A Tableau Calculus for First-Order Branching Time Logic

Wolfgang May¹ and Peter H. Schmitt²

¹ Institut für Informatik, Universität Freiburg, Germany may@informatik.uni-freiburg.de

 2 Institut für Logik, Komplexität und Deduktionssysteme, Universität Karlsruhe, Germany

pschmitt@ira.uka.de

Review: (first-order) CTL

- Computational Tree Logic, Temporal Logic for Branching Time
- (S0) Every first-order formula is a CTL-state formula.
- (S1) For F and G CTL-state formulas, $\neg F$, $F \land G$, and $F \lor G$ are CTL-state formulas.

Modalities:

- (P1) For F and G CTL-state formulas, $\circ F$, $\Box F$, $\diamond F$, and (F until G) are CTLpath formulas.
- (P2) For P a CTL-path formula, $\neg P$ is a CTL-path formula.

Path quantifiers:

(S2) For P a CTL-path formula, AP and EP are CTL-state formulas.

Domain quantifiers:

- (SQ) For F a CTL-state formula and x a variable, $\forall x : F$ and $\exists x : F$ are CTL-state formulas.
- (F) Every CTL-state formula is a CTL-formula.

Review: Kripke-Structures

 $\mathbf{K} = (\mathbf{G}, \mathbf{R}, \mathbf{M})$

G: A set of states (names)

 $\mathbf{R} \subset \mathbf{G} \times \mathbf{G}:$ An accessibility relation

 $\mathbf{M}: \mathbf{G} \to \{ \text{First-order interpretations over a signature } \Sigma \}$

Tableaux

For proving $\mathcal{F} \vdash F$, show $\mathcal{F} \cup \{F\} \vdash \bot$

Base: First-order tableau calculus: α -, β -, γ -, and δ -rules.

- 1:1-correspondence of branches of the tableau to Kripke-structures.
- \Rightarrow explicit description of paths and states by "names".

Entities to be described

- Elements of the universe like in classical tableau calculus: γ and δ -rules.
- States: every state is a first-order interpretation, i.e. *in* every state the classical tableau calculus can be employed
- Paths: sequences of states and relationships between them

Representation

- Tableau calculus with prefixes, i.e. a: F for "in the state denoted by a, F holds".
- Explicit description of paths: p: [a, ∘, b, F₁, c, ..., ∞] for "p goes through a, a's successor is b, the the next named state is c, and in all states between b and c, F holds".

Strategy:

Every entity is "named" exactly when its existence is required by some formula – i.e. a formula which makes some statement about it:

 $\exists x: F \Rightarrow$ name an element of the domain as a witness.

 $\Diamond F$ (when considering a path p) \Rightarrow name a state on p satisfying F.

 $\mathsf{E}F$ (when considering a state a) \Rightarrow name a path through a satisfying F.

 \Rightarrow in general, on paths only some states are explicitly named (even the amount of unnamed states is unknown):

States can be named at arbitrary places on a path.

Naming of Entities:

Elements of the universe:

δ-rule: introduces Skolem function symbols: $\frac{\exists x: F}{F[\hat{f}(\mathsf{free}(T))/x]}; \hat{f} \text{ new}.$

Elements of the Kripke-frame: states and paths:

Idea: prefix symbols $(\hat{\Gamma} := \{\hat{\alpha}, \hat{\beta}, \hat{\gamma}, \ldots\})$ and path symbols $(\hat{\Lambda} := \{\hat{\lambda}, \hat{\kappa}, \ldots\})$ to be used in the same way:

- prefixes (state descriptors): α̂(t₁,...,t_n), t₁,...,t_n ∈ Term_Σ, additionally ∞̂.
 newly introduced states: α̂(free(T))
- path descriptors: $\hat{\lambda}(t_1, \ldots, t_n), t_1, \ldots, t_n \in \operatorname{Term}_{\Sigma}$. newly introduced paths: $\hat{\lambda}(\operatorname{free}(T))$
- Arguments of prefixes and path descriptors contain only function symbols which are interpreted state independent.

Technicalities

Interpretation of prefix- and path symbols by $\Omega = (\phi, \pi, \psi)$

Evaluation of prefixes and path terms: similarly to a first-order interpretation $\mathbf{I} = (I, \mathbf{U})$ with mapping and "universe":

$$\Phi = (\phi, \mathbf{P}(\mathbf{K})) \quad , \quad \Pi = (\pi, \mathbb{N} \cup \{\infty\}) \quad , \quad \Psi = (\psi, \mathbf{G})$$

$$\begin{split} \phi &: \hat{\Lambda} \to \mathbf{U}^n \to Paths(\mathbf{K}) \text{ maps every } n\text{-ary } \hat{\lambda} \in \hat{\Lambda} \text{ to a function } \phi(\hat{\lambda}) :: \mathbf{U}^n \to \\ Paths(\mathbf{K}) \text{ resp. } \phi(\hat{\lambda}) :: \mathbf{U}^n \to \mathbf{N} \to \mathbf{G}, \end{split}$$

 $\begin{aligned} \pi: \hat{\Lambda} \times (\hat{\Gamma} \cup \{\hat{\infty}\}) &\to (\mathbf{U}^n \times \mathbf{U}^m) \to \mathbb{N} \cup \{\infty\} \text{ is an (in general not total) mapping of pairs of$ *n* $-ary <math>\hat{\lambda} \in \hat{\Lambda}$ and *m*-ary $\hat{\gamma} \in \hat{\Gamma}$ to functions $\pi(\hat{\lambda}, \hat{\gamma}): \mathbf{U}^n \times \mathbf{U}^m \to \mathbb{N} \cup \{\infty\} \text{ with } \pi(\lambda, \gamma) = \infty \iff \gamma = \hat{\infty} \end{aligned}$

(important if a path goes through some state twice), and

 $\psi: \hat{\Gamma} \to \mathbf{U}^n \to \mathbf{G}$ maps every *n*-ary $\hat{\gamma} \in \hat{\Gamma}$ to a function $\psi(\hat{\gamma}): \mathbf{U}^n \to \mathbf{G}$.

State independent terms are evaluated by $\mathbf{K} = (K, \mathbf{U})$

Let $\lambda = \hat{\lambda}(t_1, \ldots, t_n) \in \Lambda$ and $\gamma = \hat{\gamma}(s_1, \ldots, s_m) \in \Gamma$, $t_i, s_i \in \text{Term}_{\Sigma}$ interpreted state independently. Then

$$\begin{split} \Phi(\lambda,\chi) &:= (\phi(\hat{\lambda}))(\mathbf{K}(t_1,\chi),\ldots,\mathbf{K}(t_n,\chi)) \quad , \\ \Pi(\lambda,\gamma,\chi) &:= (\pi(\hat{\lambda},\hat{\gamma}))(\mathbf{K}(t_1,\chi),\ldots,\mathbf{K}(t_n,\chi),\mathbf{K}(s_1,\chi),\ldots,\mathbf{K}(s_m,\chi)) \quad , \\ \Psi(\gamma,\chi) &:= (\psi(\hat{\gamma}))(\mathbf{K}(s_1,\chi),\ldots,\mathbf{K}(s_m,\chi)) \quad . \end{split}$$

Validity

A path information formula

$$I = \lambda : [\gamma_0, L_0, \gamma_1, L_1, \dots, \gamma_n, L_n, \hat{\infty}]$$

is consistent with Ω for a variable assignment χ , if every $\hat{\gamma}$ occurs in I at most once, and for all i

$$\Pi(\lambda, \gamma_0, \chi) = 0 \quad , \quad \Pi(\lambda, \gamma_i, \chi) < \Pi(\lambda, \gamma_{i+1}, \chi) \quad ,$$

and
$$\Psi(\gamma_i, \chi) = \Phi(\lambda, \chi, \Pi(\lambda, \gamma_i, \chi)) \quad .$$

Prefixed formulas:

$$(\mathbf{K},\Omega,\chi) \models \gamma: F \quad :\Leftrightarrow \quad (\Psi(\gamma,\chi),\chi) \models F$$

Path formulas bound to named paths:

$$(\mathbf{K},\Omega,\chi) \models \gamma: \lambda P \quad :\Leftrightarrow \ (\Phi(\lambda,\chi)|_{\Pi(\lambda,\gamma,\chi)},\chi) \models P$$

Path information formulas

$$(\mathbf{K},\Omega,\chi) \models \lambda : [\gamma_0, L_0, \gamma_1, L_1, \dots, \gamma_n, L_n, \hat{\infty}]$$

iff I is consistent with Ω for the variable assignment χ , and for all $0 \le i \le n$: $L_i = \circ \Rightarrow \Pi(\lambda, \gamma_{i+1}, \chi) = \Pi(\lambda, \gamma_i, \chi) + 1$, $L_i \ne \circ \Rightarrow$ for all j with $\Pi(\lambda, \gamma_i, \chi) < j < \Pi(\lambda, \gamma_{i+1}, \chi) :$ $(\Phi(\lambda, \chi, j), \chi) \models L_i$,

Global Addressing of Entities by State Independent Terms

For substitutions – where elements of the universe have to be addressed in one state and substituted even to other states:

Since states are addressed by prefixes, functions can be bound to states by indexing them with prefixes:

Let f be a state-dependent function symbol and γ a prefix. Then f_{γ} is a stateindependent function symbol: Let t_i be state-independent terms.

 $\mathbf{K}(f_{\gamma}(t_1,\ldots,t_n),\chi):=(M(\Psi(\gamma),\chi)(f))(\mathbf{K}(t_1,\chi),\ldots,\mathbf{K}(t_n,\chi))$

For a substitution σ , its *localization* to γ , σ_{γ} , is obtained by replacing each statedependent function symbol f by f_{γ} .

The Tableau Calculus

Initialization:

 $\hat{0}: \neg F$

Rules:

prefixed formula
path information formula
prefixed formulas
path information formulas

- all rules of first-order tableau calculus (extended with prefixes)
- Closure rule: state-independent substitution

$$\begin{array}{c} \gamma: A\\ \gamma: A'\\ \sigma(A) = \neg \sigma(A')\\ \bot\\ \text{apply } \sigma_{\gamma} \text{ to the whole tableau.} \end{array}$$

• introducing paths: T the current tableau branch

$$\begin{array}{c} \gamma:\mathsf{E}P\\\\ \hline \hat{\kappa}(\mathsf{free}(T)):[\gamma,\mathsf{true},\hat{\infty}]\\\\ \gamma:\hat{\kappa}(\mathsf{free}(T))P \end{array}$$

Fact:

in **CTL**, propagation of formulas along paths is simplified by the following observation:

For every CTL-path formula AP where P starts with \diamond , \Box , or until, there are CTL-state formulas P_0 , P_1 and P_2 s.t.

(1)
$$(g,\chi) \models P_0 \Rightarrow (g,\chi) \models \mathsf{A}P$$
 ,

(2)
$$(g,\chi) \models (\mathsf{A}P \land P_1) \Rightarrow (g,\chi) \models \mathsf{A} \circ \mathsf{A}P$$
 ,

(3) If $(g, \chi) \models AP$ and $(g, \chi) \not\models P_0$, then $(g, \chi) \models P_1$ and $(g, \chi) \models P_2$ and for all paths $p = (\dots, g, \dots)$ in all successor states $h(h, \chi) \models P_2 \land AP$, until a state k is reached where $(k, \chi) \models P_0$ holds.

Example: F until G: $P_0 := G, P_1 := \neg G, P_2 := F \land \neg G$

This is *not* the case for CTL^* :

$$g \models \mathsf{A} \diamondsuit (F \land \Box G)$$

$$F, G \xrightarrow{p} \cdots \qquad \text{remainder on } p: \ \Box G \lor \diamondsuit (F \land \Box G)$$

$$F, \neg G \xrightarrow{q} \cdots \qquad \text{remainder on } q: \ \diamondsuit (F \land \Box G)$$

 \Rightarrow In CTL, A-formulas have the *same* remainders on *all* outgoing paths.

 \Rightarrow The propagation of A-formulas on *all* outgoing paths is determined completely by the current state.

 \Rightarrow symbol "(A)" for considering *only* proper successor states.

Modalities

The modalities are dissolved in formulas of the form

$$(\mathsf{A}|(\mathsf{A})|\lambda) \ (\neg)^* \ ((\circ|\diamondsuit|\Box)F|F \text{ until } G)$$

Let T the current tableau branch.

$$\begin{array}{|c|c|c|c|c|c|}\hline & \alpha: \mathsf{A} \Diamond F \\ \hline & \alpha: F & \alpha: \neg F \\ \hline & \alpha: (\mathsf{A}) \Diamond F \\ \hline & \alpha: (\mathsf{A}) \Diamond F \\ \hline & \alpha: (\mathsf{A}) \Diamond F \\ \hline & \Delta: [\dots, \alpha, 0, \beta, \dots] \\ \hline & \beta: \mathsf{A} \Diamond F \\ \hline & \alpha: (\mathsf{A}) \land F \\ \hline & \alpha:$$

Create predecessor states:

$$\begin{split} \lambda : [\dots, \alpha, L, \beta, \dots], L \neq \circ \\ \beta \neq \hat{\infty} \\ \hline \lambda : [\dots, \alpha, L, \hat{\gamma}(\mathsf{free}(T)), \circ, \beta, \dots] \\ \hat{\gamma}(\mathsf{free}(T)) : L \end{split} \qquad \lambda : [\dots, \alpha, \circ, \beta, \dots] \end{split}$$

Results for CTL

- The calculus is correct.
- First-order CTL is not compact.
- Any calculus for first-order CTL is *not* complete.
- This calculus is *not* complete.
- This calculus is complete modulo inductive properties.

Extension to Fairness

Fairness is not expressible in CTL.

Let a formula P of *linear* time temporal logic be of *type* ω iff for every Kripkestructure $\mathbf{K} = (\mathbf{G}, \mathbf{R}, \mathbf{M})$, every path $p \in \mathbf{P}(\mathbf{K})$, every variable assignment χ , and all $n \in \mathbb{N}$

(for all
$$i < n : (p \mid_i, \chi) \models P) \iff p \mid_n \models P$$

meaning, that "P can be pushed to infinity".

Fairness, expressed by

 $(\Box \diamondsuit (action enabled)) \rightarrow \diamondsuit (action is carried out)$

is of type ω .

$$\begin{split} \gamma_i : \mathsf{A}P, \quad P \text{ of type } \omega \\ & \frac{\lambda : [\gamma_0, L_0, \gamma_1, L_1, \dots, \gamma_n, L_n, \hat{\infty}]}{\gamma_n : \lambda P} \\ & \text{ for all } j > i: \quad \gamma_j : \mathsf{A}P \end{split}$$

Conclusion

Suitable for *interactive* verification of specifications of processes.