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Abstract

We investigate a logical semantics which unambiguously speci�es the meaning of SQL�like
referential actions of the form ON DELETE CASCADE and ON DELETE RESTRICT� The seman�
tics is given by a translation of referential actions into logical rules� The proposed semantics
is less restrictive than the standard SQL semantics� yet preserves all referential integrity
constraints� First� a preliminary set of rules is introduced which rejects a set of user re�
quests if a single request is rejected� Subsequently� a re�ned translation is presented using
Statelog �LHL��	� a state�oriented Datalog extension which allows to de�ne active and de�
ductive rules within a uni�ed framework� We show that our semantics yields the maximal
admissible subset of a given set of user requests� Apart from the Statelog formalization�
a three�valued formalization based on the well�founded semantics and an equivalent game�
theoretic speci�cation are presented� which give further insight into the problem of ambiguity
of triggers�

� Introduction

The concept of referential integrity has been present in the relational model from the beginning
�Cod���� Basically de�ned to guarantee the existence of referenced objects	 it was re�ned by
Date �Dat
�� to a more active concept	 ie the possibility to descriptively de�ne reactions in order
to compensate violations of referential integrity by so�called referential actions� Thus	 referential
actions are used to automatically enforce integrity� This task is more involved than integrity
checking 
 e�g�	 it is well�known that all common constraints in the relational model �functional	
join	 multivalued and inclusion dependencies� can be expressed by �rst�order formulas	 which in
turn can be de�ned as deductive rules� A simplistic way to enforce integrity is to let the user
de�ne all updates to the database	 check whether the new database is consistent	 and abort the
update if a constraint is violated� In order to relieve the user from the burden of de�ning every
induced update which arises from some given user request wrt� referential integrity constraints	
referential actions have been proposed� These ideas have been included in the SQL� and SQL�
standards �JTC��	 JTC���� Unfortunately	 even those restricted versions of �active rules� may
lead �in a straightforward implementation� to some indeterminism caused by ambiguities during
the evaluation of user requests� Clearly	 this is undesired and therefore not allowed in the SQL
standards�

In this paper	 we propose a step towards a logical semantics for referential actions by speci�
fying these actions as a logic program P � The main bene�ts of this approach are


� Referential actions are precisely axiomatized by the logical semantics of P 	 thereby leaving
no freedom of interpretation	 or doubt about the meaning of a set of referential actions�
In particular	 ambiguities due to unspeci�ed behavior of the operational semantics are
avoided�

� Formal veri�cation techniques become applicable	 e�g� to prove that a set of referential
actions guarantees the satisfaction of all referential integrity constraints for all instances
D of the database�



� The rules of P can be executed using well�known evaluation techniques developed for
deductive databases� Thus	 an operational semantics for the execution of referential actions
is obtained as a �by�product� of the logical speci�cation�

The paper is structured as follows� In Section �	 the basics of referential integrity and referential
actions in SQL are brie�y reviewed and an example illustrating the problem of ambiguity is
presented� In Section �	 we propose a logic�based speci�cation of referential actions which
provides a simple method of enforcing referential integrity� In Section �	 a more sophisticated
algorithm is introduced	 which determines the maximal set of user delete requests which can be
executed without violating any referential integrity constraint� In Section ���	 this algorithm is
formalized in Statelog� Two alternative characterizations of the algorithm using well�founded
Datalog and a game�theoretic approach are given in Sections ��� and ��� yielding additional
insight into the properties of the algorithm� Section � contains concluding remarks� proofs are
included in Appendix A�

� Referential Integrity

Notation and Preliminaries� In order to de�ne the concept of referential integrity	 we
introduce some notation� Let R be a relation name� W�l�o�g�	 we assume that an order �e�g�
lexicographic� is given on the set A of attributes of R� Therefore	 A can be written as a
vector A � �A�� � � � � Ak� of attributes� Then	 R�A�� � � � � Ak� denotes the relation schema of R�
We further assume that all attributes range over the same underlying domain�� Often	 some
attributes of A are distinguished	 especially those which form a key� For notational convenience	
these distinguished attributes are grouped into a vector

�A � �Ai� � � � � � Aid� �

All remaining attributes are denoted as

�A � �Aj� � � � � � Ajr� �

Since we will use �rst�order logic notation	 R�A�� � � � � Ak� is overloaded and also denotes a logic
atom	 where R is the relation name and A�� � � � � Ak are variables for the �domain� values of the
corresponding attributes�

Referential Integrity Constraints� Let RC�X�� � � � �Xn� and RP �Y�� � � � � Ym� be relation
schemas	 �X � �Xi� � � � � �Xik� and �Y � �Yj� � � � � � Yjk� be two vectors of k distinct attributes of
RC and RP 	 respectively� A referential integrity constraint �ric� is an expression of the form

RC � �X � RP ��Y �

�X is called a foreign key of the child relation RC � it refers to the �candidate or primary� key �Y

of the parent relation RP �
A ric RC � �X � RP ��Y is satis�ed by a given database D	 if for every value of the foreign key

�X of a tuple in RC 	 there exists a tuple with key �Y in RP such that �X � �Y �� This is denoted
as D j� �ric with the �rst�order sentence

� �X� �X �RC� �X� �X� � ��Y � �Y ��Y � �X �RP ��Y � �Y �� � � ��ric�

A ric is violated by D	 if it is not satis�ed by D��

�The extension to the �typed version� with attributes ranging over di�erent domains is straightforward�
�Here� the �overloaded meaning� as explained above is used� ie �X � �Y denotes equality of values of the

corresponding attributes 	and not of the attribute names
�
�If null values are allowed in foreign keys� ric�s should not be violated by such �null pointers�� This can be

achieved by the following modi�cation of 	�ric

 � �X� �X 	RC	 �X� �X
 � null �� �X � ��Y � �Y 	�Y � �X �RP 	�Y � �Y 

 
�



Referential Actions in SQL� There are three basic manipulation operations which poten�
tially may violate a ric	 ie insert into	 update	 and delete from one of the relations RP and
RC 	 respectively� It is easy to see from the logical implication in �ric above that insert into

RP and delete from RC cannot introduce a violation� Furthermore	 the operations insert

into RC and update RC on the child are forbidden in SQL �and immediately backed out� if
these would result in a violation� Therefore	 only the two operations update RP and delete

from RP have to be handled by referential actions�
In SQL	 referential actions are speci�ed in the declaration of the child relation� When the

user issues an update request on the current state of the database D �which is assumed to
be consistent�	 these referential actions ensure that all referential integrity constraints remain
satis�ed in the new database state D�� A referential action for the referential integrity constraint
RC � �X � RP ��Y is speci�ed in SQL as follows


fCREATE j ALTERg TABLE RC

� � �

FOREIGN KEY �X REFERENCES RP
�Y

�ON UPDATE fCASCADE j RESTRICT j SET NULL j SET DEFAULT j NO ACTIONg�
�ON DELETE fCASCADE j RESTRICT j SET NULL j SET DEFAULT j NO ACTIONg�
� � �

The Problem of Ambiguity� It is common to implement integrity maintenance using an
independent trigger or ECA�rule for each integrity constraint �see e�g� �Day

	 Esw����� Such
rules are de�ned like �ON delete of RP DO delete RC� and are executed in a recognize�act
cycle �For
��� If the semantics of these triggers is only given by an informal description	 some
indeterminism with respect to the outcome of a user operation may occur� This is illustrated
by the following example �Rei���


Example � Consider the database with referential actions as depicted in Figure �� For this
example	 assume that all dotted parts are empty� Let �del�RA�a� be a user request to delete the
tuple �a� from relation RA�� Depending on the order of execution of referential actions	 one of
two di�erent �nal states may be reached


��� If execution follows the path RA � RC � RD	 the tuple RC�a� c� cannot be deleted

Since RD�a� b� c� references RC�a� c�	 the referential action for RD restricts the deletions of
RC�a� c�� This in turn also blocks the deletion of RA�a�� Consequently	 the user request
�del�RA�a� is rejected	 and the database state remains unchanged	 ie D� � D�

��� If execution follows the path RA � RB � RD	 the tuple RB�a� b� and � as a consequence
� RD�a� b� c� are requested for deletion� Hence	 the trigger for RD��X�Z� � RC ��X�Z�
�assumes� that RD�a� b� c� is deleted	 thus no referencing tuple exists in RD� Thus	 all
deletions can be executed	 resulting in the new database state D� � ��

If there are di�erent possible �nal states of a database instance D �depending on the execution
order of referential actions�	 D is called ambiguous wrt� the given referential actions� Given a
set of referential actions	 a database schema is ambiguous	 if some instance D is ambiguous�
As shown in �Rei��� it is in general undecidable	 whether a database schema with referential
actions is ambiguous� However note that	 although the above schema is ambiguous	 ��� may
be preferable to ���	 because ��� � which is the semantics of SQL � does not accomplish the
desired user request � indeed	 nothing is done at all� In contrast	 ��� leads to a new consistent
state	 in which the user request is accomplished� In the sequel	 we present logical rules which
avoid ambiguities caused by con�icting referential actions� This does not contradict the result

�The triangle ��� denotes external 	ie� user�de�ned
 requests�
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Figure �
 Database with Referential Actions

of �Rei���	 since our semantics does not have to discriminate ambiguous from unambiguous
schemas
 instead	 deletions are preferred to restrictions whenever possible� We con�ne ourselves
to the speci�cation of triggers of the form ON DELETE CASCADE and ON DELETE RESTRICT� a
comprehensive scheme covering all SQL�triggers is beyond the scope of this paper�

� Referential Actions as Logic Rules

We �rst specify the semantics of referential actions as a strati�ed Datalog program which can
also serve as the implementation of a naive algorithm executing user requests in an all�or�
nothing style� The given rules provide the basis for further re�nements in subsequent sections�
Let U� � f�del�R���x��� � � � ��del�Rn��xn�g be a set of user delete requests which are passed to
the database system�� From these external requests	 internal delete requests req del�R��x� are
derived


req del�R� �X� � �del�R� �X�� �I�

The referential actions are speci�ed as follows


� RC � �X � RP ��Y ON DELETE CASCADE
 This trigger generates two logical rules
 the �rst one
propagates internal delete requests downwards from the parent to the child


req del�RC� �X� �X� � req del�RP ��Y � �Y �� RC� �X� �X�� �X � �Y � �DC��

Additionally	 restrictions are propagated upwards	 ie when the deletion of a child is restricted	
the deletion of the referenced parent is also restricted �blocked�


blk del�RP ��Y � �Y � � RP ��Y � �Y �� blk del�RC� �X� �X�� �X � �Y � �DC��

� RC � �X � RP ��Y ON DELETE RESTRICT
 The deletion of a parent tuple is blocked	 if there is
a corresponding child tuple which is not requested for deletion


blk del�RP ��Y � �Y � � RP ��Y � �Y �� RC� �X� �X��	req del�RC� �X� �X�� �X � �Y � �DR�

�Ri are 	not necessarily distinct
 base relations� �xi are tuples of constants from the underlying domain�



Note	 that for a given set of referential actions	 the logic program P generated by �DC��	 �DC��
and �DR� is strati�ed	 ie does not contain negative cyclic dependencies� The strata are given
by

fR� req del�Rg 
 fblk del�Rg

for all base relations R� Therefore	 P has a unique strati�ed model�
Note further	 that this logic program solves the con�icts and ambiguities between CASCADE

and RESTRICT actions �Example �� by the following strategy
 First	 all requested deletions are
cascaded without considering restrictions� Then	 all restricted deletions are computed using the
delete requests from the �rst step� This two�phase approach is the abstract formalization to the
lengthy textual descriptions in the standard documents�	

Example � Consider again the database given in Figure �	 where all dotted parts are empty�
Given the user request �del�RA�a�	 the above program derives delete requests req del�R��x� for
RA�a�	 RB�a� b�	 RC�a� c�	 and RD�a� b� c�	 but no blocked requests of the form blk del�R��x�
�because RD�a� b� c� is requested for deletion before it gets a chance to block other requests��
Hence all deletions are computed correctly�

Unfounded Deletions� However	 the above rule set may give rise to unfounded delete re�

quests
 a triggered delete request is unfounded	 if its triggering request is blocked	 but the
triggered request itself is not blocked


Example � Assume that the tuple RE�a� is added to the database in Figure �� The trigger
RE �X � RA�X ON DELETE RESTRICT blocks the deletion of RA�a�	 but not the deletions of
RB�a� b�	 RC�a� c� and RD�a� b� c� which then become unfounded�

This problem is avoided if a triggered request is executed only if its triggering request is
executed itself� One way to guarantee this condition is to require that all delete requests are
admissible	 otherwise the transaction aborts


del�R� �X� � req del�R� �X��	abort�

abort � �del�R� �X�� blk del�R� �X��
�DEL�

Here	 del�R denotes the set of �nal deletions to be executed by the system� The rules �DEL�
guarantee that the whole set of user delete requests is executed in an all�or�nothing style�

� Re�ned Translation

Although the preliminary translation given above is less restrictive than the standard SQL
semantics	 it is still more restrictive than necessary


Example � Consider the database as depicted in Figure � and assume the user requests
f�del�RA�a���del�RA�b�g are given� Like in Example �	 �del�RA�a� is not admissible since
RE�a� blocks �del�RA�a�� However	 the other request	 �del�RA�b�	 could be executed without
violating any ric by deleting RA�b�	 RB�b� b�	 RC�b� c� and RD�b� b� c��

In the following	 a more �exible strategy is developed which determines the maximal subset
of admissible deletions of U� which does not violate any ric thereby relieving the user from
trying all alternatives by himself� The basic idea of the re�nement is to consider only those user
delete requests which are not blocked in rule �I�� However	 this introduces an inherent negative
cyclic dependency req del

�

� blk del
�

� req del resulting in a non�strati�ed logic program PW �
The properties of PW will be further investigated in Section ����

�In fact the standard SQL semantics is more restrictive than our proposal� since it does not allow the existence
of any referencing tuple 	even if it is marked for deletion
� This more restrictive semantics the style of SQL can
be modeled by the following rule 	DR

 blk del�RP 	�Y � �Y 
� RP 	�Y � �Y 
� RC	 �X� �X
� �X � �Y �
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Figure �
 Extended Database �Example ��

Informal Description of the Algorithm �cf� Figure ��	 Initially	 it is assumed that
there are no blockings �ie	 blk del�R��x� does not hold for any tuple R��x��� By cascading all
user requests	 all potential delete requests are computed� In the next step	 all blockings are
computed caused by tuples which are not reachable by cascaded deletions� At this point	 the
preliminary algorithm aborts if there is some delete request which is blocked� The re�ned
algorithm analyzes the situation in order to abort as few user requests as possible
 For all
blocked requests	 the triggering user request is also blocked by propagating blockings upwards
the ON DELETE CASCADE chain to parent tuples� For the remaining unblocked user requests	 the
cascaded requests are recomputed� Thus some more tuples will remain in the database	 which
could block other requests� These steps are repeated until a �xpoint is reached�

��� State�Oriented Logic Formalization

The �rst translation from referential actions to logic rules given above resulted in a strati�ed
Datalog program� However	 the improved algorithm contains negative cyclic dependencies	 since
requested deletions and blocked deletions may depend negatively on each other� Therefore	 a
direct translation of the informally given algorithm into a logic program would result in an
non�strati�ed program �cf� Section ����� The improved algorithm can easily be implemented in
a state�oriented logic programming framework�

Statelog is a state�oriented extension to Datalog which allows to de�ne active and deductive
rules within a uni�ed logical framework �LL��	 LHL���� Since in this language di�erent states
of the database can be accessed	 Statelog is well�suited as a speci�cation and implementation
language for de�ning the behavior of referential actions�

In Statelog	 di�erent database states are accessed using state terms of the form �S�k�	 where
S � k denotes the k�fold application of the unary function symbol ���� to the state variable S�
The domain of S is IN
	 ie computations in Statelog evolve over a linear state space� Statelog
rules are of the form

�S � k
� H� �X� � �S � k�� B�� �X��� � � � � �S � kn� Bn� �Xn� �

where the head H� �X� is an atom	 Bi� �Xi� are atoms or negated atoms	 and k
 � ki	 for all
i � f�� � � � � ng� A rule is local	 if k
 � ki	 for all i � f�� � � � � ng� Thus	 a Statelog program



Input
 A consistent database D and a set U�
of user delete requests� No blockings
 B 
� ��

�� 
Re�Compute the set of induced blockings B��
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upwards the ON DELETE CASCADE chain�

�� 
Re�Compute the set U� of internal requests
which result from user delete requests U� by
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are not blocked
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� 
U� nB����
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��
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ecuting the maximal subset of external delete re�
quests from U��

No

Yes

Figure �
 Algorithm A
 Computing all admissible deletions

can be viewed as a syntactical variant of a logic program in which every predicate contains
one additional distinguished argument for state terms� In particular	 local rules refer only to
the current state �S � k� and not to the transition between di�erent states� Thus local rules
correspond to �strati�ed� Datalog rules which are applied locally in every state �S � k��

Formalization in Statelog� The above algorithm is formalized in Statelog as follows
�

EDB relations R are propagated to subsequent states �modulo the set of �nal deletions del�R� �X��
see below� by frame rules


�S��� R� �X� � �S� R� �X��	del�R� �X��

User requests �del�R are propagated to the successor state as long as the computation is running


�S��� �del�R� �X� � �S� �del�R� �X�� running�

From user delete requests �del�R	 internal requests req del�R are raised unless they are blocked


�S� req del�R� �X� � �S� �del�R� �X��	blk del�R� �X�� �IS�

Referential actions are translated as follows


� RC � �X � RP ��Y ON DELETE CASCADE
 The rules �DC�� and �DC�� above are simply extended
by state terms �S� and yield the following local rules


�In literals referring to the same state� only the leftmost literal is pre�xed with a state term�



�S� req del�RC� �X� �X� � �S� req del�RP ��Y � �Y �� RC� �X� �X�� �X � �Y � �DCS
� �

�S� blk del�RP ��Y � �Y � � �S� RP ��Y � �Y �� blk del�RC� �X� �X�� �X � �Y � �DCS
� �

� RC � �X � RP ��Y ON DELETE RESTRICT
 The new rule �DRS� for ON DELETE RESTRICT con�
tains the crux of the re�ned algorithm
 In the successor state �S��� only those tuples cause
blockings	 which are not requested for deletion in the current state �S�� This corresponds to
the iteration step in Figure � and avoids negative cyclic dependencies within a state�

�S��� blk del�RP ��Y � �Y � � �S� RP ��Y � �Y �� RC� �X� �X��

	req del�RC� �X� �X�� �X��Y � running�

�DRS�

The whole process keeps running while there are new blockings


��� running�
�S��� running� �S��� blk del�R�X�� �S� 	blk del�R�X��

�RS
� �

When the iteration terminates	 the �nal set of delete requests is derived


�S��� del�R� �X� � �S��� 	running� �S� running� req del�R� �X�� �RS
� �

After termination	 the sets of performed and abandoned updates can be determined


�S� committed del�R� �X� � �S� 	running��del�R� �X��	blk del�R� �X��
�S� aborted del�R� �X� � �S� 	running��del�R� �X�� blk del�R� �X��

�RS
� �

In the following	 we refer to this program as PS �
PS is state�strati�ed	 which implies that it is locally strati�ed and has a unique perfect model

�Prz

�� The notion of state�strati�cation takes into account the di�erent �time�stamps� of
relations


De
nition � The labeled dependency graph G�P � of a Statelog program P is de�ned as follows�
Its vertices are the relation names occurring in P � For every rule

�S
� H� �X
� � �S�� B�� �X��� � � � � �Sn� B�� �Xn� �

of P 	 G�P � contains for every i � �� � � � � n

� a negative edge Ai
li��
� H	 if Bi is a negative literal 	Ai� �X�

� a positive edge Bi
li� H otherwise�

Here	 the label li 
� S
 
 Si � � is the �gap� between states� it may be omitted for l � ��
A cycle of G�P � involving only edges with l � � is called a local cycle� A program P is called

state�strati�ed if no local cycle of G�P � contains a negative edge� �

Figure � shows the dependency graph for PS � The labels of edges have been depicted as follows

Solid lines represent local edges �marked with l � ��	 dotted lines represent edges across state
transitions �ie	 labeled with l � ��� Note that only solid edges have to be considered for state�
strati�cation�

From the dependency graph it is clear that the program implementing the algorithm is state�
strati�ed� Thus	 for every database D and every set U� of user delete requests	 it has a perfect
model M�PS �D� U���

The dependency graph also mirrors the stages of the algorithm
 The main relations in�
volved in the computation �represented by solid�lined ovals� are R	 �del�R	 req del�R and
blk del�R for EDB relations R� The relations R	 �del�R remain unchanged during the it�
eration� Since req del�R depends negatively on blk del�R	 the naturally given strati�cation
fblk del�Rg 
 freq del�Rg corresponds to the steps shown in Figure �




�del�R req del�R

R blk del�R

del�R running

�

� �

�

Figure �
 Dependency Graph

Every iteration of the algorithm starts with a set of blockings	 which is given in the Statelog
translation by �DRS�� According to the strati�cation	 at �rst the induced blockings are com�
puted �DCS

� � also determining the blocked user delete requests� Then the remaining user delete
requests issue internal delete requests �IS� which are cascaded by �DCS

� �� From these	 the
resulting blockings for the next iteration are computed�

With the formal basis given by the Statelog program	 the correctness of the algorithm can
be proven


De
nition � Let D be a database	 U� a set of user delete requests	 and RA a set of referential
actions of the form RC � �X � RP ��Y ON DELETE f CASCADE j RESTRICT g� A set U� of �internal�
delete requests is called admissible if

�� every R��x� � U� is founded by some �del�R���x��	 ie there is a chain of references from R��x�
to R���x�� in D using ON DELETE CASCADE triggers from RA	 and

�� all referential actions RA �and hence all ric s� are satis�ed in the new database D� 
� DnU�� �

De
nition � Let DELn�PS �D� U�� be the set of delete requests in state �n�	 DELn��PS � D� U��
is the subset of these which are given by the user	 ie

DELn�PS �D� U�� 
� fdel�R��x� j M�PS �D� U�� j� �n� req del�R��x�g
DELn��PS �D� U�� 
� DELn�PS �D� U�� � fdel�R��x� j �del�R��x� � U�g �

Finally	 assuming that the algorithm terminates in a state �nfinal� �this is proven below�	 let

DEL�PS �D� U�� 
� DELnfinal�PS � D� U�� and DEL��PS � D� U�� 
� DEL
nfinal
� �PS �D� U�� �

�

In the next theorem	 arguments PS 	 D	 and U� of M and the DEL sets are omitted


Theorem � �Correctness� Given a database D� a set of ric�s with corresponding referential

actions� and a set of external delete requests U�� the algorithm given by PS determines the

maximal set of admissible delete requests�

More speci�cally� one can show �cf� Appendix A�	


� In every state �n�� all internal delete requests are founded by some user request which is not
blocked in �n��



�� In every state �n�� no tuple is both blocked and requested for deletion� ie there is no n and

R��x� s�t� M j� �n� req del�R��x� � blk del�R��x��

�� Wrt� subsequent states� delete requests and blockings are nonincreasing and nondecreasing�

respectively	
M j� �n��� req del�R��x� �M j� �n� req del�R��x�
M j� �n� blk del�R��x� �M j� �n��� blk del�R��x��


� In every state �n�� executing all internal delete requests of �n� would not violate any ON DELETE

CASCADE trigger�

�� In every state �n�� DELn is the set of internal deletions which have to be executed to accom�

plish the user requests DELn��

�� After termination� ie when M j� �n�	running � �n
�� running� executing all outstanding

delete requests req del�R��x� would not violate any ON DELETE RESTRICT trigger�

�� In every step� all tuples R��x� s�t� M j� �n� blk del�R��x� �	req del�R��x� are not contained in

any admissible set of deletions�

�� DEL is the maximal admissible set of delete requests� the subset DEL� is the maximal set

of admissible user delete requests�

�� DEL �and thus DEL�� is unique�

Theorem � �Termination� For every database D and every set U� of user delete requests�

there is a unique �nal state nfinal � jU�j� �� ie for all k � nfinal	 M�PS �D� U�� j� �k� running�
and for all k � nfinal	 M�PS �D� U�� j� �k�	running�

Proof The algorithm stops in state �n� if there are no new blockings compared to �n
���
Let n � �� Assume that there is some new blocking in �n�	 ie M j� �n� blk del�R��x� and
M j� �n
��	blk del�R��x�� Then there also has to be some R���x�� s�t� �i� M j� �n� blk del�R���x��
and M j� �n
��	blk del�R���x�� and �ii� M j� �n� blk del�R���x�� is derived by �DRS�� Thus	 there
is a tuple R����x��� s�t� M j� �n
��	req del�R����x��� and M j� �n
�� req del�R����x���� Furthermore	
since M j� �n
�� req del�R����x��� has to be founded by some user delete request �del�U��y� s�t�
M j� �n
��	blk del�U��y�	 this user delete request must be blocked in �n
��� Hence	 for each
iteration	 at least one user request is blocked which has not been blocked before� Since blk del

is nondecreasing and the algorithm terminates as soon as blk del becomes stationary	 there are
at most jU�j� � iterations�

��� A Three�Valued Formalization

The presented Statelog formalization of algorithm A makes explicit use of state terms �S��� and
�S�� This is the reason why it is possible to de�ne updates within the Statelog language� On the
other hand	 it is desirable to have a �static� logical semantics which is de�ned without reference
to di�erent states� In this section	 we show how such a semantics can be directly obtained from
referential actions� However	 due to the inherent negative cyclic dependecies between delete
requests req del and blockings blk del	 the resulting program will be non�strati�ed� The well�
founded semantics �VGRS���	 which is generally accepted as a declarative semantics for such
programs	 assigns a third truth value unde�ned to atoms whose truth value can neither be
derived as true nor as false using a �well�founded� argumentation and the given logic rules� The
Statelog formalization given in the previous section can be seen as a certain interpretation of
this well�founded model where priority is given to deletions�

PW 	 A Direct Translation with Well�Founded Negation� Recall the �rst direct trans�
lation of referential actions into logic rules from Section �� Let PW be the program consisting
of rules �DC��	 �DC��	 �DR� and the modi�cation of rule �I�




req del�R� �X� � �del�R� �X��	blk del�R� �X�� �IW �

Due to the negative dependencies	 the well�founded model W�PW �D� U�� of PW may contain
atoms blk del�R��x� and req del�R��x� with the truth value unde�ned� The fact that the presented
Statelog formalization is sceptic wrt� blockings and gives priority to deletions whenever possible
is established by the following

Theorem �


� M�PS �D� U�� j� �nfinal� req del�R��x� � W�PW � D� U���req del�R��x�� � ftrue � undef g �

�� M�PS �D� U�� j� �nfinal�	blk del�R��x� � W�PW � D� U���blk del�R��x�� � ffalse � undef g �

Therefore	 whenever the well�founded model yields the truth�value true or unde�ned for a delete
request req del�R��x�	 the tuple R��x� is deleted by PS � On the other hand	 unde�ned blockings
blk del�R��x� in the well�founded model are ignored and regarded as false by PS �

Example � The �diamond� in Figure � results in a �dispute� between blockings and deletions

Given the user request �del�RA�a�	 the delete requests req del for RA�a�	 RB�a� b�	 RC�a� c�	
RD�a� b� c�	 as well as the blockings blk del for RA�a�	 RC�a� c� will be unde�ned in the well�
founded model� This can be regarded as an ambiguity which is resolved in the presented algo�
rithm A by giving priority to delete requests� Thus	 according to Theorem �	 the above delete
requests are interpreted as true	 while the blockings are interpreted as false�

Looking at the database in Figure � with the user requests f�del�RA�a���del�RA�b�g	 we
�nd that the blockings for RA�a� and RC�a� c� are true in the well�founded model �due to the
referencing tuple RE�a�� and thus RA�a�	 RC�a� c� cannot be deleted� In contrast	 the tuples
RA�b�� RB�b� b�� RC �b� c� and RD�b� b� c� can be deleted	 since there are unde�ned delete requests
for them in the well�founded model	 and � like above � priority is given to deletions�

��� Playing Games

In the following	 we develop a very intuitive game�theoretic presentation of PW which yields an
alternative and elegant speci�cation of referential actions� As indicated in the previous example	
deletions and blockings can be viewed as a dispute whether a certain tuple can be deleted or
has to remain in the database�

More precisely	 the dispute is a game between two players I �the �Deleter�� and II �the
�Spoiler���� The game is played in rounds with a pebble which can be placed on any tuple of
the given database D and on any user request in U�� Thus	 D � U� are the positions of the
game� Each round consists of two moves�

Initially	 the pebble is on an arbitrary tuple R��x� in D� Then I starts to play and tries to
prove that R��x� can be deleted� He does so by moving the pebble from R��x� to some user request
�del�R���x�� such that there is a �nite sequence of ON DELETE CASCADE triggers leading from
�del�R���x�� to R��x� in D �thus there is a chain of references from R��x� to �del�R���x���� Player
II tries to disprove the argument of I by moving the pebble to some tuple R����x��� which cannot
be deleted due to some ON DELETE RESTRICT trigger and a �nite sequence of references using
ON DELETE CASCADE triggers which will eventually also restrict the user request �del�R���x��� If
a player cannot move	 he has lost the game� In this case the opponent has successfully proved
his claim and won the game� The following moves in the game are possible


Player I can move from R��x� to �del�R���x�� 
�

�there is a �nite sequence of ric�s with ON DELETE CASCADE triggers leading from �del�R���x��
to R��x� in D��

	Read I and II as �one� and �two�� respectively� From the point of view of player I� you can read it also as
�I� 	myself
 and �You� 	�II� resembles �U�
�



Player II can move from �del�R��x� to R���x�� 
�

�R���x�� is blocked by some ON DELETE RESTRICT trigger� and there is a �nite �possibly empty�

sequence of ric�s with ON DELETE CASCADE triggers leading from �del�R��x� to R���x�� in D��

The moves by I are re�ected in the logical speci�cation
 if there is a successful �top�down�
derivation of req del�R��x� using �DC�� and successfully ending in a fact �del�R���x��	 then the
move from R��x� to �del�R���x�� is allowed� Similarly	 moves by II are re�ected in the logical
speci�cation by rules �DC�� and �DR� �without the negated goal��

The game itself can be easily de�ned in well�founded Datalog using the famous rule


win� �X� � move� �X� �X ���	win� �X ���

Ambiguity Revisited� We say that a game is won �lost� for I at position R��x�	 if I �II�
can win the game starting at R��x�	 no matter how II �I� moves� A position which is neither
lost nor won for I is drawn� Drawn positions can be viewed as ambiguous situations
 Using
�well�founded� arguments	 neither can I prove that R��x� has to be deleted	 nor can II prove
that it must not be deleted
 there are negative cycles in the arguments leading to the truth�value
unde�ned for req del�R��x��
The previously given speci�cation PW correctly re�ects the intuitive game�theoretic description


Theorem �

� I wins at R��x� i� W�PW � D� U�� j� req del�R��x��

� II wins at R��x� i� W�PW � D� U�� j� 	req del�R��x�� and

� R��x� is drawn i� W�PW �D� U���req del�R��x�� � undef �

Example 
 Consider again the �diamond� in Figure �� The positions are RA�a�	 RB�a� b�	
RC�a� c�	 RD�a� b� c�	 and �del�RA�a��

I can move from any position in fRA�a�� RB�a� b�� RC�a� c�� RD�a� b� c�g to �del�RA�a�	 while
II can move from �del�RA�a� to RD�a� b� c�� Thus	 after I has started the game moving to
�del�RA�a�	 II will answer with the move to RD�a� b� c� and so on� Hence the game is drawn for
all start positions of I�

In contrast	 if RE�a� is added to the database in Figure �	 there is an additional move from
�del�RA�a� to RE�a� for II	 who now has a winning strategy
 by moving to RE�a�	 there is no
possible answer for I	 so I loses� By Theorems � and �	 RA�a� cannot be deleted�

� Conclusion

Referential actions �triggers� have been included in the SQL� and SQL� standards �JTC��	
JTC��� as a means to automatically enforce referential integrity in relational databases� How�
ever	 a naive implementation of the standard trigger semantics can lead to ambiguities due to
di�erent execution orders resulting in di�erent �nal database states after an update� Moreover	
as was shown in �Rei���	 it is undecidable whether a given database schema with a set of ric s
is ambiguous� For a given database	 the problem becomes decidable and can be checked at
run�time as proposed in the SQL� standard�

In this paper	 we have argued for an alternative	 logic�based semantics of referential actions
which results in a concise and elegant description of the precise behavior of triggers� In this
paper	 we have con�ned ourselves to ON DELETE CASCADE and ON DELETE RESTRICT triggers�
The proposed semantics is less restrictive than the SQL semantics and allows to execute the
maximal set of user delete requests� In particular	 the problem of ambiguity is avoided since



our semantics yields a unique answer for every database with user requests and a given set of
referential actions� We have presented three di�erent	 but essentially equivalent characterizations
of this semantics


The �rst is based on Statelog �LL��	 LHL���	 a state�oriented Datalog extension which allows
to de�ne active and deductive rules within a uni�ed logical language� The presented Statelog
program not only assigns a precise meaning to referential actions	 but can also be used as an
implementation� The second characterization uses the direct translation of referential actions
into logic rules� Due to inherent negative cyclic dependencies	 the resulting rules are non�
strati�ed� The widely accepted well�founded semantics assigns a unique three�valued model to
such programs� In our translation	 unde�ned atoms of the form req del�R��x� and blk del�R��x� can
be viewed as ambiguous requests to delete or restrict the deletion of a tuple R��x�	 respectively�
The presented Statelog speci�cation assigns priority to deletions� therefore unde�ned deletions
are viewed as true	 while unde�ned blockings are viewed as false� The �nal	 game�theoretic
characterization yields additional insight into the behavior of triggers
 the question whether a
given tuple R��x� may be deleted is regarded as a game between to players
 I pleads for deletion	
II for keeping R��x� in the database� We show that the game is drawn for R��x� i� the delete
request req del�R��x� is unde�ned in the well�founded model� In future work	 we plan to extend
our approach to include more referential actions like ON UPDATE CASCADE�RESTRICT�SET NULL�
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A Appendix� Proofs

Proof of Theorem ��

�� M j� �n� req del�R��x� only if it is derivable by �DCS
� � and �IS�� Thus	 there is a chain of ON

DELETE CASCADE triggers from R���x�� to R��x� such that M j� �n��del�R���x���	blk del�R���x���

�� If M j� �n� blk del�R��x� � req del�R��x� then by ���	 req del�R��x� is founded by some user re�
quest �del�R���x�� s�t� M j� �n�	blk del�R���x�� using a chain of ON DELETE CASCADE triggers�
However	 in �n�	 �DCS

� � also propagates blocking upwards this chain from blk del�R��x� to
blk del�R���x�� which is a contradiction�

�� First observe that in PS 	 req del�R and blk del�R depend negatively on each other	 ie if one
increases the other can only decrease and vice versa� Moreover	 M j� ���	blk del�R��x� for
all R��x�	 thus M�PS � D� U�� j� ��� req del�R��x� for all req del�R��x� which are founded by
some user delete request� Therefore	 initially all blk del�R are minimal and all req del�R are
maximal possible wrt� ���	 so blk del�R can only increase while req del�R can only decrease�

�� All delete requests are cascaded exhaustively
 If a ric encoded as ON DELETE CASCADE is
violated	 then there are RP ��x� �x� and RC��y� �y� such that �x � �y andM j� �n� req del�RP ��x� �x�	
but not M j� �n�	req del�RC��y� �y�� This contradicts rule �DCS

� � in PS for the corresponding
ric�

�� Follows from ��� and ���
 In every state all internal delete requests are founded by some non�
blocked user delete request and all non�blocked user delete requests are cascaded exhaustively�

�� Because of M j� ��� running	 n � ��
If a ric of the form ON DELETE RESTRICT is violated	 then there are RP ��x� �x� and RC��y� �y�
such that �x � �y and M j� �n� req del�RP ��x� �x� � 	req del�RC��y� �y�� Since req del�RP is
nonincreasing	 M j� �n
�� req del�RP ��x� �x��

�i� Assume that in �n
�� this ric is not violated� Then M j� �n
�� req del�RC��y� �y�� Since in
every state	 internal delete requests are computed by cascading deletions from all non�blocked
user delete requests	 all user delete requests which founded req del�RC��y� �y� in �n
�� �and
thus were not blocked in �n
��� must be blocked in �n�	 so there is at least one �del�R���x��
s�t� M j� �n
��	blk del�R���x�� and M j� �n� blk del�R���x��	 thus by �RS

� �	 M j� �n� running
and �n� cannot be the �nal state�

�ii� If �n
�� violates the above ric	 M j� �n
�� req del�RP ��x� �x� � 	req del�RC��y� �y�� By rule
�DRS� we have M j� �n� blk del�RP ��x� �x�� Contradiction to ����

�� ���
 As shown in the proof of ���	 req del�R is overestimated to be the whole set of founded
delete requests	 thus every deletion of a tuple R��x� s�t� M j� ���	req del�R��x� would be
unfounded� blk del�R is empty in the �rst step�

�n
�� � �n�
 If M j� �n� blk del�R��x�� �n
��	blk del�R��x� then by �DCS
� � and �DRS�	 there

is some R���x�� and R����x��� s�t� there is a sequence of ON DELETE CASCADE triggers from R��x�
to R���x��	 and an ON DELETE RESTRICT from R���x�� to R����x��� andM j� �n
��	req del�R����x����
Thus	 by induction hypothesis	 R����x��� is not in an admissible set of deletions� Since deletion
of R��x� would trigger the deletion of R���x��	 but this is restricted by R����x���	 it follows that
R��x� can also not be deleted	 ie is not in an admissible set of deletions�

If M j� �n�	req del�R��x� � �n
�� req del�R��x� then all user delete requests which founded
the deletion of R��x� in �n
�� are blocked in �n� ��IS� and �DCS

� ��	 ie M j� �n� blk del�R���x��
for all those tuples� Thus	 as proven above	 all of them cannot be deleted	 thus the deletion
of R��x� would be unfounded wrt� the remaining set of user delete requests�


� At the beginning	 req del�R is overestimated to be the whole set of founded internal delete
requests� As shown in ���	 only tuples are removed from req del�R which cannot be in any
admissible set� Thus the set is maximal�



As shown in ���	 no ric encoded as ON DELETE CASCADE is violated in any state �n� when
executing all internal delete requests of this state	 and ��� gives that no ric encoded as ON

DELETE RESTRICT is violated in the �nal state when executing all internal delete requests�

�� For any two admissible sets of deletions U�� U�	 also U� � U� is admissible� Hence there is a
unique maximal admissible set DEL�

Proof of Theorem �� This is shown by recasting the alternating �xpoint computation of
W�PW � using an equivalent Statelog program PA� Finally	 we show how PA and PS are related
which concludes the proof� As described in �LHL���	 PA can be constructed as follows


Attach state terms to the given non�strati�ed program PW 	 such that all positive literals
refer to �S��� and all negative literals refer to �S�� The resulting Statelog program PA computes
the alternating �xpoint of PW 



�S��� req del�R� �X� � �del�R� �X�� �S� 	blk del�R� �X�� �IA�

� RC � �X � RP ��Y ON DELETE CASCADE	

�S��� req del�RC� �X� �X� � RC� �X� �X�� �X � �Y � �S��� req del�RP ��Y � �Y �� �DCA
� �

�S��� blk del�RP ��Y � �Y � � RP ��Y � �Y �� �X � �Y � �S��� blk del�RC� �X� �X�� �DCA
� �

� RC � �X � RP ��Y ON DELETE RESTRICT	

�S��� blk del�RP ��Y � �Y � � RP ��Y � �Y �� RC� �X� �X�� �X��Y � �S� 	req del�RC� �X� �X�� �DRA�

Note that PA is a state�strati�ed Statelog program� Its perfect model M�PA�D� U�� mimics
the alternating �xpoint computation of W�PW �D� U��
 even�numbered states ��n� correspond
to the increasing sequence of underestimates of true atoms	 while odd�numbered states ��n� ��
represent the decreasing sequence of overestimates of true �and unde�ned� atoms� The �nal
state of the computation is reached if M��nfinal� � M��nfinal � ��� Then for all relations R	
the truth value of atoms R��x� in W�PW � can be determined from M�PA� as follows


W�PW �D� U���R��x�� �

��
�

true if M�PA� D� U�� j� ��nfinal� R��x�
undef if M�PA� D� U�� j� ��nfinal� 	R��x� � ��nfinal � �� R��x�
false if M�PA� D� U�� j� ��nfinal � �� 	R��x�

It remains to show how PA and PS are related


Lemma � The model M�PA�D� U�� corresponds to M�PS �D� U�� as follows	


� M�PA�D� U�� j� ��n� blk del�R��x� � M�PS � D� U�� j� �n� blk del�R��x��

�� M�PA�D� U�� j� ��n��� req del�R��x� � M�PS � D� U�� j� �n� req del�R��x��

Proof PS and PA di�er in the rules �IS� and �IA�
 While �IA� derives internal delete requests
in �S��� from unblocked user requests in �S�	 �IS� already establishes these in the current state
�S��

In ��� neither program derives blockings blk del�R��x�� hence we have an underestimate of
the �nal set of blockings� From this	 both programs derive an overestimate of delete requests
req del�R��x�� Due to rules �IS� and �IA� these overestimates are computed in �S� and �S���
by �IS� and �IA�	 respectively� Using these overestimates	 the next sets of underestimates
blk del�R��x� are derived in ��� for PS 	 and in ��� for PA� Applied inductively	 this argument
concludes the proof�

Proof of Theorem �� First	 we prove the following


It is assumed that base relations R and user requests �del�R are propagated unchanged by frame rules� so no
state terms are needed for these relations�



Lemma 


� I wins at R��x� within n rounds i� M�PA�D� U�� j� ��n� req del�R��x��

� II wins at R��x� within n rounds i� M�PA� D� U�� j� ��n
�� 	req del�R��x��

Proof �All subproofs below can be extended to �i��	 but for better readability	 this is not
always formulated exactly��

II wins in one round starting at R��x� i� Player I cannot move to a user request	 ie if the
deletion of R��x� is unfounded� That is the case i� in the �rst overestimate of PA	 R��x� is not
requested for deletion
 M�PA� D� U�� j� ��� 	req del�R��x��

I wins in one round at R��x� i� the deletion of R��x� is founded by some user delete request
�del�R���x��	 and II cannot move from �del�R���x��� This is the case	 if there is no ON DELETE

CASCADE chain from R���x�� to a tuple R����x��� which is restricted by some other tuple� Thus	 in
this case	 in the �rst overestimate of PA	 the deletions of R����x��� and R���x�� are not blocked

M�PA�D� U�� j� ��� 	blk del�R���x��� Then	 since there is a user delete request �del�R���x��	
M�PA�D� U�� j� ��� req del�R���x�� and M�PA�D� U�� j� ��� req del�R��x��

The induction step follows the same line of argumentation

II wins in n�� rounds at R��x� i� for all moves to some �del�R���x�� of I	 he can move to some

tuple R����x��� which he wins in n rounds
 M�PA� D� U�� j� ��n
�� 	req del�R����x��� by induction
hypothesis� Thus	 since there is a move from �del�R���x�� to R����x���	 there are triggers ON DELETE

RESTRICT and ON DELETE CASCADE s�t� M�PA�D� U�� j� ��n� blk del�R���x��� Since this is the
case for all R���x�� where I can move to from R��x�	 M�PA� D� U�� j� ��n��� 	req del�R����x����

I wins in n�� rounds at R��x� if there is a R���x�� he can move to s�t� for all positions
R����x��� where II can move to from R���x��	 II will lose in at most n rounds� By induction
hypothesis	 for all those R����x���	 M�PA�D� U�� j� ��n� req del�R����x���� Thus	 M�PA� D� U�� j�
��n��� 	blk del�R���x�� and M�PA�D� U�� j� ��n��� req del�R��x��

From the previous lemma	 Theorem � follows immediately
 Since even�numbered states are
underestimates	 there is an n such that M�PA�D� U�� j� ��n� req del�R��x� i� W�PW �D� U�� j�
req del�R��x�	 and on the other hand	 since odd�numbered states are overestimates	 there is an n

such that M�PA�D� U�� j� ��n��� 	req del�R����x��� i� W�PW � D� U�� j� 	req del�R����x����
The game is drawn at R��x� if for every tuple R���x�� which II chooses	 I can �nd a user request

which deletes it	 and conversly	 II has a witness against each such user request� Therefore
each player has no �well�founded� proof for or against deleting those tuples� This directly
corresponds to the alternating �xpoint characterization of the well�founded model
 The n�th
overestimate of deletions excludes those tuples which can be disproved in n rounds	 whereas the
n�th underestimate contains all tuples which can be proved in n rounds�


