
Updates in a Rule�Based Language for Objects

Michael Kramer� Georg Lauseny Gunter Saakez

Abstract

The integration of object�oriented concepts into de�
ductive databases has been investigated for a certain
time now� Various approaches to incorporate updates
into deduction have been proposed� The current paper
presents an approach which is based on object version�
ing � di�erent versions of one object may be created
and referenced during an update�process� By means
of such versions it becomes possible to exert explicit
control on the update process during bottom�up eval�
uation in a rather intuitive way� The units for up�
dates are the result sets of base methods� i�e� meth�
ods� whose results are stored in the object�base and are
not de�ned by rules� However� the update itself may
be de�ned by rules� Update�programs have �xpoint
semantics� the �xpoint can be computed by a bottom�
up evaluation according to a certain strati�cation�

� Introduction

The integration of object�oriented concepts into de�

ductive databases has been discussed and investigated

for a certain time now �Ban	
� KNN	�� Abi��� AK	��

KL	�� KLW��� DKM�
�� Various approaches to in�

corporate updates into deduction have been proposed�

However� only a few of these take object�orientation

�Fakult�at f�ur Mathematik und Informatik� Universit�at
Mannheim� W����� Mannheim� Germany

yFakult�at f�ur Mathematik und Informatik� Universit�at
Mannheim� W����� Mannheim� Germany

zFakult�at f�ur Informatik� TU Braunschweig� W����� Braun�
schweig� Germany

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage� the VLDB copyright no�
tice and the title of the publication and its date appear� and
notice is given that copyright is by permission of the Very
Large Data Base Endowment� To copy otherwise� or to re�
publish� requires a fee and�or special permission from the
Endowment�

Proceedings of the ��th VLDB Conference

Vancouver� British Columbia� Canada ����

into account� In the current paper we present an ap�

proach which is based on object versioning � di�erent

versions of one object may be created and referenced

during an update�process� By means of such versions

it becomes possible to exert explicit control on the up�

date process during bottom�up evaluation in a rather

intuitive way� As units for updates we consider the re�

sult sets of base methods� i�e� methods� whose results

are stored in the object�base� we do not consider de�

rived methods� i�e� methods� whose results are de�ned

by rules� However� the update itself may be de�ned

by rules�

In deductive databases� depending on whether top�

down or bottom�up evaluation strategies are applied�

updates are done in rule�bodies or rule�heads� In top�

down approaches� updates are contained in the rule�

bodies and are performed as side�e�ects of the refuta�

tion process� Much work has been done on the topic of

updating derived �intensional� predicates� These ap�

proaches typically rely on SLD�� SLDNF�Resolution or

Abduction �e�g� �AT� Dec��� KM��� Tom		��� Exam�

ples for approaches considering updates of base predi�

cates are Prolog� LDL �NT	�� and DLP �MW		�� DLP

manages updates of derived predicates� too� Bottom�

up approaches for updates also have been proposed�

In �AV�
� various extensions of Datalog including

deletions are investigated� and the language RDL�

�dMS		� provides a seperate component for explicit

control of the bottom�up evaluation� Moreover� up�

dates in production systems �e�g� OPS� �BFKM	
��

and corresponding extensions of relational databases

by rules �e�g� �SJGP��� WF��� ZH���� are realized by

applying the rules in a bottom�up way� and� �nally�

also some database programming languages which in�

corporate rules follow this way �e�g� �PDR�
� HJ�
���

�From those deductive languages involving object�

oriented features� only a few provide update concepts�

eg� Logres �CCCR���� and LOCO �LVVS���� Logres

is a typed extension of Datalog� supporting object�



identity� classes and isa�hierarchies� Updates can be

expressed by using rules with deletions in the head�

the evaluation of the rules may be done according to

strati�ed or in�ationary semantics� In addition� the

set of relevant rules may also be updated� based on this

feature also derived methods can be updated� LOCO

is based on ordered logic �LSV���� a set of Datalog�like

rules �allowing negation in rule�heads� may be ordered

in a isa�hierarchy to allow inheritance� Updates are

done by making the new rules an instance of the to�be�

updated object� applying inheritance with overriding

yields the instance as updated object�

In this paper we present a di�erent approach to

the update problem� The intentions are to provide

a rule�language which allows to exert explicit control

on the update process during bottom�up evaluation in

a rather intuitive way� Control is based on so called

version�identities �VIDs�� which are special object�

identities� built�up by function symbols denoting types

of updates �insert� delete� modify� in such a way� that

they admit tracing back the history of updates per�

formed on each object� This approach is stimulated

by F�logic �KL	�� KLW���� where general terms are

used to denote objects �see also �CW	�� KW	��� and

to control versions� however� updates are not consid�

ered in these works� VIDs have temporal character�

istics� denoting di�erent versions of an object during

its update�process� Each object�version can be con�

sidered as a single stage � corresponding to a certain

time�step � of the entire process of updating the ob�

ject� A set of update�rules forms an update�program�

Update�programs have �xpoint semantics� the �xpoint

can be computed by a bottom�up evaluation according

to a certain strati�cation�

Object�versions are a well established concept in

object�oriented databases �Kim�
�� Object�versions

are used to manage the �long�term� evolution of an

object� e�g� to support cooperative work� In the cur�

rent paper we use versions in a di�erent context� We

consider versions as a means to support single updates�

several of them may give rise to introduce a new ver�

sion in the usual sense� Thus our approach outlines a

complementary application of the version concept in

rule�based object�oriented databases�

The rest of this paper is organized as follows� In Sec�

tion �� we introduce a simple rule�language to de�ne

updates� outline our ideas� give a motivating example

and a discussion of related approaches� In Section � we

introduce an immediate consequence operator� which

is the basis for bottom�up evaluation� Bottom�up eval�

uation is discussed in Section �� In Section � the con�

struction of the updated object�base is outlined� and�

�nally� Section 
 suggests extensions of our language

and indicates future work�

� Updates by Versioning

��� An Update�Language for Objects

We are interested in a language for objects� by which

we can de�ne updates using rules� The alphabet of

our update language consists of �
� a nonempty set O

of object�identities �OIDs� to denote the relevant

objects� ��� an in�nite set V of variables to denote ob�

jects� ��� an in�nite setM of method�names� and ��� a

set F �� f ins� del� mod g of function symbols of arity

one denoting certain update types� Here ins�del�mod

stand for insert�delete�modify � respectively� Meth�

ods are functions to express properties of objects� The

result of a method�application either is a value� or is

an OID which denotes an object to describe a rela�

tionship between objects� For formal simplicity� we do

not introduce types for values � we consider values as

speci�c OIDs in O�

To give a �rst example� in the following expression a

method salary is applied on an object with OID henry

and gives as result �the OID� ����

henry�salary�����

Now we will introduce terms� atoms and rules� As

usual� when one of these does not contain a variable�

it will be called ground� The basic constructs of our

language are object�id�terms and version�id�terms� An

object�id�term either is a variable or an OID� To each

object there may exist several versions� To be able to

reference the di�erent version we introduce version�id�

terms�� A version�id�term is de�ned as follows � �
�

any object�id�term is also a version�id�term� ��� let

V be a version�id�term� then ��V � with � � F is a

�On the result�position of a method only object�id�terms will
be allowed� not version�id�terms	 We choose this way because
versions are only introduced for the purpose of the update�
process
 a relationship is considered to be a more stable concept
in comparison to the concept of versions in our approach	

�



version�id�term� The set of all ground version�id�terms

is denoted by O
V
� its elements are called version�

identities �VIDs�� VIDs are used to denote speci�c

versions of the respective objects� Notice that O �

O
V
� In the sequel we denote non�ground object�id�

terms and version�id�terms by names starting with an

upper�case letter� ground terms are denoted by names

starting with a lower�case letter�

An atom in our language either is a usual arithmetic

built�in predicate ��� �� �� etc� � or a version�term

or an update�term� We consider update� and version�

terms� because it is important for our approach to

distinguish between �
� whether a certain update is

applied on a version to create a new version with dif�

ferent properties� or ��� whether a version which has

been created by the application of a certain update

has a certain property� For the former we introduce

update�terms� for the latter version�terms�

Let m be a name of a method� V a version�id�term�

and A�� ���� Ak� R object�id�terms� Consider ��� to be

an indicator for method arguments� it is omitted if

there are no arguments� A version�term is any expres�

sion of the form V�m�A�� ���� Ak�R� where k � ��

A set of ground version�terms is called an object�

base� An expression m�A�� ���� Ak�R is also called

a method�application� The state of a version w�r�t� a

certain object�base is given by the set of all ground

method�applications� which can be derived from its

version�terms in the respective object�base�

Update�terms are the means to express changes of

the states of the versions� Let m be a name of a

method� V a version�id�term� and A�� ���� Ak� R� R
�

object�id�terms� An update�term now is any expres�

sion of one of the following� ins�V ��m�A�� ���� Ak�R�

del�V ��m�A�� ���� Ak �R� or mod�V ��m�A�� ���� Ak �

�R � R��� where k � �� Each of these updates ex�

presses a transition from the state of a version V to the

state of a version ��V �� where � � F � Syntactically�

updates are indicated by the braces ���� ���� Note� that

these braces are replaced by ���� ��� when referring to

the version being the result of the state transition� In

case of an insert� the state of version ins�V � contains

a new method�application not contained in the state

of version V � in case of a delete� the state of version

V contains a method�application� which is no longer

contained in the state of version del�V �� and� �nally�

in case of a modify� both states of the versionsmod�V �

and V contain a method�application w�r�t� the same

method and the same argumentss� however the results

are di�erent�

For example the version�term

mod�henry��salary����

states that the method salary applied to the version

mod�henry� of object henry yields the result ����

Here mod�henry� is a VID� henry and ��� are OIDs�

We consider mod�henry� to be the version of henry

after an update of type modify has been applied to

henry� On the other hand� the update�term

mod�henry��salary����������

de�nes an update of type modify changing the result

of salary applied to henry from ��� to ���� The new

value will hold in the state of mod�henry��

An update�rule is written as

H �� B� � ��� � Bk � k � � �

where H is an update�term called the head of the rule�

and B�� � � � � Bk are positive or negated atoms forming

the rule�s body� H and the Bi�s are also called literals�

If k � �� then the rule is called an update�fact� Rules

are considered to be ��quanti�ed� the domain of quan�

ti�cation is the set O� i�e� the set of all OIDs� Let R be

an update�rule and let r be an update�rule which is de�

rived from R by replacing variables by OIDs� We call r

a ground instance of R� We require that rules are safe

�cf� �Ull		��� A set of update�rules forms an update�

program� The evaluation of an update�program is

called update�process� �From now on when talking

about �rules � �programs or �processes � we always

mean �update�rules � �update�programs or �update�

processes � respectively�

As a �rst example� demonstrating the power of our

language� consider the following rule �

mod�E��sal��S�S�� ��

E�isa�empl �

E�sal�S � S� � S 	 
�


To every employee a 
�! salary�raise has to be per�

formed� It is worthwhile noticing that this intuitive

version of the salary�update terminates� when eval�

uated bottom�up� In the above example each em�

ployee gets his salary raised exactly once �as intended��

because the rule only applies to �initial �i�e� non�

updated� employees� �Remember� that a variable can

only be instantiated by a OID� not VID�� Thus ver�

�



sions help to avoid non�terminating update�loops�

In the following we will always consider a scenario

in which a certain update�program P is executed on

a given object�base ob� Note� that in this framework

we do not consider derived objects� i�e� objects� for

which a method is de�ned by a rule� which is not

an update�rule� our intention is to study updates of

base de�nitions only� However� these updates are de�

�ned by rules� Further note� that we do not introduce

classes� because we are in the current paper not in�

terested in the interaction between updates and types�

respectively� inheritance�

The language introduced so far can be considered

as a variant of strati�ed Datalog� methods correspond

to predicates� Methods are mappings� Whenever an

object�base contains several method�applications for a

certain object ��version� v� all having the same method

name m and the same arguments a�� ���� ak� we con�

sider the method m to be set�valued� Proceeding this

way we do not have to consider consistency questions

w�r�t� functionality of methods� moreover� we have a

simple set�concept in our language without any addi�

tional e�ort� �In fact� it corresponds to the set seman�

tics introduced in �CW	�� KW	���� Further it is worth

to note� that our usage of function symbols does not

enforce termination problems during bottom�up eval�

uation� because we quantify over the set of all OIDs O�

only� More precisely� for safe rules only a �nite num�

ber of new versions can be derived during evaluation�

Thus we do not enter the computationally more di"�

cult world of Datalog with function symbols �Ull		��

��� General Idea

We conceive an update�program as a mapping from

an �old� object�base into a �new� object�base� update�

programs are evaluated bottom�up� Our update�

approach bases on the idea of object�versions at dif�

ferent time�steps� where the �rst version of an object

�denoted by an OID� is the one found in the current to�

be�updated object�base� Updating an object is done

by carrying�out on it several groups of basic updates of

the same type �insert� delete or modify�� Each group

is implemented by one or several update�rules� Real�

izing one such group �transforms an object�version

into the next �further updated� version of the respec�

tive object� Conceptually this �transformation is un�

derstood as follows � consider version v with a certain

state� Further assume that a group of updates of some

type � �� fins� del� mod g� are to be performed on v�

Before performing the updates� a version ��v� is cre�

ated as a �copy of v� i�e� all method�applications of

v are taken to hold �by default� for ��v�� Now the

updates of type � de�ned on version v are performed

by changing the default method�applications of ��v�

accordingly� After all updates have been performed�

��v� is the ��updated version of v� The �last version 

of an object�s update�process represents the �nal up�

dated object� Moreover� during an evaluation of an

update�program all versions created during that eval�

uation can be used to derive the desired method values�

Assume we want to update an object�base ob yield�

ing a new object�base ob� using an update�program

P � Let us focus on one object in ob� denoted by its

OID o� Assume that the update�rules in P de�ne �and

perform� some modify�updates on the not�yet�updated

object o � followed by some delete�updates based on the

�modi�ed version of o  � concluding with some insert�

updates following the delete�updates� Consequently

we here have � groups of basic updates of the same

type� At the time before evaluation of P has started�

the object is denoted by o� After the modify�updates�

it is denoted by mod�o�� here from the OID o we have

derived by the respective modify a VID mod�o�� Con�

ceptually�mod�o� can be read as �the denotation of the

version of object o � after updates of type modify have

been performed on o  � which we consider tantamount

to saying� that �the updated object�version is refer�

enced by mod�o�  � Thus VIDs have temporal char�

acteristics� Performing delete�updates on the version

mod�o�� results in a new version denoted by the VID

del�mod�o��� which again can be read as �the denota�

tion of the version of object o � after updates of type

modify� followed by updates of type delete� have been

performed on o  � In analogy� performing the insert�

updates yields the version ins�del�mod�o���� which #

if no further updates follow # is taken over into the

new object�base ob� �where the object then will be de�

noted by o again�� The general case of k consecutive

groups of basic updates �of types ��� � � � � �k resp��

performed on an object o � is illustrated in �gure 
�

Review the salary�update example in Section ��
�

�



Talking in the jargon of versions we have the follow�

ing � for an employee�object e � e�g� with method�

applications isa � empl and sal � 
�� in the to�

be�updated object�base� the bottom�up evaluation of

the salary�update rule yields a version mod�e� with

method�applications isa�empl and sal�

� � The

method�applications of the mod�����versions form the

updated object�base� i�e� once the update�process is

�nished we have e�isa�empl and e�sal�

� in the

new object�base�

��� Illustrative Examples

Assume an enterprise�object�base holding information

about employees and let a �rst intended update be as

follows� �Each employee gets a 
�! salary�raise and

those in a managerial position an extra $���� After�

wards all those employees are �red� who make more

than any of their superiors� and �nally those of the re�

maining ones� who make more than $����� are grouped

into a class called hpe �high�paid�employees�� The

following update�program realizes the update�

mod�E��sal��S�S�� �� �rule
�

E�isa�empl�pos�mgr�sal�S �

S� � �S 	 
�
� % ���

mod�E��sal��S�S�� �� �rule��

E�isa�empl�sal�S �


E�pos�mgr � S� � �S 	 
�
�

del�mod�E��� 	 �� �rule��

mod�E��isa�empl�boss�B�sal�SE �

mod�B��isa�empl�sal�SB � SE � SB

ins�mod�E���isa�hpe �� �rule��

mod�E��isa�empl�sal�S �

S � ���� � 
del�mod�E���isa�empl

Note that a construct v�m� � r��m� � r�� � � � is

used as an obvious short notation for a conjunction

of the respective method�applications w�r�t� version v�

similarly� we write del�� � ���	 to express the deletion

of all method�applications of the respective version�

With these explanations on hand let us explain the

e�ect of the four update�rules� assuming a bottom�up

evaluation� The �rst rule takes an employee in a man�

agerial position �isa�empl�pos�mgr�� who had not

yet been updated �E � and initiates a modify of his

salary method �mod�E��sal� �S�S�� �� The second

rule modi�es the salary of all employees who are no

managers� Assume in our to�be�updated object�base a

manager phil who makes $���� and has no superior�

and an employee bob who makes $���� and phil being

one of his superiors� Surely we expect that the update

�as a whole� leaves phil in the class hpe with a salary of

$�
�� and bob �red �i�e� no more an employee�� This

is indeed the case �cf� �gure ��� The �rst rule ini�

tiates a modify�update on phil resulting in a version

mod�phil�� which # compared to the version phil #

has the salary method result modi�ed to $�
��� An

analogous reasoning applies to bob together with the

second rule� The third rule only deals with employees

�



after amodify had been carried out on them �mod���� ��

i�e� in our example only the object�versions mod�phil�

and mod�bob� are considered� This rule performs a

delete�update on mod�bob� yielding the object�version

del�mod�bob�� with the method�applications deleted as

speci�ed in the rule�head� Note that the third rule

does not apply to phil� because in our example�object�

base he has no superior� The last rule shows that in

our approach update�terms are allowed to appear in

rule�bodies� This rule �res� if a modi�ed employee

�mod�E� � with salary greater $���� exists and no

delete�update� deleting his isa�result empl� had been

performed on the mod�E��version �� The rule applies

to E � phil �but not to E � bob�� initiating an

insert�update ofmod�phil�� yielding the object�version

ins�mod�phil��� for which isa� empl and isa� hpe

�Note that using the negated version term
�del�mod�E���isa� empl instead of the negated update�term
�del
mod�E���isa� empl would not at all have had the same
e�ect� because the former would be satis�ed for an employee e�
if� either there does not exist a version del�mod�e��� or there
exists such a version� however isa� empl does not hold
 while
the latter asks for the version mod�e� not being subject to a
delete�update� which removes isa� empl	 Therefore� only the
use of the negated update�term in the rule�body performs the
intended update	

hold�

The next example shows that our approach can also

be used to perform some sort of �hypothetical rea�

soning � as the usage of versions�identities allows to

revise �hypothetical updates� In the example below

we intend to determine if after a hypothetical salary�

raise �non�linear� to all employees� the employee peter

would be the richest employee of the enterprise�

mod�E��sal��S�S�� �� �rule
�

E�sal�S�factor�F � S� � S 	 F

mod�mod�E����S�
�S� �� �rule��

mod�E��sal�S� � E�sal�S

ins�mod�mod�peter����richest�no ��

mod�E��sal�SE � �rule��

mod�peter��sal�SP � SE � SP

ins�ins�mod�mod�peter�����richest�yes ��


ins�mod�mod�peter����richest�no �rule��

Here the �rst two rules realize the hypothetical salary�

raise by performing and revising it right away� For

each employee e the mod�mod�e���version is identical

to the e�version and the mod�e��version contains the

raised salary� The third and fourth rule determine �






by using the version after the �rst modify � whether

peter would be the richest employee of the enterprise��

The �nal example shows that also recursive rules can

be used for updates� By the two rules the ancestors of

some given persons are computed� Note� that in this

example methods anc and parents are considered to

be set�valued� The example is as follows�

ins�X ��anc�P ��

X�isa�person�parents�P

ins�X ��anc�P ��

ins�X��isa�person�anc�A �

A�isa�person�parents�P

��� Discussion and Comparison

The concept of object�versions integrates in a nice

and easy�to�understand way procedurality into our rule

update�language� If� in our �rst example� bob would

only gain $�
��� then without imposing control by the

structure of the VIDs� �ring employees before raising

salaries could have led to a di�erent unintended up�

dated object�base� In fact� there is a large consensus

that �procedurality or some kind of �control is re�

quired for updates �Abi		� �update� logic � control ��

Not surprisingly� the introduction of control leads

to an increase of computational power� In rule�

based update�languages based on top�down reason�

ing� di�erent control mechanisms are encountered �

�Tom		� Dec��� KM��� MW		� use the implicit control

strategies o�ered by di�erent variants of resolution�

The update language proposed by �NT	�� provides

in addition explicit control by allowing sequential��

conditional� and iterative� operators in rule�bodies�

A comprehensive study of various extensions of

Datalog with �xpoint semantics can be found in

�AV�
�� deterministic and nondeterministic extensions

are studied w�r�t� their expressive power and complex�

ity� Connections to procedural languages are given

which also exhibit many interesting forms of pro�

grammed control� A di�erent way to control eval�

uation is pointed out in RDL� �dMS		�� here ex�

plicit �user de�ned� control is achieved by adding so

called Production Compilation Networks to the rule�

�An appropriate strati�cation technique will be presented in
section �	

programs� which allow similar control patterns as

Petri�Nets�

In Logres �CCCR���� update�rules are grouped in

modules� which have either in�ationary or strati�ed

semantics� and can be used to de�ne updates of base

and derived methods� By specifying orders on the exe�

cution of the modules� the user has a �exible� however

�manual means for control� An interesting approach

for control is chosen in LOCO �LVVS���� here updates

are controlled by the inheritance mechanism of the lan�

guage� However updates cannot be de�ned by rules�

instead again in a �manual way new rules have to be

introduced into the isa�hierarchy to achieve the desired

e�ects�

Our approach will provide di�erent types of control �

in addition to a rule�ordering entailed by strati�ed

negation� an implicit control resulting from a �strat�

i�cation by object�versions � We �move from version

to version by explicitly naming them� VIDs allow

to refer to objects at di�erent stages of their update�

process� This version aspect gives our approach a

greater functionality compared to having the whole

update�process performed at the same �time �step � or

breaking the process into �xed modules as it is done in

Logres� There seems to be an interesting relationship

to the internal event calculus in �Oli	��� Here di�erent

versions can be distinguished by certain time�points�

However no notion of object is considered and our

VIDs also contain information about the history of the

updates� Finally� we allow update�terms in rule�heads

as well as rule�bodies� In the rule�head an update�term

explicitly initiates an update �as in all bottom�up ap�

proaches�� while in the rule�body it requests that a

certain update of a certain object�version has �or has

not� already been performed�

Versioning in object�oriented databases is a well�

established concept �the textbook �Kim�
� contains

many references to relevant work�� High sophisticated

techniques have been proposed to organize the versions

of a certain object� We are more restrictive in this as�

pect and will require� that the versions of an object

must re�ect a linear order� while usually a hierarchy is

allowed� The motivation for this restriction is that we

must choose for each object a version out of a possible

set of versions to built the new object�base� requir�

ing a linear order makes this simple� There exists an

�



interesting relationship between our update approach

and schema evolution� The way we consider inserts

and deletions would require changes of corresponding

class�de�nitions in a strongly typed environment� be�

cause methods become unde�ned� respectively de�ned

w�r�t� some objects according to the type of the up�

date� The techniques proposed in �SZ	�� seem to be a

good starting point for an integration of our method

into a more general environment�

� An Immediate Consequence

Operator

Let P be a given program� and ob an object�base� As

we are interested in the bottom�up evaluation of P

we now introduce an operator TP � which maps object�

bases into object�bases� TP is an adaptation of the

usual immediate consequence operator in deductive

databases� Let I be an object�base� Intuitively� TP �I�

derives a new object�base I �� such that each element

in I � follows from an application of a rule in P w�r�t� I �

The de�nition of TP needs some further prerequisites�

First we de�ne truth of ground version� and update�

terms w�r�t� an object�base I � Version�terms do not

perform any updates� they simply refer to a certain

object�version asking for a certain property� Update�

terms behave di�erently� depending whether they oc�

cur in the head or the body of a rule� An update�term

in a rule�head only then is true� if its e�ect has not al�

ready occurred before� For example� an insert of new

information is only then allowed� if the to be inserted

information does not already exist� In a rule�body� an

update�term only then is true� if the stated version�

transition really has occurred� For example� for an

insert it is required� that the respective information

did not hold w�r�t� the state of the version� on which

the insert has been performed� but does hold w�r�t� the

state of the version of the update�term� Similar holds

for a modify�operation� however for delete�operations

the situation is a bit more subtle� as we will explain

next� In the sequel� by m we mean a method denoted

by m applied to a sequence of k � � arguments� i�e�

m�a�� ���� ak�

Consider an update�term ��v��m�r� The di�erence

between insert� respectively modify� and delete is� that

in the former cases we can be sure� that there will ex�

ist a version ins�v�� respectively mod�v� in I �� For a

delete this is not necessarily the case� because by a

delete we shrink the state of a version� such that by

deleting the last method�application� also the informa�

tion about existence of the version has been deleted�

To avoid such loss of information we assume� that

for each object o in the given object base ob there

is de�ned a method exists as follows� o�exists � o�

In addition we require� that for all programs P � this

�system�method exists does not occur in any update�

term� Proceeding this way we will achieve the desired

e�ect� that we cannot loose all information about a

version del�v� of an object o� at least a note about its

existence expressed by del�v��exists�o will survive�


� Version�Term

A ground version�term v�m � r is true w�r�t� I

i� v�m�r � I �

�� Update�Term in a Rule�Head

� A ground update�term ins�v��m� r� which oc�

curs in a rule�head� is true w�r�t� I

i� v�m�r �� I �

� A ground update�term del�v��m� r� which oc�

curs in a rule�head� is true w�r�t� I

i� v�m�r � I �

� A ground update�term mod�v��m � �r � r���

which occurs in a rule�head� is true w�r�t� I

i� v�m�r � I �

�� Update�Term in a Rule�Body

� A ground update�term ins�v��m� r� which oc�

curs in a rule�body� is true w�r�t� I

i� v�m�r �� I and ins�v��m�r � I �

� A ground update�term del�v��m� r� which oc�

curs in a rule�body� is true w�r�t� I

i� v�m�r � I and

del�v��exists�o � I and

del�v��m�r �� I �

where o is the object of which del�v� is a version�

� A ground update�term mod�v��m � �r � r�� �

where r ��r�� which occurs in a rule�body� is true

w�r�t� I

i� v�m�r � I and

	



mod�v��m�r �� I and

mod�v��m�r� � I �

� A ground update�term mod�v��m � �r � r�� �

where r � r�� which occurs in a rule�body� is

true w�r�t� I

i� v�m�r � I and mod�v��m�r � I �

Negation in rule�bodies is treated as follows� A

negated ground version�term 
v�m� r is true w�r�t�

I � if v�m�r is not true w�r�t� I � Negation of update�

terms in rule�bodies is de�ned analogously�

After having introduced all the prerequisites� the im�

mediate consequence operator TP �I� now can be de�

�ned by the following ��step procedure�

Step �

Compute the set�

T �
P
�I� � fh j there exists a ground instance of

a rule in P such that its head h
and every literal in its body
is true w�r�t� I g

In this step we derive the set of updates� which

have to be performed on I �

Step �

Let ��v��m� r � T �
P
�I�� respectively� ��v��m�

�r � r�� � T �
P
�I�� Any such VID ��v� is called

relevant� it is called active� if in addition I already

contains a method�application of ��v�� Compute

then the set�

T �
P
�I� � f��v��m�r j ��v� is active

and ��v��m�r � I g 


f��v��m�r j ��v� is relevant� however
not active and v�m�r � I g

Now we have prepared� by copying from I � for

each object� on which an update has to be per�

formed� a state of a version on which the update

can take place� Note� in case of an active VID� we

can simply copy the state from I � while in case

the VID is relevant� but not active� we create a

new version by taking the method�applications of

the previous version as default��

�At this point it may be interesting to re�ect on the well�
known frame�problem	 All knowledge true for an old version
has also to be true for the new one� if it has not explicitly stated
otherwise by the update	 By copying old states only for the
objects being updated �and not the whole object�base�� we keep
the unavoidable overhead low	

Step �

It remains to do the required updates� To this

end� �nally compute the result of applying TP on

I �

TP �I� �

fins�v��m�r j ins�v��m�r � T �
P
�I� or

ins�v��m�r � T �
P
�I�g 


fdel�v��m�r j del�v��m�r � T �
P
�I� and

del�v��m�r �� T �
P
�I�g 


fmod�v��m�r j mod�v��m�r � T �
P
�I� and

mod�v��m��r�r�� �� T �
P
�I�g 


fmod�v��m�r� j mod�v��m��r�r�� � T �
P
�I�g

� Bottom�Up Evaluation

Bottom�up evaluation is complicated by several rea�

sons� First� we have nonmonotonicity because of

negation in rule�bodies� second� another source of

nonmonotonicity are delete� and modify�operations�

Insert�operations do not impose problems here� be�

cause inserts correspond to the usual derivation of new

�positive� facts� Finally� during application of the im�

mediate consequence operator� a copy of a state of a

version to get a basis for the state of a new version may

occur� Once such a copy has occured� the state being

copied should not be changed further� because these

changes will not be implemented in the new version�s

state� A solution to these problems can be achieved

by a strati�cation of the rules in P � The aim of such

a strati�cation is to partition the rules into so called

strata � bottom�up evaluation then is done stratum by

stratum� The results of the lower strata are the input

to the respective next higher stratum� In case that for

a given program P there exists a strati�cation� after

having processed all strata� a �xpoint of P is reached�

This follows in analogy to results for strati�ed Datalog

�Ull		��

For technical simplicity of the derivation of the re�

quired strati�cation� we replace in the given program

P each construct ��V � by ��V �� � � F � First� we

guarantee that once a state is copied� this state is not

changed any further� This gives our �rst condition for

strati�cation�

�



�a� If there exists a rule r with a version�id�term ��V �

in its head� then each rule� which has a version�

id�term V � in its head such that V and V � unify�

is in a lower stratum than r�

Consider the �rst example stated in Section ���� The

following strati�cation ful�lls condition �a��

f rule
� rule� g� f rule�� rule� g�

The condition for strati�cation with respect to nega�

tion can be adapted from �Ull		�� However� in our

framework the role of predicate names in Datalog now

has to be taken by version�id�terms� The resulting

conditions for strati�cation can be stated as follows�

�b� If there exists a rule r with a version�id�term V of

a not negated atom in the body� then each rule�

which has a version�id�term in its head unifying

with V is in a stratum which is at most as high

as the stratum of r�

�c� If there exists a rule r with a version�id�term V of

a negated atom in the body� then each rule� which

has a version�id�term in its head unifying with V �

is in a lower stratum than r�

To continue our example� the following strati�cation

ful�lls conditions �a� � �c��

f rule
� rule� g� f rule� g� f rule� g�

The remaining task now is to consider nonmonotonic�

ity due to delete� and modify�operations� A further

strati�cation is necessary because of the following rea�

sons� Assume during bottom�up evaluation we have to

delete method�applications of a version v� �The case

of modify is analogous�� Then� �rst a new version�

say del�v�� is created� whose method�applications are

the same as for v� On this version the delete opera�

tions will take place� This follows from our de�nition

of the TP �operator� Now assume� that the delete op�

erations do not all take place during one application

of TP � Thus� there is the possibility� that a method�

application of del�v� will be used to infer some opera�

tions w�r�t� other objects� and this method�application

will be deleted afterwards� as well� To avoid such coun�

terintuitive behaviour we require� that rules which per�

form a delete or a modify are assigned to a lower stra�

tum than those rules� which refer to versions on which

the corresponding delete� or modify�actions take place�

�d� If there exists a rule r with a version�id�term

del�V �� respectively mod�V �� of an atom in

its body� then each rule� whose head contains

a version�id�term del�V ��� respectively mod�V ���

such that V and V � unify� is in a lower stratum

than r�

In our example� no further partitioning of the rules is

implied by condition �d��

Let P be a program and ob a respective object base�

If P has a strati�cation such that �a� � �d� is ful�lled�

then the bottom�up evaluation is realized by iterating

the operator TP stratum by stratum� starting from a

given object�base ob� in an analogous way as it is de�

scribed in detail in �Ull		�� The result of this computa�

tion process is denoted by result�P �� Note� as we are

only considering safe rules� the iteration is guaranteed

to terminate with respect to each stratum�

� Building the New Object Base

Let P be a program� and ob the object base on which

P is performed� Assume P is strati�ed and we have

computed result�P �� Even though during the com�

putation a strati�cation has been observed� it is still

possible� that result�P � contains versions� which make

it impossible to derive the new updated object base

ob�� This is the case� if there exist two versions of the

same object o� with VIDs v� v�� for which we cannot

decide� which of the both is the one whose method�

applications are to be copied into ob�� For example�

such a situation could occur� if P contains the rules�

mod�o��m��a�b� �� � � � a rulebody � � �
del�o��m�a �� � � � another rulebody � � �

and both rules �re during the evaluation of P � In gen�

eral� it is undecidable to predict whether such a situ�

ation may occur during evaluation� To exclude such

programs� for the purposes of the current paper� we be�

lieve that a runtime check during the computation of

result�P � is appropriate� because its realization seems

to be not expensive�

We call result�P � version�linear� if for any two VIDs

v� v� of the same object o it holds� that either v is a

subterm of v�� or vice versa� For an object o� that ver�

sion of o is called the �nal version of o� whose VID


�



contains all VIDs of the other versions of o as a sub�

term� Version�linearity can be easily checked during

evaluation� At any point of time� keep the VID of the

most recent version of each object and check whether

the VID of any new version of the same object contains

the previous VID as subterm�

Finally� if result�P � is version�linear� the updated

object base ob� is derived from result�P � by copying

into ob� for each object o � ob the method�applications

of its �nal version� Note� that it may be the case that

for an object all method�applications are deleted in its

�nal version� i�e� the only method de�ned for this ver�

sion is the method exists� In this case no information

about such an object will be present in ob��

� Conclusion

The primary intention of the current paper is to

present a technique for de�ning updates using rules

based on object�versions� To keep the framework sim�

ple� we restricted our language more than necessary�

More expressive power can be gained by allowing to

quantify over VIDs in addition to OIDs� However� such

an extension must be done carefully not to destroy the

termination properties of the evaluation process� Our

investigations can be continued in several directions�

First� it seems to be worth to try to develop strati�ca�

tion or related criteria which allow to accept a broader

class of programs for evaluation� Also� alternatives to

version�linearity may be interesting� Second� we did

not consider derived objects� We do not see any prin�

cipal problems to generalize our approach in this direc�

tion� Finally� our version�based approach has temporal

characteristics� The investigation of the relationship

to temporal logics seems to be an interesting �eld for

further research�

Acknowledgement

We would like to thank the referees for their helpful

comments and for pointing out many relationships to

other work�

References

�Abi		� Serge Abiteboul� Updates� a new frontier�
In Proc� Intl� Conference on Database
Theory� number ��
 in LNCS� pages 
�

	� Springer� 
�		�

�Abi��� Serge Abiteboul� Towards a deductive
object�oriented database language� Data
	 Knowledge Engineering� ������
���	��

����

�AK	�� Serge Abiteboul and Paris C� Kanellakis�
Object identity as a query language prim�
itive� In Cli�ord et al� �CLM	��� pages

�� � 
���

�AT� Paolo Atzeni and Riccardo Torlone� Up�
dating deductive databases with func�
tional dependencies�

�AV�
� S� Abiteboul and V� Vianu� Datalog
extensions for database queries and up�
dates� Journal of Computer and System
Sciences� ���
��
��
��� 
��
�

�Ban	
� Fran&cois
Bancilhon� A logic�programming�object�
oriented cocktail� ACM SIGMOD Record�
Vol��
� No��� 
�	
�

�BFKM	
� Lee Brownstone� Robert Farell� Elaine
Kant� and Nancy Martin� Programming
Expert Systems in OPS
� Addison Wes�
ley� 
�	
�

�CCCR���� F� Cacace� S� Ceri� S� Crespi�Reghizzi�
L� Tanca� and R� Zicari� Integrating
object�oriented data modeling with a
rule�based programming paradigm� In
Garcia�Molina and Jagadish �GMJ����
pages ������
�

�CLM	�� James Cli�ord� Bruce Lindsay� and David
Maier� editors� Proc� ACM SIGMOD
Intl� Conference on Management of Data�
Portland� 
�	��

�CW	�� W� Chen and D� S� Warren� C�Logic for
complex objects� In Proc� ACM Sympo�
sium on Principles of Database Systems�
pages �
� � ��	� 
�	��

�Dec��� Hendrik Decker� Drawing updates from
derivations� In Proc� of the Intl� Conf� on
Database Theory� Paris� number ��� in
LNCS� 
����

�DKM�
� Claude Delobel� Michael Kifer� and
Yoshifumi Masunaga� editors� Proc� Intl�
Conference on Deductive and Object�
Oriented Databases �DOOD
� number
�

 in LNCS� Springer� 
��
�

�dMS		� Christophe de Maindreville and Eric Si�
mon� A production rule based approach
to deductive databases� In Proc� of the
Intl� Conf� on Data Engineering� Los An�
geles� 
�		�

�GMJ��� Hector Garcia�Molina and H� V� Ja�
gadish� editors� Proc� ACM SIGMOD
Intl� Conference on Management of Data�

����







�HJ�
� Richard Hull and Dean Jacobs� Lan�
guage constructs for programming active
databases� In Proc� of the Intl� Conf� on
Very Large Data Bases� 
��
�

�Kim�
� Won Kim� Introduction to Object�
Oriented Databases� MIT Press� second
edition� 
��
�

�KL	�� Michael Kifer and Georg Lausen� F�
Logic� A higher�order language for rea�
soning about objects� inheritance and
scheme� In Cli�ord et al� �CLM	��� pages

�� � 
�
�

�KLW��� Michael Kifer� Georg Lausen� and James
Wu� Logical foundations of object ori�
ented and frame�based languages� In�
formatik Berichte ��
���� Universit'at
Mannheim� June 
����

�KM��� A�C� Kakas and P� Mancarella� Database
updates through abduction� In Proc� Intl�
Conference on Very Large Data Bases�

����

�KNN	�� Won Kim� Jean�Marie Nicolas� and Sho�
jiro Nishio� editors� Proc� Intl� Confer�
ence on Deductive
and Object�Oriented Databases �DOOD
�
North�Holland�Elsevier Science Publish�
ers� 
�	��

�KW	�� Michael Kifer and James Wu� A
logic for object�oriented logic program�
ming �Maier�s O�Logic revisited�� In
Proc� ACM Symposium on Principles of
Database Systems� pages ��� � ���� 
�	��

�LSV��� Els Laenens� Domenico Sacc(a� and Dirk
Vermeir� Extending logic programming�
In Garcia�Molina and Jagadish �GMJ����
pages 
	��
���

�LVVS��� E� Laenens� B� Verdonk� D� Vermeir� and
D� Sacc(a� The LOCO language� Towards
an integration of logic and object oriented
programming� Technical report� Univer�
sity of Antwerpen� Report ������ 
����

�MW		� Sanjay Manchanda and David Scott War�
ren� A logic�based language for database
updates� In Jack Minker� editor� Founda�
tions of Deductive Databases and Logic
Programming� pages �
������ Morgan�
Kaufmann� Los Altos� CA� 
�		�

�NT	�� S� Naqvi and S� Tsur� A Logical Language
for Data and Knowledge Bases� Com�
puter Science Press� 
�	��

�Oli	�� Antoni Olive� On the design and imple�
mentation of information systems from
deductive conceptual models� In Proc� of
the Intl� Conf� on Very Large Data Bases�
pages ��

� 
�	��

�PDR�
� Geo�rey Phipps� Marcia A� Derr� and
Kenneth A� Ross� Glue�Nail � A de�
ductive database system� In Proc� of the
ACM SIGMOD Conf� on Management of
Data� 
��
�

�SJGP��� M� Stonebraker� A� Jhingran� J� Goh� and
S� Potamianos� On rules� procedures�
caching and views in data base systems�
In Proc� of the ACM SIGMOD Symp� on
the Management of Data� pages �	
�����

����

�SZ	�� Andrea H� Skarra and Stanely B� Zdonik�
Type evolution in an object�oriented
database� In Bruce Shriver and Pe�
ter Wegner� editors� Research Directions
in Object�Oriented Programming� MIT
Press� 
�	��

�Tom		� Anthony Tomasic� View update trans�
lation via deduction and annotation� In
Proc� of the Intl� Conf� on Data Base
Theory� Bruges� number ��
 in LNCS�
pages ��	����� 
�		�

�Ull		� Je�rey D� Ullman� Principles of Database
and Knowledge�Base Systems� volume 
�
Computer Science Press� New York� 
�		�

�WF��� Jennifer Widom and Sheldon J� Finkel�
stein� Set�oriented production rules in
relational database systems� In Proc� of
the ACM SIGMOD Symp� on the Man�
agement of Data� pages �����
�� 
����

�ZH��� Y� Zhou and M� Hsu� A theory for rule
triggering systems� In Proc� of the Intl�
Conf� on Extending Database Technology�
pages ������
� 
����


�


