International Conterence on Formal and Applied Practical Reasoning, FAPR-96
June 3-7, 1996, Bonn, Germany
Springer LNCS 1085 (Dov M. Gabbay and Hans Jirgen Ohlbach, Eds.), pp. 399-413

A Tableau Calculus for First-Order Branching
Time Logic

Wolfgang May! and Peter H. Schmitt?

! Institut fiir Informatik, Universitéit Freiburg, Germany,
mayQ@informatik.uni-freiburg.de,
2 Institut fiir Logik, Komplexitit und Deduktionssysteme,
Universitdt Karlsruhe, Germany, pschmitt@ira.uka.de

Abstract. Tableau-based proof systems have been designed for many
logics extending classical first-order logic. This paper proposes a sound
tableau calculus for temporal logics of the first-order CTL-family. Until
now, a tableau calculus has only been presented for the propositional
version of CTL. The calculus considered operates with prefixed formulas
and may be regarded as an instance of a labelled deductive system. The
prefixes allow an explicit partial description of states and paths of a
potential Kripke counter model in the tableau. It is possible in particular
to represent path segments of finite but arbitrary length which are needed
to process reachability formulas. Furthermore, we show that by using
prefixed formulas and explicit representation of paths it becomes possible
to express and process fairness properties without having to resort to full
CTL*. The approach is suitable for use in interactive proof-systems.

1 Introduction

Interactive proof-systems for verification of processes are gaining increasing in-
terest. A very popular approach is to use temporal logic. Following from the
observation that most of the specification can be expressed in first-order CTL,
an extension of existing proof-systems to temporal logic of the CTL-family seems
adequate. This paper presents an intuitive, straightforward extension of the first-
order tableau calculus to first-order CTL with additional fairness requirements
well-suited for use in an interactive proof-system. The main ideas are
e explicit representation of the “geographical” structure of a fictive model
by way of naming of states and paths,
encoding of this information in a special type of formulas,
abstraction of path segments of unknown, but finite length in order to
process and represent eventualities.
The paper is structured as follows: In section 2 the temporal logic CTL and the
notion of a Kripke-structure are reviewed. In section 3 the tableau semantics
is presented. Section 4 gives the tableau rules and casts a short glance on cor-
rectness and completeness: A complete calculus for first-order CTL cannot be
achieved. In section 5 fairness requirements are analyzed and included into the

! Most of this work has been done while the first author was student at Universitét
Karlsruhe. At present his work at Universitdt Freiburg is supported by grant no.
GRK 184/1-96 of the Deutsche Forschungsgemeinschaft.

calculus and some further extensions are pointed out. Section 6 completes the
work with some concluding remarks.

2 The Temporal Logic CTL

The base of first-order CTL is a language of first-order predicate logic, including
the symbols “(” and “)”, the boolean connectives =, A, V, —, the quantifiers V,
3, and an infinite set of variables Var := {z1,z2,...}. A particular language is
given by its signature ¥ consisting of function symbols and predicate symbols
with fixed arities ord(f) resp. ord(p). Terms, first-order formulas, and the notions
of bound and free variables are defined in the usual way, free(F) denoting the
set of variables occurring free in a set F of formulas.

A substitution (over a signature X) is a mapping o : Var — Termy, where
o(z) # x for only finitely many = € Var. o : o(z) = t is written as [z + {].
Substitutions are extended to terms and formulas as usual.

A first-order interpretation I = (I, U) over a signature ¥ consists of a non-
empty set U (universe) and a mapping I which maps every function symbol
f € ¥ to a function I(f) : U°"d(f) — U and every predicate symbol p € ¥ to a
relation I(p) C U°rd(®),

A wvariable assignment is a mapping x : Var — U. For a variable assignment,
X, a variable z, and d € U, the modified variable assignment x¢ is identical with
x except that it assigns the element d € U to the variable x. Let = denote the
set of variable assignments.

The notion of an interpretation is extended to an evaluation I : Termy x = — U:

I(z,x) := x(z) for xz € Var,

I(f(tly s >tn))X) = (I(f))(I(t17X)> EEEE) I(tn>X))

for f € ¥, ord(f) =n and ty,...,t, € Termy.

To indicate the truth of a formula F' in an interpretation I under a variable as-
signment y, the standard notation =ro (or simply |=) is used: Let s, ¢ be terms, p
a predicate symbol, ord(p) = n, t1,...,t, terms, z a variable, A and B formulas.
Then (I, x) [true

(I)X) |: p(tla"'atn) S (I(thX)))I(tn:X)) € I(p))
(Lx) E-4 % not (Lxy)EA

(ILx) EAVB = Lxy)yEAor (L) EB
(Lx)EJz: A :& there is a d € U with (I, x%) £ 4

The symbols A A B:=~(-mAV -B), A—> B:=-AV BandVz: F:=-3Jz:
—F are defined as usual.

Definition 1. A first-order Kripke-structure over a signature X is a triple K =
(G,R,M) where G is a set of states, R C G x G an accessibility relation, and
for every g € G, M(g) = (M (g),U(g)) is a first-order interpretation of ¥ with
universe U(g). G and R are called the frame of K.

In this paper, only Kripke-structures with constant universe (i.e. U(g) =
U(g') for all g,¢9' € G) are considered. The notion of a variable assignment is
then defined as in the first-order case.

Definition 2. For a Kripke-structure K over a signature X the state-independent
portion ¢ C ¥ consists of all function symbols f : (M(g))(f) = (M (¢"))(f) for
all g,¢" € G and all predicate symbols p : (M(g))(p) = (M(g"))(p) for all
g,9" € G. This induces a state-independent evaluation K(t) for ¢t € Termse.

Definition 3. A path p in a Kripke-structure K = (G,R,M) is a sequence
p=1(90,91,92,---), 9i € G with R(g;, gi+1) holding for all 7. It induces a mapping
p:IN = G with p(i) = gi. Let pli := (gi, gir1,-.).

The family CTL of temporal logics of branching time used in this paper
is defined in [BMP81], [CE81], and [EH83] in its propositional version. It uses
the unary modal operators O (“always”), ¢ (“sometimes”), o (“nexttime”), the
binary modal operator until, and two path-quantifiers A and E. For this paper,
only a short review of CTL — the basic logic of this family — is given. Two classes
of formulas are distinguished: state formulas holding in states, and path formulas
holding on paths:

Definition 4. The syntax of CTL-formulas is given as follows:

(S0) Every first-order formula is a CTL-state formula.

(S1) With F and G CTL-state formulas, =F, F A G, and F' V G are CTL-
state formulas.

(P1) With F and G CTL-state formulas, oF', OF, OF, and (F until G) are
CTL-path formulas.

(P2) With P a CTL-path formula, =P is a CTL-path formula.

(S2) With P a CTL-path formula, AP and EP are CTL-state formulas.

(SQ) With F a CTL-state formula and z a variable, Vx : F' and 3z : F are
CTL-state formulas.

(F) Every CTL-state formula is a CTL-formula.

The definition shows that in CTL every modality (modal operators and
negated modal operators) is immediately preceded by a path-quantifier. CTL*
is obtained by weakening this requirement [EH83].

Definition 5. The truth of formulas, =cr, (or simply |E), in a first-order
Kripke-structure K = (G, R, M) is defined separately for state- and path for-
mulas:

Let g € G be a state, p = (go, g1,-..) a path in K, A an atomic formula, F' and
G CTL-state formulas, P a CTL-path formula, and x a variable assignment:

(S0) (g.x) F A = (M(g), x) Fro A

(Sta) (g9,x) F =F 1 mot (g,x) |= F-

(S1b) (9,x) FFVG & (g,x) = For(g,x) FG.

(Pla) (p,x) |= oF = (9,x) EF.

(P1b) (p,x) = F until G :& there is an 4 > 0 such that (g;, x) = G and for all

j:0<j<i (gi,x) F F holds.

not (p, x) | P.

there is a path p = (go, g1, .- .) in K and an ¢ such
that g; = g and (pli,x) = P

(SQ) (9,x) E3Jz:F :& thereisade U(g) with (g,x?) | F.

(P2) (p,x) =P
(S2) (9,x) FEP

¢ ¢

The other symbols are defined as OF := true until F, OF := —=0—F, and
AP := —E-P. A state formula is valid in a Kripke-structure K = (G, R, M)
iff it is valid in all states g € G. A formula is walid iff it is valid in all Kripke-
structures.

Fairness:

Different kinds of fairness requirements are distinguished [LPS81]. In this paper
only the strongest (and most important) type is considered:

Compassion (strong Fairness):

Every action which is enabled infinitely often in the future will be carried out
eventually. [La80], [EC80] and [EH83] state that strong fairness cannot be ex-
pressed in CTL. The CTL* expression is given as follows:

CTL*: A((O< (action enabled)) — <(action is carried out))

2.1 Related Work

In [CES86] and [EL85], a model checking procedure for propositional CTL is
presented. The inclusion of fairness requirements is done by extensions to the
algorithm.

In [BMP81], [EH82], and [Wol85], a tableau semantics and -calculus for
propositional CTL is presented. The paths of the tableau represent paths in
a fictive model. Cycles in the tableau are allowed. After termination, which is
guaranteed, eventuality formulas have to be postprocessed. In case of a non-
closable tableau where no inconsistency is found by postprocessing, the whole
tableau represents a model of the initial formula. An extension to CTL* or at
least to fairness requirements does not exist.

Both methods cannot be extended to first-order variants because the finite
number of possible different states is the central point in their concept.

Facing these problems, it seems necessary to make basic changes in the pro-
cessing of eventualities: it has to be possible to abstract from finitely many
states in-between. In turn, it also seems desirable to have a 1:1-correspondence
of branches of the tableau to Kripke-structures.

3 A Tableau Semantics for Branching Time

To achieve a strict distinction between the two graph structures “Kripke-struc-
ture” and “tableau”, the terms “path” and “state” will be used for Kripke-
structures whereas the terms “branch” and “node” will be used for tableaux.
Like in traditional tableau proving, for a proof of the validity of a formula
F', the inconsistency of the formula —F is proven. It is systematically tried to
construct a model for —=F', with the intention to show the impossibility of that
attempt. So the situation from first-order theorem proving to find a model for
a given set of formulas occurs multiply: Every state is such a first-order inter-
pretation. For this purpose the well-known first-order tableau calculus will be
embedded in the temporal tableau calculus which is constructed. Moreover, from

these first-order interpretations a branching time temporal Kripke-structure has
to be built.

Therefore it is necessary to describe many individual states as well as the
relations between them in the tableau. The latter include the ordering of states
on a path together with the connections between different paths.

Thus three kinds of entities have to be described: Elements of the universe
inside states, states, and paths. In the chosen semantics these will be explicitly
named when their existence is stated by a formula:

e Elements of the universe: as in the first-order tableau calculus a new con-
stant resp. function symbol is introduced by a é-rule when an 3-quantor is
processed.

e States: states are named when required by an existence formula (type OF
or oF). In the chosen semantics a newly named state has to be positioned
on an existing path, retaining the linear ordering of all states on this path.

e Paths: paths are named when required by an existence formula of the kind
EP. A newly introduced path is assumed to branch off in the state where
its existence is claimed.

In general, between two known states there can be many other still unknown
states. These can be named when needed. Thus, a straightforward dissolving of
eventualities at any time is possible.

To allow the naming of states at any position of the model, the descriptions
of paths contain, apart from the (partial) ordering of known states, additional
information about formulas which have to be true in still unknown states on the
segments in-between. These are used when new states are explicitly named.

As a conceptional extension of first-order tableaux, every branch of the
tableau (resp. the set of formulas on it) corresponds to a complete Kripke-
structure.

3.1 Representation

Starting with a formula F' over a signature X, it is systematically attempted to
create a Kripke-structure satisfying F'. As every branch of the tableau repre-
sents a complete Kripke-structure, apart from the first-order portion, informa-
tion about the frame of the Kripke-structure has to be coded in tableau nodes.
For distinguishing and naming of states, a tableau calculus based on the free
variable tableau calculus from [Ree87],[Fit90] augmented with prefizes is used
for the first-order portion: A state formula F', assumed to be true in a certain
state, occurs in the tableau as prefized formula v : F. The paths described in
the tableau are named by path descriptors. For these, path information formulas
contain the information about the prefixes situated on this path.

Thus the signature ¥ used in the tableau is partitioned into ¥, (first-order
part) and ¥y (frame part).

In a first step, ¥ is augmented with a countable infinite set of n-ary (skolem)
function symbols for every n € IN and a countable infinite set of variables X;.

Y consists of a set I' of prefix symbols and a set A of path symbols, each
containing a countable infinite set of n-ary prefix- resp. path symbols for every

n € IN. The construction of prefixes and path descriptors from these corresponds
to the use of skolem functions in the first-order tableau calculus. Here the prefix-
and path symbols take the role of the skolem functions. With this, the free
variables resulting from invocations of the -rule have to be considered. Thus
prefixes 7 and path descriptors A are terms consisting of a prefix symbol 4 resp. a
path symbol X of an arity n and an n-tuple of terms as arguments. Additionally,
there is a 0-ary symbol co that is not a prefix symbol, but is used in a similar
way.

Definition 6. Let I be the set of prefix symbols, A the set of path symbols, ¢
the state-independent portion of 3. Then the following sets ¥y, I', and A are
simultaneously recursively enumerable:
Y =X UA{f: f an n-ary skolem function symbol} U {f, : f € £\, vy e},
with ord(f,) = ord(f) and Skolem functions and all f, interpreted state-inde-
pendently, thus
¢ =X°U{f: fan n-ary skolem function symbol} U {f, : f € E\X°, v e T}.
L:={§(t1,...,tn) : Y € [' an n-ary prefix symbol, ti,...,t, € Termye }
is the set of prefizes, and
A= {S\(tl, ... tn) : A € A an n-ary path symbol, t1,...,t, € Terms: }

is the set of path descriptors, and XYp := I UA.

In both sets I', A C Termy, of terms it is precisely the leading function
symbol which is a prefix- resp. path symbol taken from ¥ and all argument
terms are in Termye . Those are interpreted state-independently by K.

An interpretation of X7 — describing a Kripke-structure — is accordingly
partitioned: The interpretation of ¥y, is taken over by a suitable set {M(g) : g €
G} of first-order interpretations. Complementary to this, an “interpretation” of
the prefix- and path symbols in ¥y is defined. The corresponding evaluations
map prefixes and path descriptors to the entities described by them:

Definition 7. A P&P-interpretation (“prefixes and paths interpretation”) of
the sets I' and A to a Kripke-structure (G, R, M) with a constant universe U
and a set P(K) of paths is a triple Q = (¢, 7,v) where

¢: A - U™ - P(K) maps every n-ary A € A to a function ¢()) : U™ — P(K)
resp. ¢(A) : U" - N — G,

m:Ax (DU {%})— (U" x Um) — INU {oo} isan (1n general not total) map-
ping of pairs of n-ary A € A and m- ary 4 € [to functions 7r(/\)
U" x U™ - N U {oo} with 7()\,y) =00 & v=00, and

¢ :T'— U™ - G maps every n-ary 4 € I to a function ¢(): U™ > G.

) is organized similarly to a first-order interpretation I = (I, U) if the corre-
sponding mappings, “universes”, and induced evaluations are considered:

®=(¢,P(K)) , H=(mNU{oc}) , ¥=(G)

Based on ¢, 7, and 1, the evaluations
®: A x 2 — P(K) of path descriptors,
II: A x(I'U {c0}) x 2 — IN U {oo} of pairs of path descriptors and prefixes,
and ¥ :T x = — G of prefixes

are defined as follows: Let A = S\(tl, cooty) € Aand vy =5(s1,...,8m) €T, thus
ti,s; € Termgi. Then

PN, x) = (¢(;\))A(K(t1,x),---,K(tn,x)) ,
(A, 7, x) := (A, 9) (K(t1, x), - - -, K(tn, X), K(s1,X), -+ K(sm, X)) s
Uy, x) = ((H)K(s1,X)s - - - K(5m, X))

Finally, the interpretation of the derived function symbols f, is defined state-
independent for all g € G as

(M(g))(f’Y(tlv v >tn))X) = (M(\II(’)/:X)))(f(tl) L] >tn))X)

Tableau formulas:

On this foundation the syntax used in the tableaux can be worked out: Let £
be the language of state formulas (CTL or CTL*).

The frame of the Kripke-structure is encoded in path information formulas of
the form A : [vo, Lo, Y1, L1y -« s Yy Lin, 0] with A € A, v; € T and L; € L U {o}.
Logical formulas occur in the tableau as prefized formulas of the form -~y : F with
v € I" and the same branch of the tableau containing a path information formula
A:[...,7,...] and F € L being a state formula.

Following the explicit naming of paths in the calculus, the formulas used
internally to the tableau have a more detailed syntax than ordinary CTL/CTL*-
formulas. A syntactic facility to use path descriptors in logical formulas is added:
To state the validity of a path formula P on the suffix of a path p (described
by a path descriptor A) beginning in a fixed state g (described by a prefix)
on that path, the symbol A can syntactically take the role of a path quantifier.
In this role, A is a path selector. This results in the following syntax for node
formulas in all tableaux tracing this concept:

Definition 8. (TA) Every atomic formula is a TX-state formula.
(TS1) With F und G TK-state formulas, =F, F A G, FV G and F — G
are TK-state formulas.
(TSQ) With F a TK-state formula and z a variable, Va : F and 3z : F are
TK-state formulas.
(TP1) With F and G TK-state formulas, oF', OF, OF, and (F until G) are
TK-path formulas.
TP2) With P a TK-path formula, =P is a TK-path formula.
TS2) With P a TK-path formula, AP and EP are TK-state formulas.
) Every TK-state formula is a TK-pre-node formula.
) With P a TK-path formula and A € A, AP is a TK-pre-node formula.
TK1) Every path information formula is a TX-node formula.
) With F a TK-pre-node formula and v € T a prefix, v : F is a TK-
prefixed formula.
(TN) All TK-prefixed formulas are TK-node formulas.

Semantics:

Definition 9. For a P&P-interpretation Q = (¢, 7, 1), a path information for-
mula I = X : [vo, Lo, V1, L1, .- Yn,Ln, 0] is consistent with Q for a variable
assignment Y, if every 4 occurs in I at most once, and for all ¢

H(Aa’YU)X) =0) H(A>71)X) < H(A)’yiJrl:X))
and \I](’YHX) = (P(A)Xaﬂ(A>’Yl)X))

This means that the path ®(\,x) = (go,91,...) of K begins in state go =
(70, x) and passes through the other known states grr(x y,,v) = ¥(71,X)s -+
I (A vm.x) = P(Yn, X) in the specified order.

Definition 10. The relation f= of a Kripke-structure K = (G,R,M) with a
set P(K) of paths, a P&P-interpretation 2, a set F of formulas and a variable
assignment y to free(F) is defined as follows, based on the truth of formulas in
Kripke-structures, |=cr, resp. FoTLx,

la. for every prefixed formula v : F', F not containing a path selector:

K. 4x) =y F e (¥(v,x),X) Femn F
i.e. in the state corresponding to the prefix v under variable assignment
X, the (state) formula F' holds.
1b. for every prefixed formula «y : F', F' containing a (leading) path selector:

(K, Q) E=v: AP o (@A)|upq000) EP
i.e. on the suffix of the path ®(\,x) beginning in the II(A,~, x)th state
(which is ¥(v, x) by concistency), the path formula P holds.
2. for all path information formulas I = X : [vyo, Lo,v1, L1, - - -, Vn, Lin, X):

(K7 QaX) H= At [707 LOa'Yl:Lla B a'Yn:Lna Ob]
iff T is consistent with Q for the variable assignment y, and for all
OSZSTL Li:O = H(A77z+1)X):H(A)’YZ)X)+]—)
L; # 0o = for all j with TI(A,v;, x) <7 < II(A, Yix1, X) :
((I)(Av)(:j):X) |: Li ’

i.e. if L; = o, then TI(A,~v;, x) and II(A, v;+1, x) are immediately succeed-
ing indices, else for all (finitely, but arbitrary many) states g; situated
between ®(\, x, (A, v, x)) and ®(A, x, II(A, vi+1,%)) on path ®(A, x)
the relation (g;, x) = L; holds.

For a set F of path information formulas and prefixed formulas, its truth in
a Kripke-structure K = (G, R, M) with a set P(K) of paths under a variable
assignment y to free(F) is defined as follows:
(K,x) = F :& there is a P&P-interpretation Q = (¢, 7, ¢)
such that (K, Q, x) F= F holds.

Since a branch of a tableau is a set of formulas like this, f= is a relation on
Kripke-structures and branches.

The construction of Kripke-structures and consistent P&P-interpretations to
a given set of formulas plays an important role in the proof of correctness.

4 The Tableau Calculus 7K

For proving the validity of a formula F', the inconsistency of —F is proven: it is
shown that there is no Kripke-structure K = (G, R, M) with any state go € G
where F' does not hold.

Thus the initialization of the tableau is

0:—-F|.

The tableau calculus is based on the well-known first-order tableau calculus,
consisting of a-, 8-, v- and d-rules and the atomic closure rule [Ree87, Fit90].

Let F' and G be TK-state formulas, A an atomic formula. In the sequel,
F[t/z] denotes the formula F' with all occurences of x replaced by t.

a:v:FANG ~:-(FVGQG) B:v:FVG ~:=(FAG)
v:F v :-F 'y:F|'y:G'y:—|F|’y:—|G
v:G v : G
yi y:Ve:F y:-dx: F with X a new variable.
ViFIX/E] 7 FIX/a]
0: v:dx: F vz F with f a new function
v: F[f(free(T))/x] ~:-F|[f(free(T))/z] symbol and T the current
branch.
Atomic closure rule:
For a substitution o and a prefix v, oy is v: A
the y-localization, i.e. 0,(X) = o(X) where v A
every function symbol f € ¥\X¢ is replaced o(A) = -o(A")

by its localized symbol f.,. So the substitutes
in o, contain only function symbols which
are interpreted state-independently.

L
apply o, to the whole tableau.

For dissolving modalities, the information about the frame of the Kripke-
structure has to be considered. It is encoded in the path information formulas.
In one step a prefixed formula is dissolved “along” a path information formula,
inducing the following form of tableau rules:

prefixed formula
path information formula

prefixed formulas
path information formulas

where the premise takes the latest path informa-
tion formula on the current branch for the path
symbol to be considered. The connection be-
tween the prefixed formula being dissolved and

the path information is established by the prefix

and, if exists, the leading path selector of the prefixed formula. For dissolving
prefixed formulas, a path quantifier resp. -selector is broken up together with
the subsequent modal operator:

- For dissolving a formula of the form
v : EP, a path satisfying P is named
and the path formula is bound to that
path:

v:EP
A:[0y. .0y,
R(free(T)) : [0,...,~,true,]
v : k(free(T))P

- Formulas of the form « : AP are dissolved once for every path information
formula on this branch containing the prefix 7.
- Formulas of the form v : AP are dissolved along the path information
formula for A.
In the latter cases, the claim that the state described by the current prefix
satisfies some formula is decomposed in some less complex claims:
- Which formulas hold in the current state?
- Which state should be regarded as the “next relevant state” on the path?
- Which formulas hold in this next relevant state?
- Which formulas hold in all states in-between?

Special Properties of CTL:

For CTL some propagation theorems can be stated [May95] which simplify the
dissolving of universally path-quantified formulas along branching paths: The
validity of a formula F' = AP can be decomposed into the validity of a formula
G in the current state and the validity of a formula @ on all outgoing paths,
concerning only proper successor states. Especially, for parallel paths, only one
of them has to be considered.

According to this, for CTL, the rule for v : EP ~v:EP
can be modified: > | k(free(T)) : [y, true, &]
Additionally the dissolving of universally path- v : k(free(T))P

quantified formulas is divided in two parts. The
syntax of tableau formulas is enriched with the syntactic element (A), meaning
“on all paths, concerning only proper successor states”, which can replace the
leading A of a state formula, leading to the following enlargement to Def. 8:

(TC3) With P a TK-path formula, (A)P is a TK-pre-node formula.
The above-mentioned decomposition is formalized as

(K, Q,x) =7v:AP & V((K,Q,x) F=7:Gi and (K,Q,x) F=7: (A)Qi)
where \/ counts over some possible decompositions (G;, Q;).
There is the following survey over the basic types of state formulas extending
Def. 10:

(TS2a) (K,Q,x) =~ : AP :& For all paths p = (go,91,-..) in K and all

n with g, = ¥(v,x) (ln,x) = P holds.

(TS2b) (K,Q,x) B=v:EP :& there is a path p(x) = (90,91,...) in K
and an n(x) so that g,) = ¥(v,x) and

(P(X)|n(x)> x) = P holds.
(TC2) (K,Q,x) E=v: AP & (®(\,) |lnoqm,X) E P

(TC3) (K,Q,x) B=~:(A)Q; & For all paths p = (go,91,-..) in Kand alln
with g, = ¥(v,x), (¥(7,X)) F Gi implies
that (p|n,x) E P holds.

Because of this decomposition, each formula of the form v : AP is dissolved

exactly once, resulting in pairs of formulas v : G; (for the current state) and

v : (A)Q; (describing a property of all outgoing paths). Thus, for CTL, formulas

of the form v : (A)P are dissolved once for every path information formula on
the same branch containing the prefix 7.

The tableau rules for CTL for formulas which are universally path-quantified
or explicitly bound to named paths are as follows. In the sequel, T denotes the
current branch of the tableau, 4 is a new prefix symbol and & is a new path
symbol. P is a path formula, F' is a state formula.

a: (A)OF a: (A)OF
a: AOF Ail.,o,L,8,..], L Ao, a,0,8,..]
a:F /\:[...,a,L/\F/\(A)DF, .. 8 : AOF
a: (A)OF B:AOF if B+#
a: AOF), a: A\OF
A:["'7a7L7ﬂ7"']7L#o A [a7o,/3, "]
Ai[...,a,LAF,(,...] a.F
a:F B : \OF
B:AOF if B # o

a:AOF a: (A)OF a: AOF
a:F| a:-F Aifl.o.,a,0,0,..] Ail.,a,0,0,..]
a: (A)OF B:AOF a:F| a:=F
B: AOF
a: (A)OF
Ai[..,a,L,3,...], L#o0
Ail..,a, LA=F A (A)OF, if 8 # co:
A(free(T)), L, B,...] [A:[...,a, LA =F A (A)OF,(,..]
A (free(T)) : L B:AOF
A(free(T)) : F
a: AOF
Aif[o..,a,L,3,...], L#o0
a:F|X:[...,a,L A—F, if B # oo:
Y(free(T)), L, B,...] |A:[...,a, L A=F,(3,..]
a:-F o:F
A(free(T)) : L B AOF
A (free(T)) : F

The rules for =0OF = &=F and =OF = O=F are analogous.

a: AoF a: AoF
Ai[...,a,L,p3,...], L#o0 Ai[o,a,0,0,..]
A:...,a,0,5(free(T)), L, 3,...] if B # co: 8:F
A(free(T)) : L Ao, a,0,06,..]
A(free(T)) : F B:F

a : A(F until G) a : A=(F until G)

a:G a:F a: -G a: F
a: -G a:-F a: G
a: (A)(F until G) a: (A)-(F until G)

a: (A)(F until G)

A, L,8,...], L#o
Ai[...,a, LAF A =G A (A)(F until G), if §# co:
A(free(T)), L, B, . .] Ail...,a,LAF NG
4 (free(T)) : L A (A)(F until G), 3, ..]
A(free(T)) : G B+ A(F until G)
a: (A)(F until G) a: (A)~(F until G)
Ailooo,a,0,0,..] Ao, a,0,0,...]
B : A(F until G) B : A=(F until G)

a: (A)=(F until G)
Ail.o,a,L,8,...], L#o0

Ail...,a,LANF NG if B #c0:
AA)=(FuntilG), | A:[...,a,LANF NG
y(free(T)), L, 3, ..] A (A)=(F until G), 3,..]
A(free(T)) : L B : A=(F until G)
(free(T)) : ~F if 5 =
. if=c0:
Y(free(T)) : =G A:l.,a,LAF A -G
A (A)=(F until G), x]

The rules for AoF', AF until G, and A—(F until G) are analogous.
Two rules are provided to instantiate states on path segments:

Ai[o..,o,L,B3,...],L#o0
B # 0
Al a0 A(free(T)), 0,8, ..][N ..., a0, 3,..]
A(free(T)) : L

Ai[...,a,L,], L # true
A:..,qa,L,(free(T)), L, o],
A(free(T)) : L

Definition 11. A tableau T is satisfiable if there is a Kripke-structure K =
(G,R, M) and a P&P-interpretation Q = (¢, 7,) of A and I such that for every
variable assignment x of free(7") there is a branch T in 7 with (K, Q,x) F=T.

A branch T in T is closed if it contains the formula 1. A tableau 7 is closed, if

every branch T in 7 is closed.

Theorem 12 ((Substitution Lemma)). Let K be a Kripke-structure over a
signature ¥, X.¢ the state-independent portion of ¥, Q = (¢, 7,v¢) a P&P-inter-
pretation, x o variable assignment, X a free variable, g € G, s € Termye,
t € Termy, v € T' a prefix, A € A a path descriptor, F' a TK-state formula, I a
path information formula, and a := K(s,x) € U(K). Then

K([X « S]t)X) = K(t XX) ’ Q([X « 5]A>X) = ‘I’(/\,X‘)I())

I([X < s]A, 7, x) = (A, 7, x%) ,‘I’([X sl =¥(rxk)

(9:0) F[X < s]F & (g.x%) F F,

(K,Q,X)H=[X<—S](7:F)©(XS HE O F)

(K0y) b [X e SlT & (K.xh) T and

[X <« s]I consistent with for X <:> I consistent with Q for x%.

The proof is done separately for terms and formulas by structural induction.
This shows the necessity of the substitutes s of o, in the atomic closure rule
being interpreted state-independently (i.e. s € Termy:): Then s has a well-
defined global interpretation a := K(s,x) € U(K) needed for the modification
of x.

Theorem 13 ((Correctness of TK)).
(a) If a tableau T is satisfiable and T' is created from T by an application
of any of the rules mentioned above, then T' is also satisfiable.
(b) If there is any closed tableau for F, then F is unsatisfiable.

The proof of (a) is done by case-splitting separately for each of the rules.
By assumption, there is a Kripke-structure K and a P&P-Interpretation Q =
(¢, m,¢) such that for every variable assignment x there is a branch T} in T
with (K, Q,x) H= Ty In all cases apart from the atomic closure rule, K and Q2
are extended such that they witness the satisfiability of 7. In case of the atomic
closure rule the Substitution Lemma guarantees the existence of a branch for
every variable assignment to free(7"). (b) follows directly from (a).

It is well known that the set of first-order tautologies of CTL and even of
less expressive systems is not recursively enumerable, see, e.g. [GHR94, Theorem
4.6.1, p. 130]. In [May95] the following is shown:

Theorem 14. a) First-order CTL is not compact.
b) Any calculus for first-order CTL cannot be complete.

The calculus is complete modulo inductive properties. For such cases induc-
tion rules for temporal properties and well-founded data-structures have to be
included. In this setting the notion of completeness has to be relativized to that
any proof done in a mathematical way can be completely redone formally.

The calculus is even incomplete for propositional CTL because it cannot
use its finite-state-property, so the induction problem remains. For PCTL, the
methods mentioned in section 2.1 are complete and efficient. As mentioned there,
propositional CTL and first-order CTL require completely different, even con-
trary, concepts. By introducing abstraction, the presented calculus shows a new
concept designed for first-order CTL, accepting not to be optimal for proposi-
tional CTL.

5 Fairness and Other Extensions

Fairness is not expressible in CTL. It requires the class of path formulas called
“reactivity” [MP92] which is expressible in CTL*. In linear time temporal logic,
fairness is expressed as (O< (action enabled)) — <(action is carried out).

A formula P of linear temporal logic can be bound to a path as AP. Complex
formulas of linear temporal logic can be processed on single paths by some
extensions to the calculus:

- Obvious rules for A : P A Q resp. A: PV Q.

- All tableau rules copy the leading path selector of the premise in front
of the consequent if otherwise the consequent would start with a modal
operator not preceded by a path quantifier /selector.

The observation that fairness is a property of a path which is decided “near
infinity” makes it tractable in the presented calculus (and intractable in the
calculus presented in [BMP81]):

Definition 15. A formula P of linear time temporal logic is of type w iff for
every Kripke-structure K = (G, R, M), every path p € P(K), every variable
assignment y, and all n € IN

(foralli<n:(pli,x) =P) & pluEP

This establishes the tableau rule > v; : AP, P of type w

Since AP is a linear time formula bound Az [90s Loy vis Ly -+ Yo Ly]
to a single path it can be processed by Tn ?‘P
the calculus on this path. for all j >i: ~; : AP

Theorem 16. For first-order formulas F and G, O(CO-F V OQG) is of type w.
Fairness is expressible by a formula of type w.

The following extensions are pointed out in [May95]:

The handling of state-independent interpreted atomic formulas can be improved.
In the pure form, such formulas can only be propagated by frame-axioms which
have to be included into the specification and the set of input formulas.

Based on the idea of binding complex formulas of linear time temporal logic to
paths the calculus can be used to process CTL*-formulas with only little changes.

6 Conclusion

The presented tableau semantics and -calculus shows new perspectives for for-
mal reasoning in first-order CTL, enabling a formal verification of processes
with first-order specifications. Due to the embedding of first-order tableaux all
recent techniques such as universal formulas, free variables, liberalized J-rule,
and equality-handling can be made full use of. Because of the complexity, pure
computational as well as intellectual, which results in a very large search space

including many occurrences of inductions, interactive proving seems appropri-
ate. This also reflects the point of view that these inductions are part of the
specification, and thus are to be proven on one side, and can be exploited on the

other.

References

[BMPS81]

[CE81]

[CESS36]

[EC80]

[EHS2|

[EHS3]

[ELS85]

[Fit90]

[GHRO4]

[Las80]

[LPS81]

[May95]
[MP92]

[Ree87]

[Wol85]

M. Ben-Ari, Z. Manna, A. Pnueli: The Temporal Logic of Branching
Time. Proc. of the 8¢h ACM Symp. on Principles of Programming Lan-
guages, 1981.

E. M. Clarke, E. A. Emerson: Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic. Proc. of the IBM Work-
shop on Logics of Programs, Springer LNCS 131, 1981.

E. M. Clarke, E. A. Emerson, A. P. Sistla: Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications.
ACM Tr. on Programming Languages and Systems, Vol. 8, No. 2, 1986.
E. A. Emerson, E. M. Clarke: Characterizing Properties of Parallel Pro-
grams as Fizpoints. Proc. of the 7th Int. Coll. on Automata, Languages
and Programming. Springer LNCS 85, 1980.

E. A. Emerson, J. Y. Halpern: Decision Procedures and Ezpressiveness
in the Temporal Logic of Branching Time. Proc. of the 14th ACM Symp.
on Computing, 1982.

E. A. Emerson, J. Y. Halpern: “Sometimes” and “not never” revisited:
On Branching Time versus Linear Time in Temporal Logic. Proc. of the
10th ACM Symp. on Principles of Programming Languages, 1983.

E. A. Emerson, C.-L. Lei: Modalities for Model Checking: Branching
Time Strikes Back. Proc. of the 12th ACM Symp. on Principles of Pro-
gramming Languages, 1985.

M. Fitting: First Order Logic and Automated Theorem Proving. Springer,
New York, 1990.

D. M. Gabbay, I. Hodkinson, M. Reynolds: Temporal Logic. Mathemat-
ical Foundations and Computational Aspects. Vol. 1. Clarendon Press,
Oxford Logic Guides No. 28, 1994.

L. Lamport: “Sometimes” is Sometimes “Not Never”. Proc. of the 7th
ACM Symp. on Principles of Programming Languages, 1980.

D. Lehmann, A. Pnueli, J. Stavi: Impartiality, Justice, and Fairness: The
Ethics of Concurrent Termination. Proc. of the 8th Int. Coll. on Au-
tomata, Languages and Programming. Springer LNCS 115, 1981.

W. May: Protokollverifikation in Temporallogik: Evolving Algebras und
ewn Tableaukalkil. Diplomarbeit, Universitat Karlsruhe, 1995.

Z. Manna, A. Pnueli: The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer, 1992.

S. V. Reeves: Semantic Tableaur as o Framework for Automated
Theorem-Proving. Dept. of Comp. Sc. and Statistics, Queen Mary Col-
lege, Univ. of London.

P. Wolper: The Tableau Method for Temporal Logic. Logique et Analyse,
110-111, vol. 28, 1985.

