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Abstract. We consider the problem of query containment for conjunc-
tive queries with safe negated subgoals (CQ™'s). We propose a new method
for the containment test of CQ™s. Comparing to the previous known
approach, which always requires an exponential number of canonical
databases to be verified to prove that @1 C @2, the algorithm proposed
in this paper exploits the containment mappings of their positive coun-
terparts, and terminates once the specified test succeeds. We show that
in the worst case, the algorithm has the same performance as the one pro-
posed in previous work. We also extend our algorithm to unions of CQ™'s
in a natural way. Due to the close relation between query containment
and answering queries using views, we give some notes on considering
answering queries using views when both queries and views have safe
negated subgoals.

1 Introduction

This paper considers the problem of query containment of conjunctive queries
(C'Qs) with safe negated subgoals CQ7s. The query containment problem is to
check whether the answer set of one query is always a subset of another query
for all databases. Algorithms for query containment are of interest in several
contexts in the database area.

Recently, there is a renewed interest in containment checking of conjunctive
queries. The main motivation lies in its tight relation to the problem of answering
queries using views [9, 1], which arises as the central problem in data integration
and data warehousing (see [14] for a survey). Furthermore, query containment
has also been used for checking integrity constraints [6], and for deciding query
independence of updates [10].

Based on the NP-completeness result proposed by Chandra and Merlin [2],
many researchers have been working on extensions of the containment question.
Containment of CQs with inequalities is discussed in [8,15]. Containment of
unions of CQs is treated in [12], containment of C@s with negated subgoals in
[10, 14], containment over complex objects in [11], and over semi-structured data
with regular expressions in [5].

The containment problem for conjunctive queries with safe negated subgoals
has drawn considerably less attention in the past. In [10] uniform containment is
discussed, which is a sufficient, however not necessary condition for containment.



In [14] it is argued that the complexity of the containment test is IT5-complete.
An algorithm based on the approach of canonical databases was sketched which
tests an exponential number of canonical databases. The following example ex-
plains the approach:

Ezample 1. Consider the following queries Q1 and @»:

Q1:9(X,2) -a(X,Y),a(Yy, Z),-a(X, Z).
Q2:q9(A,C) -a(A, B),a(B,C),a(B,D),—a(A, D).

In order to show that Q1 C @2, the approach in [14] considers all five par-
titions of {X,Y,Z} in Table 1: all variables in one set of a certain partition
are replaced by the same constant. From each partition, a canonical database,
built out of the positive subgoals, is generated according to the predicates in
the body of );. At first, (); has to be applied to the canonical database D
from each partition, and if the answer set is not empty, then the same answer
set has to be obtained from @, (D). Next, for each canonical database D which
results in a nonempty answer, we have to extend it with “other tuples that are
formed from the same symbols as those in D”. In fact, for each specific pred-
icate, let k& be the number of arguments of the predicate, n be the number of
symbols in the canonical database, and r be the number of subgoals of @1 (both
positive and negative), there will be 2(n" =) sets of tuples which have to be
checked. Taking the partition {X }{Y }{Z}, we need to consider 6 other tuples:
{a(0,0),a(1,0),a(1,1),a(2,0),a(2,1),a(2,2)}. At the end, one has to check 2°
canonical databases, and if for each database D', Q2(D') yields the same answer
as (01, it can then be concluded that ()1 C ()2, which is true in this example. 0O

Table 1. The five canonical databases and their answers to ()1 and Q2

Partition |Canonica1 Databases|Answers

{XHYHZ}{a(0,1),a(1,2)} Q1 :9(0,2); @2 : q(0,2)
{Xa Y}{Z} {a(O, 0)7 a(O, 1)} Ql : false
{X}{Y7 Z} {a(O,l),a(l,l)} Ql : false
{X’ Z}{Y} {a(O,l),a(l,O)} Q1: q(070)§Q2 : q(0,0)
{X,Y,Z} |{a(0,0)} Q1 : false

Example 2. Consider the following queries @)1 and Qs:

Q1:9(X,2)-a(X,Y),aY, 2),-a(X, 2).
Q2:q9(A,C) -a(A, B),a(B,C),-b(C,C).

This example differs from Example 1 by the negated subgoal. The application of
Q- to the canonical databases shown in Table 1 yields the same answer as (.



Similar to the above example, extra tuples have to be added into the canonical
database. Taking the partition {X }{Y}{Z}, we have 15 other tuples (9 tuples
with b(0,0),...,b(2,2) and 6 tuples as in Example 1), such that 2'® canonical
databases have to be verified. Since the database D = {a(0,1),a(1,2),b(2,2)}
is a counter-example such that Q2(D) does not generate the same answer as
Q1(D), the test terminates with the result Q; Z Q. O

In this paper, we propose a new method to solve the general query containment
problem for conjunctive queries with safe negated subgoals (CQ7s). Given two
CQ™s @ and Q-, and their positive counterparts Q;+ and Q™ (definitions in
Section 3.1), we show that there are two factors deciding the complexity of the
problem Q1 C @-:

— Q1T C Q,"? This is a necessary condition.
— the number of containment mappings from Q" to Q7.

Comparing to the algorithm described in [14], which requires always an expo-
nential number of canonical database to be tested to prove the result Q1 C Q»,
the algorithm proposed in this paper exploits the containment mappings from
QF to @, and terminates when the specified tests succeed. We show that in
the worst case, the algorithm has the same performance as the one proposed in
[14]. Our algorithm also extends naturally to unions of CQ7s. Due to the close
relation between query containment and answering queries using views, we give
some notes on considering answering queries using views when both queries and
views have safe negated subgoals allowed.

The rest of the paper is organized as follows: in Section 2 we recall the
definition of a C'Q™ and containment of both CQs and CQ7s. In Section 3, we
first prove two necessary conditions for the containment test of C'Q™s, which
is then followed by the main theorem of the paper. The proof of correctness
and completeness is given as well. In Section 4 the theorem and the algorithm
based on it are naturally extended to the containment test of unions of C'Q7s.
In Section 5 we discuss the issues of answering queries using views when both
queries and views have negated subgoals allowed. Finally the conclusions and
future work are presented.

2 Preliminaries

2.1 Query Containment

A conjunctive query with negation (CQ™) extends a conjunctive query CQ by
allowing negated subgoals in the body. It has the following form:

h(X) = pl(X1)7 cee 7pn(Xn)7_'51(le)a . -a_'sm(Y:m)'

where h,p1,...,Pn,S1,--.,Sm are predicates whose arguments are variables or

constants, h(X) is the head, pi(X1),...,pn(X,) are the positive subgoals, and



51(Y1),...,8m(Y;n) are the negated subgoals. We assume that, firstly, the vari-
ables occurring in the head also occur in the body; secondly, all the variables
occurring in the negated subgoals also occur in positive ones, which is also called
the safeness condition for C'Q™. The examples in this paper are safe C'Q7s if
not mentioned otherwise.

A CQ™ is applied to a set of finite database relations by considering all
possible substitutions of values for the variables in the body. If a substitution
makes all the positive subgoals true and all the negated subgoals false (i.e. they
do not exist in the database), then the same substitution, applied to the head,
composes one answer of the conjunctive query. The set of all answers to a query
@ with respect to a certain database D is denoted by Q(D).

Unlike CQs with only positive subgoals, which are always satisfiable, C'Q™'s
might be unsatisfiable.

Proposition 1. A CQ™ is unsatisfiable if and only if there exist p;(X;)(1 < i

n) and s;(Y;)(1 < j <m) such that p; = sj and X; =Y.

O IA

From now on, we only refer to satisfiable CQ™s, if not otherwise mentioned.

The containment of CQ7's is defined in the same manner as for positive
ones: a C'Q™ @) is contained in another one @3, denoted as Q1 C @Qs, if for all
databases D, Q1 (D) C Q2(D). Two CQ7's are equivalent if and only if they are
contained in each other.

2.2 The Containment Checking Algorithm for CQs
An algorithm for checking the containment of CQs was proposed in [2].

Lemma 1 (Containment of CQs [2]). Consider two CQs Q1 and Q:

Q1 ;h()_?) f'Pl()gl)a---,pn(_Xn)-
QQ : h(U) J- ql(Ul),...,ql(Ul).

Then Q1 T Q2 if and only if there exists a containment mapping p from the
variables of subgoals in Q2 to those in Q1, such that {p(q1(U1)),- .., p(a(U1))} C
{p1(X1),...,pn(Xn)}, and p(h(U)) = h(X). 0

When the heads of both ; and (2 do not contain variables, they are called
boolean queries. It is obvious that boolean queries are the generalized forms of
normal queries. The containment problem for C'Qs is shown to be NP-complete

[2].
Ezxample 3. Consider the queries @1 and @Q5: the bodies of the queries are com-

posed of the positive subgoals from Example 1.

Q1:9(X,2) -a(X,Y),a(y, 2).
Q-2 :q(A,C) - a(A, B),a(B,(C),a(B, D).

There is one and only one containment mapping from @) to @1:
{A—=X,B-Y,C—Z,D—=Z}. O



3 Query Containment for CQ™'s

In this section we discuss the containment checking for CQ™s. In the next sub-
section we introduce some necessary conditions.

3.1 Some Necessary Conditions

Definition 1 (Super-Positive SP Q). Given a CQ™ Q as follows:

Q:hX) -p1(X1), ..., pn(Xn),~s1(Y1), ..., 28m (Vin).

The SP of Q, denoted as QF is: h(X) - p1(X1),...,pn(X,). O
Lemma 2. Given a CQ™ Q with negated subgoals and its SP QT, Q T QT
holds. O

Proposition 2. Let (1 and Q2 be two CQ™'s, let QT and Qg‘ be their SP re-
spectively. Q1 C Qo only if QF C Q5.

Proof. Assume Q; T Q2 and a tuple ¢ € QF (D) where D is any canonical
database (i.e. each variable is assigned to a unique constant) of Q. We show
that t € QF (D): Let p be the substitution from variables of @ to distinct

constants in D. Let s;(¥;)(1 < i < m) be any negated subgoal in Q. Since @1

is satisfiable, therefore we obtain that p(s;(Y;)) ¢ D. Consequently, t € Q1(D)
and t € Q2(D) are obtained. Following Lemma 2 it is obvious that ¢ € Q3 (D).

Proposition 2 provides a necessary but not sufficient condition for query con-
tainment of CQ™s. Next we give a theorem, stating a condition for Q1 IZ Q.

Theorem 1. Let Q1 and Q2 be two CQ™s. Assume QF T QF, and let py, ..., p,
be all containment mappings from Qg‘ to QT, such that QT C Q;‘. Q1 and Q)2
are given as follows:

Q1 :h()__() :—pl()_fl),...,pn(_Xn),—'.sl(_Yl),...,—|Sm(_Y:m).
Q2 : h(U) =q(Uh),-..,qU),—a1(Wy),...,—a(Wg).

If for each p;(1 < i < r), there exists at least one j(1 < j < k), such that

pi(aj(Wj)) € {pl(Xl)v s 7pn(Xn)}7 then Ql Z QQ-

Proof. A canonical database D could be constructed as follows: freeze the pos-
itive subgoals of (1 and replace each variable in )7 with a distinct constant.
We call this substitution o. Let ¢ be any tuple such that ¢ € Q1 (D), we have to
show that t ¢ Q2(D): that is, for each substitution # which makes t € Q3 (D)

true, there is at least one negated subgoal a;(W;), where 1 < j < k, such that
6(a;(W;)) € D.

Since p1, ..., pr are all the containment mappings from Q; to Q]L, it is true
that § € {p100,...,pr00}. ! Assume § = p; oo (1 <i <r). Since for each p;,
there exists a j(1 < j < k), such that p;(a;(W;)) € {p1(X1),...,pn(Xyn)}, thus
we have p;o0(a;(W;)) € {o(p1(X1)),...,0(pn(Xy))} As aresult, 8(a;(W;)) € D
is obtained.

! p oo denotes the composition of substitutions p and o.



3.2 Containment of CQ™'s

The following theorem states a necessary and sufficient condition for the con-
tainment checking of C'Q)7's, which is one of the main contributions of this paper.

Theorem 2. Let Q1 and Q2 be two CQ™s as follows:
Ql : h()_Z) - pl()gl)a v 7pn(_Xn)a _‘31(_}71)7 tey _'Sm(Ym)'

QQ : h(U) .- ql(U1)7 .. 7ql(Ul)7 ﬁa’l(VVI)a EERE _'ak(Wk)'
Then Q1 C Q> if and only if

1. there is a containment mapping p from Q;‘ to QT such that QT C Q;‘, and
2. for each j(1 < j <k), Q' C Q2 holds, where Q' is as follows:

QI : h(X) - pl(Xl), - ,pn(Xn),—'81(Y1), .. -,ﬁsm(Ym)ap(aj(Wj))'

Proof.

— <: Let D be any database and ¢ the tuple such that ¢ € Q1 (D), we have to
prove that t € Q2(D).
Since t € Q1(D), we have immediately ¢ € Q] (D) and t € Q5 (D). Let o be
the substitution from the variables in Q7 to the constants in D such that
t € Q7 (D). Let § = poo. It is apparent that {6(qi (U1)),-..,0(q(T)))} C D.
If for each j(1 < j < k), 6(a;(W;))) ¢ D, then the result is straightforward.

Otherwise, if there is any j(1 < j < k), such that 6(a;(W;))) € D, then we

have poo(a;j(W;))) € D. it can be concluded that t € Q'(D) where Q' is
Q" :h(X) = pi(X1)s- s pn(Xn), ms1(Y1), - - o, msm (Vi) plaj (W5)).

From the assumption that @' C @ in the above theorem, ¢ € Q2(D) can
then be obtained.
— =: The proof is via deriving a contradiction.

1. If Qf Z QF, then from Proposition 2, Q; Z Q2 can be obtained imme-
diately.

2. Otherwise, if for each containment mapping p from Q»* to Q,™, such
that Q;" C Q™ there is at least one Q' as given in the above theorem,
such that Q' Z @2, then there exists at least one database D, such that
t € Q'(D), but t ¢ Q2(D). Since @' has only one more positive subgoal
than @1, it is obvious that ¢ € @1(D). This leads to the result that

Q1 Z Q.

Theorem 2 involves a recursive containment test. In each round, the containment
Q' C @2 (the definition of @)’ see the above theorem) has to be verified. This
might lead to one of the two results: (1) for each @', there is Q' T @2 — either Q'
is unsatisfiable, or via recursive containment test —, then the test terminates with
the result @1 C Q2; (2) there exists a @', such that Q' Z Q2. This can be verified
according to Theorem 1. In this case, the result of Q1 Z @2 can be obtained.
The following example illustrates the algorithm. Note that we intentionally omit
the variables in the head in order to generate more containment mappings from
Q7 to Q. It is not difficult to understand that the fewer containment mappings
are there from Q3 to Q7 the simpler the test will be.



Ezample 4. Given the queries ()1 and ()»:

Q1:h:-a(X,Y),ay,2),-a(X,2).
Q2 : h:-a(A,B),a(C,D),—a(B,C)

There are four containment mappings from Q3 to Q7 , one of which is p; =
{A—Y,B—Z,C—X,D—Y}. Now a new conjunctive query is generated as fol-
lows:

Q' :h:-a(X,Y),aY,Z),a(Z,X),-a(X, Z).

Note that the subgoal a(Z, X) is generated from p;(a(B,C)). One of the con-
tainment mappings from Q2 to Q' is p» = {A—-Z,B—X,C—Z,D—X}. Since
the newly generated subgoal p»(a(B,(C)) is a(X, Z), this leads to a successful
unsatisfiability test of Q.

Q” tho- a(X,Y),a(Y, Z)va(ZaX)aa(Xa Z)v_'a(Xa Z)
it can then be concluded that Q' C Q. In the sequel we have Q1 C Q-. O

The detailed algorithm is given in the Appendix. The idea behind the algo-
rithm can be informally stated as follows: we start with the positive subgoals of
Q1 as root. Let 7 be the number of all containment mappings from QF to Q7
such that Q7 C Q5. r branches are generated from the root, with sets of mapped
negated subgoals as nodes (cf. Figure 1(a)). Next, each node might be marked as
Contained, if it is identical to one of the negated subgoals of 1, or as Terminal,
if it is identical to one of the positive subgoals of ;. If there exists one branch
such that each node is marked as Contained, then the program terminates with
the result Q1 C Q2. Otherwise, if at least one node of each branch is marked as
Terminal, then the program terminates too, however with the result Q1 Z Q2.
If none of these conditions is met, the program continues with expansion of the
non-terminal nodes, that is, the nodes mark with Terminal will not be expanded
any more.

It can be shown that the algorithm terminates. The reasons are: (1) the
expansion does not generate new variables; (2) the number of variables in @) is
finite.

The next example shows how the algorithm terminates when the complement
problem @1 Z Q> is solved.

Ezample 5. Given the queries )1 and @Qs:

Q1:h:-a(X,Y),aly,2),-a(X, 2).
Q2 :h - a(AaB)aa(CaD)a_'a(AaD)a_'a(Bac)

In Figure 1, it is shown that there are four containment mappings from Q; to
Qi": p1,--.,ps. BEach mapping contains two sub-trees since there are two negated
subgoals in (). The branches ps and p3 are marked as Terminal because there is
at least one Terminal node from each of the above branches (note that we denote
a node Terminal with a shadowed box around it, and Contained with a normal



box). The node a(X, Z) from branch p; is marked as Contained, because it is
the same as the negated subgoal in Q). (Note that in Figure 1 the node a(Y,Y)
of branch p; is marked as Terminal, but it is the result of the next round. Up
to now, it has not been marked. The same holds for the nodes of branch py.)
Next the non-terminal node a(Y,Y") is expanded. Five new containment map-
pings are generated as ps,...,pg. Since all the branches are Terminal, and
a(Y,Y) is also a sub-node of py4, it can be concluded that the expanded query

Q' :h:-a(X)Y),ay,2),ay,Y),-a(X,2).

is not contained in Q. Because all the containment mappings from QF to Q'+
have been verified. As a result, Q1 Z Q)2 is obtained. O

a(X}), a\(Y,Z)

a(Y,X) |a(Y,Z) | a(Z)Y) a(Z,X)

\
Pe pr

P8

NN

[av. ) Jla(v,Y) Jlaxy) Jlav) Jlacv,y) | atvx) [a(v2) Jlavy) Jlacvy) | atzy)

(a) The generated tree

p{A—>X,B—>Y,C—-Y,D— Z}||p2]{A > X,B—>Y,C > X,D—-Y}
ps{A—>Y,B—Z2,C—>Y,D—Z}|ps|{A—>Y,B—Z,C—>X,D—->Y}
ps{A->Y,B>Y,C—>Y,D—-Y}|ps|{A—X,B->Y,C—-Y,D—-Y}
pr{A—=>Y,B—>Y,C—X,D—-Y}ps|{A—=>Y,B->Y C—-Y,D— Z}
p|{A—>Y,B—Z,C—-Y,D—-Y}

(b) The containment mappings

Fig. 1. The graphic illustration of Example 5.

Comparison of the algorithms. We notice several interesting similarities and dif-
ferences between our algorithm and the one in [14]: The partitioning of variables
is similar to the step of checking of @;™ T Q»*. It can be proven that if the
containment checking QT C Q," is successful, there exists at least one parti-
tion of variables, namely the partition with a distinct constant for each variable,



such that when applied to the canonical database built from this partition, Q5
yields the same answer set as Q.

The next step of the algorithm in [14] is to check an exponential number of
canonical databases, as described in the Introduction. In contrast, our algorithm
continues with the containment mappings of their positive counterparts and
executes the specified test, which takes linear time in the size of Q1. If the test
is not successful, the query is extended with one more positive subgoal (but
without new variables) and the next containment test continues. It is important
to emphasize that in the worst case, the expanded tree generates all the nodes
composed of variant combinations of the variables in @)1, which coincides with
the method in [14].

However, in the following examples we show that our algorithm terminates
definitely earlier in the some cases:

(1) Tt turns out that the result of the containment test is @1 C Q2. As
explained in the Introduction, the algorithm in [14] terminates if one canoni-
cal database as counter-example is found, but in order to obtain the result of
Q1 C @2, all canonical databases have to be verified. In contrast, our algorithm
terminates with the result Q1 C @ if the specified test is successful.

Ezample 6. Given the queries ()1 and (02 as in Example 1. There is a contain-
ment mapping p from QF to @ as in Example 3. There is only one Q' to be
checked:

QI : q(X7 Z) = a(X,Y),a(Y, Z)a_'a(Xa Z)aa(Xa Z)
It is apparent that Q' is unsatisfiable, thus we have proven that @; C Q>. 0O

(2) To test @1 C @2, if none of the predicates from negated subgoals in
Q> appears in positive subgoals, the test terminates after the first round of
containment checking of @' C Q2. It can be explained as follows: due to the
assumption, the containment mappings from (5 to the newly generated query
Q@' (see Theorem 2) are the same as the ones from Q> to Q1. Since no new
containment mapping is generated, the algorithm reaches some ”fix-point”, so
that no new branches of the expanded tree will be generated.

Ezample 7. Given the queries ()1 and (02 as in Example 2. There is a contain-
ment mapping p; (cf. Figure 2). A new node p;(b(C,C)) = b(Z,Z) is then
generated. The new query Q' is the following:

QI : q(X7 Z) - a(X7 Y)aa(Ya Z)a_'a(Xa Z)ab(Za Z)

Since p; is the only containment mapping from Qs to @', we mark the node
b(Z,Z) as Terminal. Following Theorem 1, Q' Z Q> can be obtained, which is
followed by the result Q1 Z Q-. a

At last, it should be mentioned that the algorithm in [14] can deal with unsafe
negations, while ours cannot.



a(X)Y), a(Y,Z)

v
b(Z,7) [P [{A = X,B—Y,C — Z}]
(a) The generated tree (b) The containment

mapping

Fig. 2. The graphic illustration of Example 7.

4 Containment of Unions of CQ™'s

In this section we consider the containment problem of unions of CQ™s. First
we present, some basic notations.

Definition 2 (Union of CQs [13]). Let Q@ = Q1 U...UQy, be a union of CQs,
in which Q1,...,Q, have a common head predicate.

— Given any database D, Q(D) = Q1(D)U...UQu(D).
— Let @Q be a CQ and Q be a union of CQs. Q C Q if Q(D) C Q(D) for any
given database D. O

Theorem 3 (Containment of unions of CQs [12]). Let Q be a CQ and
Q=01 U...UQ, be a union of CQs, then Q T Q if and only if there is a
Q;i(1 <i<n) such that Q C Q;. O

However, when negation is allowed in C'@Q)s, the above theorem will not hold
any more.

Ezxample 8. Consider the following queries with the relations man, father, and
husband:

Q: q(X) :-man(X),-~father(X).
Q1 :q(Y) -man(Y), —husband(Y").
Q2 : q(Z) - man(Z),husband(Z), ~father(Z7).
It is apparent that neither ) C ()1, nor ) C @, but QQ C Q1 U Q>. O

The containment of unions of CQ™s is defined in the similar way as in Defi-
nition 2. The following notations have to be additionally presented.

Definition 3. Let Q = Q1 U...UQ, be a union of CQ7s. 9t =Qf U...UQ;}.
]

Lemma 3. Let Q = Q; U...UQ, be a union of CQ"s. Q C QF holds. O

Lemma 4. Given a CQ™ @ and a union of CQ7s Q =Q1U...UQ,. IfQ C Q,
then there exists at least one Q; € Q(1 < i < n), such that Q% C Q7.



Proof. (sketch) Using the same method as in Proposition 2, we have Q+ C
Q7 U...uQ;. Following [12] the result can be obtained.

Theorem 4. Given a CQ™ Q and a union of CQ7s Q = Q1 UQ2U...UQ,.
Assume QT C QF, and let pi1,...,pir; (fori=1,...,v) be all the containment
mappings from QF to QF, such that QT T OF. Q and Q1,...,Q, are given as
follows:

Q: h(X) '._pl(Xl)a"'7pn(‘X:n)7j'S1(Y1)7'"1ﬁsm(Y7m)' _
Qi(1<i<v):hU) +-qi1(Uin), -5 ¢ (Uin,), main(Win), .., @ik, (Wi, ).
If for each p; j(1 <i <w,1 < j <), there evists at least a aiu(Wiw), where
1 <w < ky, such that p; j(ai(Win)) € {p1(X1),...,pn(Xn)}, then Q Z Q.

Proof. (sketch) A canonical database D can be built in the similar way as in
Theorem 1. Then it can be proven that a tuple ¢t € Q1(D), but t ¢ Q2(D).

The following theorem states a sound and complete condition.

Theorem 5. Let @ be a CQ™ and Q be the union of CQ7s Q = Q1UQ-2U...UQ,
as follows:

Q: X)) =pi(X1),. . pn(Xn), 751 (Y1), -, 28m (Vi) )
Qi(1<i<v):h(U) =-qi1(Uir), - qi0;(Uig,), masa(Win), ..., ~air, (Wig,).

Then Q C Q if and only if

— there is a containment mapping p from Q to Q, where 1 < u < v, such that
QT C O, and
— for each j(1 < j<k,), Q@ C Q holds, where Q' is as follows:

Q' h(X) :-pi(X1),...,pn(X0),ns1(Y1),.. .,ﬂSm(fm),p(auJ(WuJ).

a

The algorithm behind the theorem can be adapted with little modification
from that of containment checking for two C@Q™s. Next we explain how the
containment checking of Example 8 is executed.

Example 9. Consider the queries @), )1 and @2 in Example 8. Since (J; is the
only query whose positive part of body contains that of (), the containment
mapping p; = {Y — X} is obtained. The newly generated @' has the following
form:

Q' : ¢(X) - man(X), ~father(X), husband(X).

Since it is easy to check that Q' C Qs, it can then be concluded that Q C Q1 UQ>.
O



5 Some Notes on Answering Queries using Views

The problem of answering queries using views has been intensively studied re-
cently, especially in the area of data integration (see [7] for a survey). The prob-
lem can be described as follows: given a query @) over a database schema, and
a set of view definitions V over the same schema, how to find a rewriting Q' of
Q, using only the views. The notations of equivalent rewriting and maximally-
contained rewriting can be found in [7].

Due to the close relation between the problem of query containment and an-
swering queries using views, we are interested in giving the discussion of some
new issues for answering queries using views, when safe negation is allowed in
both queries and views. Since the completeness of any rewriting algorithm de-
pends on the query language in which the rewritings are expressed, it has to be
specified whether queries with unions and negations are allowed for expressing
the rewriting. In the following example, we show that even without applying
negation on the views, the equivalent rewriting can only be found if unions are
allowed in the rewriting.

Example 10. Let Q and Vi, V5 be the conjunctive queries as follows:

Q: q¢X,Y) :-a(X,Y).
Vi:v(X,Y) - a(X,Y),b(Y).
Vo1 0a(X,Y) - a(X,Y),b(Y).

There is an equivalent rewriting of () using the union of V; and V5. O

One important issue concerning answering queries using views is to decide whether
a view is useful for the given query. It can be informally stated as the following

[7]: a view can be useful for a query if the set of relations it mentions overlaps

with that of the query, and it selects some of the attributes selected by the query.

When a query with both positive and negative subgoals is considered, this con-

dition remains true for the positive subgoals, but not for the negative subgoals

any more. It can be shown in the following example that an equivalent rewriting

can only be found by negating the views.

Ezample 11. Let Q and Vy, V5 be the conjunctive queries as follows:

Q: Q(Xay) 2—p0(X,Y),—|p1(X,X)-
V1 2U1(X,Y) - po(X,Y)
Vs :U2(Xa Z) - pO(Xay)apl(Xa Z)

It can be shown that the rewriting Q' is an equivalent one:
QI : q(X,Y) - Ul(Xay)a_'U2(XaX)'
a

One difficulty in choosing the views for the negated subgoals is to decide whether
a view V can be useful for the query @ with its negated form. The next example
differs from Example 11 only on V5.



Ezample 12. Let Q and Vy, V5 be the conjunctive queries as follows:

Q: Q(Xay) 2—p0(X,Y),—|p1(X,X)-
V1 2U1(X,Y) - po(X,Y)
Vs :v2(X7 Z) = pl(X7 Z)7p2(XvY)'

The rewriting Q' as follows is not even a contained rewriting for Q.
QI : q(X,Y) - vl(XaY)a_'v2(X7X)‘

When Q" U V; U V4 is applied to the database D = {po(0,1),p1(0,0)}, tuple
q(0, 1) is obtained. However it is apparent that this is not the correct answer for

Q. O

Informally speaking, in order to be useful for the query @ with its negated
form, a view V should not contain foreign predicates, which do not appear in
@ (cf. Example 12). Moreover, V' has to contain at least one positive subgoal
whose negated form appears in @), and the attributes of the subgoal should not
be projected out.

Related Work There is relatively less research concerning the problem of an-
swering queries using views with safe negations appearing in the body of both
queries and views. [4] provides an algorithm dealing with it. It is an extension
of the inverse rule algorithm. However it is not clear whether the algorithm is
complete w.r.t the problem of views based query answering.

6 Conclusion and Further Research

We have discussed the query containment problem for the conjunctive queries
with safe negated subgoals. A new method for testing the containment of CQ™'s
is given, comparing with the one in [14]. We have also shown that this algorithm
can be naturally extended to the containment checking of unions of CQ7s. At
last, we have discussed the problem of answering queries using views when both
queries and views have negated subgoals. Some motivating examples are given
to show the cases which might not be encountered with pure conjunctive queries.

There are several interesting questions left for research. In [1] several cat-
egories of complexities for answering queries using views are given. However,
with respect to negation, Datalog™ is considered, and the setting of CQ™ is not
covered.

One interesting extension of our work is to consider the containment problem
of CQs with both safe negation and arithmetic comparisons. To the best of our
knowledge, no practical algorithm has been published to solve this problem. The
complexity of this problem is still unknown as well.

Acknowledgments: We would like to thank Michael Benedikt for the valuable
comments on this material.
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APPENDIX

Algorithm Containment Checking(Q1,Q2)
Inputs: @; and @2 are CQ™'s with the form as follows:

Q1 :h()_?) - pl()gl),...,pn(_)(:n),—'slg 1),...,—|sm(_Y:m).
Q2 : h(U) -1 (U1),...,q(U), a1 (Wh),...,—ap(Wy).

Begin

1. Set {p1(X1),...,pn(Xn)} as the root of a tree: co.

Let p1,...,pr be all the containment mappings from Q7 to Q7.

2. Generate r nodes ¢y, . . ., ¢, as children of root, and each node ¢;(1 < i < r) has

a subtree with k children, in which each child ¢; ; with the form p;(a;(W;))(1 <
J<k).



3. Marking the nodes:
For i=1tor do
For j=1 to k do
If ¢;j € {;m(X1,...,pn(X,)} Then mark ¢; as Terminal;
If ¢;j € {s1(Y1),...,8m(ymbar)} Then mark c; ; as Contained;
EndFor

EndFor
4. Execute the containment checking:
If all nodes ¢y, ...,c, are terminal nodes, Then return Not-contained;

For i=1tor do
If each ¢; ;(1 < j < k) is marked as Contained, Then return Contained;
EndFor
5. Continue expanding non-terminal nodes:
For i=1tor do
If ¢; is not Terminal Then
For j =1tokdo
If ¢; ; is not Contained Then
let Q) be: h - p1(X1),...,pn(Xn), cij, 51 (Y1), -, 78m(Ym)
let pij1,--.,pi b, be the new containment mappings from Q> to Q1;
Generate b; ; nodes with children in the same way as in Step 2;
Mark the nodes in the same way as Step 3;
EndIf
EndFor
EndIf
EndFor
6. Execute the containment checking:
For i=1tor do
If each ¢; ;(1 < j < k) either is marked as Contained
or has a child whose children are all marked Contained
Then return Contained;
EndIf
from each non-terminal node ¢;, choose one child ¢; ;(1 < j < k);
add all these ¢; ; to the body of @)1, and let the new query be QY
If each branch w.r.t. QY is marked as Terminal, Then return Not-contained;
EndFor
Let r be all expanded nodes; Go to Step 5;
End



