon. Database tech-

niques for the world-wide-web: A survey. Sigmod Record,
27(3), September 1998.

[4] J. Hellerstein. Technical Requirements for Production-Level
B2B E-Catalogs. Cohera Corporation, 2000. White Paper.

[5] T. A. Howes, M. C. Smith, and G. S. Good. Understanding
and Deploying LDAP Directory Services. Macmillan Net-
work Architecture and Development. Macmillan Technical
Publishing U.S.A., 1999.

[6] A. Jhingran. Moving up the food chain: Supporting e-
commerce applications on databases. Sigmod Record, 29(4),
December 2000.

[7] A. Keller. Readings in Electronic Commerce, chapter Smart
Catalogs and Virtual Catalogs. Addison Wesley, 1997.

[8] G. M. Kuper and J. Siméon. Subsumption for XML
types. In Proceedings of the 8th International Conference
on Database Theory (ICDT), pages 331–345, London, UK,
January 2001.

[9] P. J. Marrón and G. Lausen. On processing XML in LDAP.
In Proceedings of the 27th International Conference on Very
Large Data Bases (VLDB), pages 601–610, Rome, Italy,
September 2001. Morgan Kaufmann.

[10] M. Wahl, T. Howes, and S. Kille. Lightweight directory
access protocol (v3). RFC 2251, December 1997.

[11] L. Wood, A. L. Hors, V. Apparao, S. Byrne, M. Cham-
pion, S. Isaacs, G. Nicol, J. Robie, R. Sutor, and C. Wil-
son. Document object model (DOM) level 1 specification
(second edition). http://www.w3.org/TR/2000/
WD-DOM-Level-1-20000929/, September 2000.

9


