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Abstract. We present a hierarchically structured transaction-oriented
concept for a rule-based active database system. In [LL94, LHL95], we
have proposed Statelog as a unified framework for active and deductive
rules. Following the need for better structuring capabilities, we intro-
duce procedures as a means to group semantically related rules and to
encapsulate their behavior. In addition to executing elementary updates,
procedures can be called, thereby defining (sub)transactions which may
perform complex computations. A Statelog procedure is a set of ECA-
style Datalog rules together with an import/export interface. System-
immanent frame and procedure rules ensure both propagation of facts
and processing of results of committed subtransactions. Thus, Statelog
programs specify a nested transaction model which allows a much more
structured and natural modeling of complex transactions than previ-
ous approaches. Two equivalent semantics for a Statelog program P are
given: (i) a logic programming style semantics by a compilation into a
logic program, and (ii) a model-theoretic Kripke-style semantics. While
(ii) serves as a conceptual model of active rule behavior and allows to
reason about properties of the specified transactions, (i) — together with
the appropriate execution model — yields an operational semantics and
can be used as an implementation of P.

1 Introduction

The need for a logically defined and intuitive semantics has been recognized
as one of the major theoretical problems in the area of active databases. The
active database manifesto, for example, requires as an essential feature that
“ .. rule execution must have a clear semantics, ie must define when, how, and
on what database state conditions are evaluated and actions executed” [DGGI5].
Nevertheless, researchers continue to complain about the unpredictable behavior
of active rules and the lack of a uniform and clear semantics.

To overcome these difficulties, it has been suggested to use the logical foun-
dations of deductive databases — with certain extensions — as a declarative se-
mantics for active rules [Zan93, 2S94, Zan95, LL94, LHL95]. The main benefits
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L “The unstructured, unpredictable, and often nondeterministic behavior of rule pro-

cessing can become a nightmare for the database rule programmer” [AWHO95]. See
also [Wid94, WC96, PCFW95, DHW95, FT96].



of this approach are better understanding, maintainability and reasoning about
rules when compared to the usual implementation-dependent operational seman-
tics. However, as we will show in Section 2, the existing “mergers” of active and
deductive rules are not sufficient to model complex (trans)actions in a natural
way, since they (i) lack structuring capabilities, and (ii) do not encapsulate the
effect of semantically related rules. In particular, they neglect the fact that com-
plex database transactions can be adequately modeled by nested transactions
where the parent transaction may consult the outcome of subtransactions in or-
der to perform its own complex tasks. As a solution, we propose the extension
of our declarative framework for active rules [LHL95] by the concept of update
procedures. Procedures execute as (closed) nested transactions whereas previous
rule based approaches were limited to flat transactions. A Statelog procedure
consists of a set of ECA-style Datalog rules each of which defines either

e a non-state-changing query, ie a (potentially recursive) view, or
e an action, ie

— a primitive update request (insert, delete, modify),

—a complezx update request (procedure call), or

—an external action to be issued by the database system, or
e a transaction control predicate.

System-immanent frame and procedure rules provide a declarative specification
of state transitions and integrity preserving policies within the logical language
without bothering the user with those problems.

The paper is structured as follows. The remainder of this section is devoted
to an introduction to (flat) Statelog. Section 2 introduces the main ideas of
procedures and nested transactions and their realization in Statelog. In Section
3 the syntax of the language is defined, Section 4 provides some examples. A logic
programming semantics for Statelog is presented in Section 5 using a compilation
from Statelog to logic programs. Section 6 defines a model-theoretic Kripke-style
semantics which provides the connection between the intuitive understanding of
procedure calls and the underlying state-oriented conceptual model. We give an
overview on related work in Section 7 and conclude in the last section.

1.1 Statelog: Datalog and States

In this section, we introduce the basic ideas underlying flat Statelog® [LHL95].
The extended framework with procedures and nested transactions is described
in Section 2.

While for query processing a “one-state logic” like Datalog is sufficient, active
state-changing rules require access to different states and delta relations. In
Statelog, this is accomplished by state terms of the form [S + k|, where S + k
denotes the k-fold application of the unary function symbol “+1” to the state
variable S. The domain of S is INy, ie relations of a Statelog program evolve

2 We refer to the language described in [LHL95] as flat Statelog, since the state space
is INp, ie a flat structure. In contrast, Statelog with procedures uses a hierarchical
state space to model the execution of nested transactions.



over the linear state space INg. S may only occur in state terms. A Statelog rule
is of the form

1S + kolH(X) « [S+ki]Bi(X1),...,[S + knlBu(X,)

where the head H(X) is an atom, and B;(X;) are atoms or negated atoms. A
rule is progressive, resp. local, if kg > k;, resp. ko = k;, for all i € {1,...,n}.
Since past states cannot be changed, we require that all rules are progressive.

Here and in the sequel, we denote by X a vector X1,...,X,, of arguments
(variables or terms) of suitable arity; ground terms are denoted by lower case
letters.

State Transitions and Frame Rules. The user is relieved from handling
states explicitly and may define only actions (including change requests to EDB
relations) and views by local rules. The actual state change from [S] to [S + 1]
is specified by system-generated frame and procedure rules (Section 3.2). E.g.
the following frame rules define the effect of insert and delete requests in flat

Statelog:

[S + 1] R(X) « [S] R(X), [S] —del:R(X).

[S + 1] R(X) « [5] ins:R(X).
Here R is an EDB relation, while del:R, ins:R, mod:R denote user-definable
request relations (also called delta relations, or deltas) which are used to issue
update requests.

Remark. Depending on the underlying assumptions about modifications, the
modify request mod:R(X 14/ Xnew) is not always equivalent to del:R(Xo14) A
ins:R(Xnew). In this paper, we confine ourselves to describe insert and delete
requests only. A declarative semantics for modifications can be found in [LML96].

Execution Model. In addition to EDB, IDB, and request relations, there are
relations which model the interface to the external application domain: Ezternal
events >ev(Z) occurring within a certain “atomic” time interval are mapped
to the current state [S]. E.g. an external temporal event may be denoted as
>daily(Date), or, raised by some monitoring device, it may specify an event from
the real world like D>runway_clear(R), etc. Ezternal actions <a(Z) are requests
to perform some action in the application domain (like <move(Thing,From,To)).
It is assumed that external actions issued by the database system have no side-
effects on the state of the database.

Triggered by the occurrence of one or more external events >ev; in [S], the
corresponding rules become activated. According to the additional conditions
given in the rule bodies, the database is queried and the actions specified in
the rule heads are performed using frame rules (for internal actions, ie update
requests) or signaled to the outside (external actions). In the subsequent state
[S + 1], Dev; is regarded as consumed. Thus, for a current database state [S]D
and a set of events, the logical semantics of a program P yields a sequence of
intermediate states, a set of external actions, and a new database state [Sfna]D,
see Fig. 1. In flat Statelog, a transaction beginning at [S] terminates when there
are no changes to successive states, ie when [SfnalD = [Sfina + 1]D.
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Fig. 1. Mapping of External Events to External Actions and Database States

2 Transaction-Oriented Hierarchical Structuring

The need for structuring capabilities and a more elaborated transaction model
can be exemplified as follows (this example is adopted from [MW88, Che95]):

Examplel (To Hire or Not to Hire). The employee Emp with salary Sal
should be hired for department Dept provided the average salary after the up-
date does not exceed a certain limit. This may be expressed in flat Statelog (or
similarly in the related XY-Datalog approach [Zan93]) as follows:?

[S] newemp(Emp,Sal,Dept), [S+1] checksal(Dept) < [S] >hire(Emp, Sal, Dept).
[S] ins:empsal(Emp,Sal), ins:empdep(Emp,Dept) < [S] newemp(Emp,Sal,Dept).
[S+1] del:empsal(Emp,Sal),del:empdep(Emp,Dept) «

[S] >hire(Emp,Sal,Dept), [S+1] —check_ok.
[S] check_ok «[S] checksal(Dept), avg(Dept, Amt), Amt < 50000.

When an external event I>hire(Emp,Sal,Dept) occurs in the current state [S], the
new employee is preliminarily inserted and the new average salary is checked in
[S + 1] (rules 1 and 2). If it exceeds the admissible amount, the effect of the
insert is undone (rule 3).

Problems. Although the above program specifies the desired transaction, there
are some potential pitfalls and drawbacks with this “flat” approach:

e Undoing the effect of changes (here: the compensation of insertions by corre-
sponding deletions) has to be programmed by the rule designer. However, it
is often desirable to automatically propagate the failure of a subtransaction
like checksal.

e There is no structure which allows grouping of semantically closely related
rules. E.g. it is useful to view the insertion using newemp (rule 2) as an atomic
subtransaction callable by the top-level transaction hire.

3 It is assumed that the average avg(Dept,Amt) for each department is given by other
rules. A conjunction Hi, H» « B in the head of a rule is equivalent to two rules
H; + B and H;, < B, ie denotes simultaneous “execution”.



e The effects of ephemeral changes [Zan95], ie changes whose effect is undone
later within the same transaction, and hypothetical changes are visible to other
rules, since there is no encapsulation of effects of semantically related rules.
E.g., if >hire(...) occurs in [S], the delete requests ins:empsal and ins:empdep
may trigger other active rules, although in [S+2] the updates are revoked. This
may lead to unjustified (re)actions by other rules, similar to those described
in [Zan95].

2.1 Procedures and Nested Transactions

In order to solve these problems, we propose the concept of Statelog procedures.
A procedure 7 is a set of local Statelog rules with an import/export interface
describing which relations are visible and updatable by 7. When 7 is called at
runtime, it defines a transaction T by issuing primitive updates (through request
relations) and/or calling other procedures which in turn define subtransactions
etc. T terminates either successfully, ie if commit is true in some state, or aborts.
When 7 calls another procedure p, a subtransaction T), is started whose results
are either incorporated in T%, if T, commits, or discarded otherwise. From the
point of view of the calling transaction 7, the subtransaction T, is atomic,
therefore requests derived directly within 7% and those submitted by T, should
be indistinguishable. This is achieved by frame and procedure rules (Section 3.2).

The behavior of p is encapsulated, since deltas defined by T}, are only visible
within T, but not in other (concurrent) transactions. Transactions execute in
isolation and in an all-or-nothing manner, ie no results of T}, will be visible in 7’
if T}, aborts. Note that this does not mean that T also aborts — on the contrary,
m can detect the failure of T}, and issue alternative or compensating actions or
retry the execution of p later.

The way in which procedures execute (ie as nested transactions) induces a
hierarchical structure of the state space. The model-theoretic foundation of this
concept is given by Kripke structures with different accessibility relations, see
Section 6. We represent this hierarchy by transaction frames and complex state
terms which extend the flat state terms [S + k] of [LHL95].

The usual partitioning of the signature into base relations (EDB) and derived
relations (IDB) is carried over to the hierarchical concept: base relations are
passed from the current state to successor states (modulo the changes given by
deltas) while IDB relations are not passed on but are rederived when needed. All
user-defined changes to base relations have to be done via requests, ie by using
request relations ins:R, del:R, mod:R (also called delta relations, or deltas).

Protocol relations insd:R, deld:R, modd:R (for inserted, deleted, modified, re-
spectively) accumulate the net effect of user-defined requests and are automat-
ically maintained by the system. Requested changes become effective in the
transition to the successor state. Finally, there is a set Il of procedure names
and transaction control relations BOT, EOT, abort etc.

In this structured model, Example 1 can be specified as follows (7 ® p denotes



sequential composition, ie first do 7, then do p*):

Example 2 (To Hire or Not to Hire revisited). The procedure hire defines
an atomic transaction: First it calls newemp to insert the employee into the
database, then it calls checksal to check the average salary. If this exceeds a cer-
tain amount, the transaction aborts. In the rules of hire it is specified that in this
case hire should also abort, making no effects visible to its parent transaction.

proc hire(Emp,Sal,Dept); Vempsal,empdep; Aempsal,empdep;
initial: newemp(Emp,Sal,Dept) ® checksal(Dept) < .
always: abort < aborted:checksal(Dept).

endproc

proc newemp(Emp,Sal,Dept); Aempsal,empdep;
initial: ins:empsal(Emp,Sal) .
ins:empdep(Emp,Dept) «.
endproc
proc checksal(Dept); Vempdep,empsal;
initial: abort < avg(Dept,Amt), ~Amt<50000.
endproc

The symbols “v” and “A” denote import resp. export of relations (Section 2.3).
The declarations initial, always (and final) specify when the corresponding rules
should be executed, ie in the first state of the subtransaction, in every state,
or in the last state, respectively; see Section 3.1 for details. hire may be called
automatically from the top-level transaction using a rule of the form

hire(Emp,Sal,Dept) < >hire_someone(Emp,Sal,Dept).

Whenever the external event [>hire_someone occurs, hire is executed as an atomic
transaction. Fig. 3 depicts the state space which is created when hire(john,60000,d1)
is called (and eventually aborted, since the average after the hypothetical update
exceeds 50000).

2.2 Hierarchical State Space

In the hierarchical context, state terms are more complex and extend those of flat

Statelog: every state term encodes the complete transaction hierarchy from the

top-level transaction down to the current transaction. States on the same level

are grouped into (transaction) frames. Given a set II of procedure names, the

syntax of frame terms F(II) and state terms Z(II) over II is defined recursively:

1. [e] is a frame term.

2. [F\.n] is a state term, if [F] is a frame term and n € INy.

3. [Z.w(Z)] is a frame term, if [Z] is a state term, 7 € II is an n-ary procedure
name, and Z is a vector of n terms from the underlying Herbrand universe.

* The symbol “®” is borrowed from [BK93], where it is called serial conjunction.
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Fig. 2. States and Frames

With these, a hierarchically structured state space is constructed (Fig. 2): the
initial frame [e] denotes the top-level transaction, its initial state is [€.0]. Let [Z]
be the current state. Then for a procedure call 7(Z) the frame of the subtrans-
action induced by the execution of 7(Z) is [F] = [Z.7(Z)], the first state of the
transaction is [F.0] = [Z.7(Z).0]. The successor state of [F.n] (on the same level)
is [(F.n) + 1] := [F.(n 4+ 1)]. The grouping of states into frames is defined as

[F]:={[Fn]|neNo} |,

which implies that every state [F.n] belongs to exactly one frame [F].

Using this representation, the frames [Z.7(Z)] and [Z.p(7)] induced by dif-
ferent parallel procedure calls of m and p in the same state [Z] can be uniquely
identified (if the name of the procedure is the same, at least the parameters are
different). Similarly, frames of transactions induced by the same procedure call
from different states, [Z1.7(Z)] and [Z2.7(Z)], can also be distinguished.

2.3 Signatures and Visibility

When procedures execute in parallel or as nested transactions, the question arises
which “versions” of relations should be visible within a transaction. In Statelog
this issue is resolved using the hierarchical state space:

Assume two procedures m and p are called simultaneously in the same state,
say [F.2] (Fig. 2). This creates two different frames [F.2.7] and [F.2.p], thereby al-
lowing 7 and p to maintain their own “view” of relations. Initially, ie in [F.2.7.0]
and [F.2.p.0], m# and p “see” the same versions of relations. 7 and p may up-
date their versions subsequently and return the accumulated changes to [F.2]
as soon as they commit — here, in [F.2.7.m] and [F.2.p.n]. For handling con-
tradictory requests, conflict resolution policies can be specified by appropriate



frame rules. Real parallelism is supported since frames maintain their own ver-
sions of relations, and simultaneously called procedures like 7 and p can execute
independently and in parallel.

Given a frame [F], we denote by X the signatures visible in [F]. In particular,
YEDPB and $IPB denote base resp. derived relations visible in [F]. For the top-
level frame [¢] this induces signatures SEPB := EDB and P8 .= IDB, where
EDB and IDB denote the global database scheme.

The local signature g, (7 of a frame [Fin.7(Z)] is defined in terms of
imported and private relations of the procedure m which defines that frame:

Let ImP and $E*P denote the signatures of imported relations and exported
relations of 7, respectively. All relation names occurring in 7 but neither in %m»
nor in %P are assumed private and belong to the private signature of m which
is split into private base relations SEPP and private derived relations LLPB,

YEDPBE and ©IPB denote the union of all EDB/IDB relations used in pro-
cedures of a given program. Using private and imported relations, the visible
relations of a frame are defined as follows:

Definition 1 (Visible EDB/IDB Relations). Let [F'] := [F.n.7(Z)] be the
frame created by the procedure call 7(Z) in [F.n]. Then the signature of visible
EDB/IDB relations of the new frame [F"] is given by

SEPB = (nEPBnxlmryuxEPE | 3PP .= (B[P nximr) u nIPB

Therefore, [F'] “sees” all imported EDB/IDB relations which are visible in the
frame [F] of the calling transaction and all private EDB/IDB relations of .

EDB relations are imported by taking over their extensions from the calling
state into the initial state of the subtransaction (rules (D) in Section 3.2). In
contrast, IDB relations are imported by including their defining rules into the
rule set of the subtransaction frame (cf. Definition 5).

The export of an EDB relation is accomplished by “copying” the contents
of the protocol relations of the final state of a subtransaction into the request
relations of the parent transaction (rules (E) in Section 3.2).°

User-defined rules may change EDB relations only through request rela-
tions. Protocol relations accumulate all non-revoked requests, ie the net effect
of changes of a subtransaction is automatically maintained by the system. The
extensions of the protocol relations are translated into requests for the calling
transaction when the subtransaction commits.

Definition 2 (Request and Protocol Relations). Let Y278 be the signa-
ture of visible EDB relations in a frame [F]. Then the signatures £ 57 and £t
of request relations and protocol relations of [F| are defined as

$Hed .= lins:R, del:R | R € SEPBY | £Prot .= linsd:R, deld:R | R € TEPB} -
5 This provides a natural facility for implementing hypothetical updates: A procedure

imports a relation without exporting it. Then it can operate on this relation without
making changes visible to any other transaction.



Note that of the above-mentioned signatures, only $4P8 and E?eq are user-
definable; the relations from SEPB and $E7°! are maintained by the system.

The interface to the application domain is provided by sets E of external event
names and A of external action names. These induce signatures for external
events and actions:

Definition 3 (External Events and Actions). Given sets E and A of exter-
nal events resp. actions, the signatures for external events and actions are
Ev ._ Act ,_
¥ i={relec E} , T4 :={<da|a€ A} 5
»Fv is visible (read-only) only within the distinguished procedure main (Section
3) defining the top-level transaction [¢], while ¥4¢ is visible (write-only) in all
frames.
Finally, the global signature contains additional relations for handling pro-
cedure calls and transaction management:

Definition 4 (Transaction Management). For a given set II of procedure
names, the signature 7°¢ := IT is used to represent procedure calls. Transaction
control is provided through the signature

LIubtr . — Laborted:w, committed:w | w € XFo}

of relations indicating which subtransactions have committed or aborted, and
through the O-ary relations in

O .= { BOT, running, EOT, alive, abort} 5
All relations in £5%/*" and X* are globally visible (but in general have different
extensions for each frame). ¥4 and $F7°¢ are completely user-defined, abort is
partly user-defined, the others are internally defined.

The signature ¥ comprises all previously mentioned signatures.

3 Syntax: Programs and Rules

In this section, we describe the syntax of user-defined rules and built-in frame
and procedure rules. The logic programming semantics of programs is presented
in Section 5.

3.1 User-Defined Rules

Programs and Procedures. A Statelog program is a finite set of Statelog pro-
cedures. There is a distinguished 0-ary procedure main (which is used to define
the top-level transaction for the initial frame [¢]). An n-ary Statelog procedure
m is of the form
proc m(Ay,..., An); VI,...,Ii; AOy,...,0;
initial: P10, (m);  always: Pyyays(m);  final: Pripg ()
endproc



where the arguments A; of 7 are variables that may occur in the rules of P (7).
The relations I; € SFPB U nIPB and 0; € LEPE denote the imported, resp.
exported relations®. The P () are finite sets of Datalog rules (possibly with
negation) of the following form:

Pypitiar(m) is the set of initial rules. These are only enabled in the initial state of
the transaction T); defined by = and may be used for initialization purposes.

Poiways(m) is the set of permanent rules, applicable in all states of T.

Ptinai(m) defines final rules which can be applied only in the last state of T5.
They have to be of the form “abort < ic-condition” and may be used for
integrity maintenance: if an inconsistency is detected (ic-condition becomes
true), the current transaction is automatically aborted.

Rules. The user may define rules only through the sets P (7) above, therefore,

all user-definable rules have standard Datalog syntax. Depending on the relation
symbol in the head of a rule, the following cases can be distinguished:

Views: V(X)) « ... for all V € »IPB
Change Requests:  ins:R(X) < for all R € XFPB
del:R(X) + for all R € SFPB
Procedure Calls: (X)) <« ... for all w € xFroe
Ezternal Actions: QAX) « ... for all <A € xAct
Transaction Control: abort <+ ... where abort € L

External events are allowed only in the body of rules of main, whereas actions
may occur in all procedures, but are only allowed in rule heads. Since EDB rela-
tions are not directly user-definable by rules, all changes to base relations have
to be accomplished through insert and delete requests. The materialization of
these requests is implemented by frame rules which are described in the following
section.

Visibility. Every procedure 7 defines a set of internal rules P(7) implementing
the desired semantics of initial, always and final declarations. For every frame
[Z.7(Z)] there is a set P([Z.w(Z)]) of visible local rules, namely rules of = and
rules for imported IDB relations.

Definition 5. For a procedure 7, the set of internal rules P(r) is defined as
P(W) = {h(—b,BOT| hﬁbepinitial(ﬁ)}
U {h < b, alive | h < b € Payays(m)}
U{h < b,EOT | h+ b€ Ppina(m)} .
Using these, the set of visible local rules P([F]) of a frame is defined as
P([e]) = P(main)
P([Fn.n(Z)]) == P(m) U
{h —be P([F)) | h e SEPE N EImP} for all n € Ny, 7 € BFroc

5 W.lo.g., we assume that relation names are unique, even when the arity is ignored.



The way IDB relations are treated reflects the intention that derived relations are
imported by importing their defining rules, whereas EDB relations are imported
by taking over their extensions into the initial state of a subtransaction.

3.2 System-Defined Rules

System-generated frame and procedure rules implement the intended semantics
of request relations and procedure calls. All changes are encapsulated within
the current transaction frame and invisible everywhere else until the transaction
commits. State terms are used in the specification of transitions and transaction
management. Let [F] be the current frame. Then the following rules are visible
(labels to the right of rules will be used in the compilation into a logic program
in Section 5):

Frame Rules. Frame rules specify the correct handling of update requests and
transitions. For all EDB relations R visible in F, the following frame rules are
also visible:

Updates on EDB relations are executed in the transition to the successor
state. EDB relations are propagated to the successor state as long as EOT does
not hold:

[Z +1] R(X) « [Z] ins:R(X),~EOT. (B)
[Z +1] R(X) « [Z] R(X),~del:R(X),~EOT.
The non-revoked updates of [F] are accumulated in protocol relations:
[Z +1] insd:R(X) « [Z] ins:R(X),-EOT. (B)
[Z + 1] insd:R(X) + [Z] insd:R(X), ~del:R(X ), ~EOT.
[Z +1] deld:R(X) + [Z] del:R(X),-~EOT.
[Z + 1] deld:R(X) < [Z] deld:R(X), —ins:R(X),-EOT.
While there are pending change requests, a transaction is running:

[Z] running  [Z] ins:R(X), ~R(X). (@)
[Z] running < [Z] del:R(X), R(X).
A fixpoint is reached when there are no more changes, so EOT is signaled:
[Z] EOT <« [Z] BOT, —~running. (4)
[Z + 1] EOT « [Z] running, ~abort,[Z + 1] —running.

The internal event abort terminates a transaction prematurely:
[Z] EOT < [Z] abort. (A4)
Apart from user-defined aborts, a transaction aborts if inconsistent requests are
raised:
[Z] abort + [Z] ins:R(X), del:R(X). ()
States of a frame are alive if the transaction really uses them:
[Z] alive «+ [Z] BOT.

[Z + 1] alive < [Z] running, ~EOT. (4)



Procedure Rules. Procedure rules implement the semantics of procedure calls,
ie the execution of subtransactions. For all procedures m, in a frame [F] the
following procedure rules are visible:

A procedure call creates the initial state of a new frame, signals BOT and ini-
tializes all imported relations:

[Z.7(X).0] BOT + [Z] n(X). (4)
for all R € £I™? A SEPB;  [Zx(X).0] RY) « [Z] RY),x(X). (D)

The processing of the results is implemented by rules checking the successful
termination of the subtransactions and evaluating their protocol relations: Since
these contain the changes made by the subtransactions, their extensions are
copied into the request relations of the parent transaction according to the export
specification:

for all R € XL2r 0 LEDPE
[Z] ins:R(Y) « [Z] 7(X),[Z.w(X).N] insd:R(Y), EOT, —abort. (E)
[Z] del:R(Y) «+ [Z] 7(X),[Z.7(X).N] deld:R(Y'), EOT, —~abort.

Thus, [Z.7(Z).n] insd:R(j) and [Z.7(Z).n] deld:R(§) with [Z] n(Z), [Z.7(Z).n] EOT,
- abort are equivalent to requests [Z] ins:R(y) resp. [Z] del:R(gy) which are de-
rived directly.

Parent transactions also perform some bookkeeping about committed and aborted
subtransactions:

[Z] committed:w(X) « [Z] n(X),[Z.x(X).N] EOT, —abort. (4)
[Z] aborted:m(X)  « [Z] m(X),[Z.7(X).N] EOT, abort.
The user can formulate application-specific aspects of transaction management,
e.g. that the parent transaction should abort, if the child aborts:

abort < m(X), aborted:n(X) .

3.3 Sequential Composition

To provide sequential execution of procedures as a built-in, the signature is
extended with a connective “®”, which may be only used in the head of user-

defined rules, e.g.
(A® B) « body .

means first do A, then do B, if body is true. (A® B) is compiled into two internal

rules: )
[Z] A, running <+ [Z] (A ® B).

[Z + 1] B + [Z] (A® B), ~abort.

The previous scheme generalizes to the polyadic case A1 ®- - -® Ay, in the obvious
way.



Sequential composition is not only useful to serialize the execution of proce-
dures, but also for directly manipulating relations. E.g. the rule

del:R(X) ® ins:R(X) < body .

generates exactly one intermediate state in which X is not in R. This can be
useful in defining hypothetical updates, e.g. to test this intermediate state and
see what would happen if R(X) were deleted.

4 Examples

The hierarchical transaction model with import and export declarations allows
a flexible treatment of several interesting features of databases, like for example
the following:

e Static integrity constraints can be implemented by using the final rules for
aborting transactions (Example 2).

e Checking the admissibility of changes and blocking inadmissible ones: for any
fact p(Z) that should be guaranteed, derive ins:p(Z). Every request to delete
it causes an inconsistency.

e Ephemeral updates: every transaction can try some updates, check their re-
sults and decide whether it should commit or abort (Example 2).

e Hypothetical updates: every transaction can work on relations which are im-
ported but not exported without having any effect at commit-time. By this
it can create a hypothetical scenario, check the outcome and report the con-
sequences. This can be used to evaluate several alternatives in parallel.

Example 3 (To Hire or Not to Hire: State Space and Database).

The program given in Example 2 creates the frames and database states given in
Fig. 3. Frames are presented by shadowed boxes, states are presented by ordinary
boxes. In all states, the upper entry gives the state term, the data below the first
horizontal line are facts which are derived by frame rules or local rules, and the
data below the second line (if it exists) are facts which are derived from results
of subtransactions.

In this example it is assumed that the average salary exceeds the admissible
amount, so that the transaction hire(john,60000,d1) aborts, making no effects
visible to its parent transaction.

Example 4 (The Christmas-Problem). Consider a relation empl(Employee,
BirthDay, Salary) with the obvious meaning. We want to implement the following,
informally given procedure: Every employee shall be given a salary raise by 5%
at his/her birthday; on Christmas every employee shall get an extra $1000. This
is accomplished in flat Statelog as follows [LHL95]:
[S + 1] mod:empl(E,Bday,Sal~+Sall) +
[S] >daily, date(Day), Day=Bday, empl(E,Bday,Sal), Sall:= Sal*1.05).
[S + 1] mod:empl(E,Bday,Sal~Sall) «+
[S] >daily, date(Day), xmas(Day), empl(E,Bday,Sal), Sall:= Sal+1000).
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Fig. 3. Frames and Database States (cf. Example 2)

[e.n.hire(john, 60000, d1).0.checksal(dl)

,d1)]

These rules work fine unless there is some employee whose birthday is on Christ-
mas: Then two inconsistent modify-requests are generated, and the subsequent
state is not well-defined. In a flat model, the problem could be solved by complete
case splitting or by a rule using three states (however, this raises the problem
that the intermediate state should not trigger other rules). In the structured
model, the sequential composition inc_xmas ® inc_bday is used by the top-level
transaction incsal to specify the order of execution:

proc main; always: incsal(Day) < ™>daily, date(Day). endproc

proc incsal(Day); Vempl; Aempl;
initial: inc_xmas(Day) ® inc_bday(Day) <.

endproc

proc inc_xmas(Day); Vempl; Aempl;

initial: mod:empl(E,Bday,Sal ~»Sall) «
xmas(Day),empl(E,Bday,Sal), Sall:= Sal+1000.

endproc

proc inc_bday(Day); Vempl; Aempl;

initial: mod:empl(E,Bday,Sal ~»Sall) «
Day=Bday, empl(E,Bday,Sal), Sall:= Sal*1.05.

endproc



If “®” were replaced by the simultaneous conjunction inc_xmas(Day) , inc_bday(Day),
then two conflicting requests would be derived and the transaction would be
aborted automatically by corresponding frame rules.

5 Logic Programming Semantics

In this section, we define the declarative semantics of a Statelog program P by
a compilation into a logic program P*, which in turn defines a certain canonical
Herbrand-style model.

5.1 Compilation Scheme

The basic idea of the compilation is to code state terms into predicates, ie every
term [Z]R(X) is transformed into a term R([Z], X). In the following definitions,
m ranges over the finite set of procedure names which is given a priori by the
user program (ie, the rule scheme is applied for all 7 € £F7°¢). Moreover, all
€-expressions may be defined by rules in the obvious way, but are omitted to
avoid unnecessary details.

In a first step, state and frame terms, the visibility of relations (Section 2.3),
and the import of IDB rules are defined:”

Definition 6 (Frames and States). If a procedure 7 (with arguments X) is
called, a frame and all necessary states are created:

state([.0]). B frame([e]). B
state([Z.7(X).0]) « #([Z], X). frame([Z.7n(X)]) « n([Z], X).
state([Z + 1]) « state([Z]), alive([Z]). 5

Definition 7 (Visible EDB). The relation visible : F x SEDPB defines EPB
(Definition 1), ie visible([F'], R) means that R is a visible EDB relation in frame
[F:

visible([e],R) «+ R € 108 )

visible([Z.7(X)],R) « frame([Z.7(X)]), R € SFPF.

visible([F.N.7(X)],R) + frame([F.N.7(X)]), visible([F],R), R € XIm». 0

Definition 8 (Visible IDB). The relation imports : F x S/PB x $F70¢ defines
which IDB rules are visible in a frame, ie imports([F], R, P) means that in frame
[F'] the IDB rules for R from procedure P are imported:

imports([e], R,7) + R € XIDB .

imports([Z.7(X)], R, ) + frame([Z.7(X)]), R € XIPB.

imports([F.N.7(X)], R, P) + frame([F.N.7(X)]), imports([F], R, P), R € ©Lm»_

The main step consists of a compilation of the various rules from Section 3
(nesting of procedure calls, import of EDB/IDB relations, materialization of
requests, etc.) into a logic program P*. In particular, the restricted visibilities
of relations have to be considered:

" Expressions of the form [F.N] denote standard terms in the obvious way, ie

f[](fdot(F7 N))



Definition 9 (Compilation P — P*). Apart from the preceding rules, the com-
piled program P* of a Statelog program P contains the following rules:

la. On the highest level the rules of the main part are activated:
for all rules h(Xy) « b1 (X1),...,00,(X,) € P(main):

h([e.N], Xo) + b1([e.N],X1),...,b,([e.N], X,.), state([e.N]).
1b. In every frame, the rules of the corresponding procedure are activated:
for every m € ¥F7°¢ and all rules h(Xp) < b1 (X1),...,b.(X,) € P(7):
h([Z.7(Yy).N], Xo) + bl([Z.n(%)LN],Xl), o, b ([Z.7(Y).NT, X,0),
state([Z.7(Yp).N]).

2. In all frames the appropriate defining rules of imported IDB relations are
used: for every m € XF7°¢ and all rules h(Xp) + b1 (X1),...,0a(X,) €
P(n):

h([F.N], Xo) + bi([F.N], X1),...,b,([F.N], X,.),
state([F.N]), imports([F], h, ).

3. The application of frame and procedure rules from Section 3.2 has to be
restricted:

3a. In every state, all rules marked with (A) are activated: for all such rules
[Zo] h(Xo) < [Z1] b1(X1),...,[Zn] bn(X,,) with state variable Z in all Z;:

h([Zo], Xo) = b1([Z1], X1), .., bu([Zn], X»), state([Z]).

3b. Frame rules marked with (B) are restricted to visible EDB relations: for all
such rules [Z + 1] h(Xo) < [Z] b1(X1),-..,bn(X}) with EDB relation R:

h([F.N + 1], Xo) + bi([F.N],X1),...,b.([F.N], X,),
state([F.N]), visible([F], R).

3c. Frame rules marked with (C) are also restricted to visible EDB relations:
for all such rules [Z] h < [Z] b1(X1),...,bn(X,) with EDB relation R:

h([F.N]) « b ([F.N],X1),...,ba([F.N], X,), state([F.N]), visible([F], R).

3d. Procedure rules marked with (D) are restricted to imported EDB relations:

for all such rules [Z.7(X).0] R(Y) « [Z] R(Y),n(X) with EDB relation R:
R([Z.x(X).0],Y) « R([Z],Y),n([Z], X), state([Z]), R € ©LmP.

3e. Procedure rules marked with (E) are restricted to exported EDB relations:
for all such rules [Z] h(Y) < [Z] 7(X), [Z.7(X).N] b1 (Y),...,b,(Y) with
EDB relation R:
state([Z.7(X).N]), R € XEep,

m}

Note that the generated rules may be safely evaluated in a bottom-up style, since
all rules are range-restricted provided the user-defined rules are range-restricted
themselves.® Furthermore, by Definition 6 frames and states are only created
when needed by the computation.

8 A rule r is range-restricted if every variable in r occurs positively in the body of r.



5.2 Semantics and Termination

The semantics of a Statelog program P depends on an EDB and a set EB of
external events which have occurred in the current state and is given as a model
M.

Similar to [LHL95] one can find a syntactical condition which ensures that
rules are state-stratified (ie, stratified within a state). Since all rules are progres-
sive, this implies that P* is locally stratified and therefore has a unique perfect
model [Prz88]. In case rules are not necessarily state-stratified, the well-founded
model [VG89, VGRSI1] provides a natural and generally accepted semantics. As
it extends the perfect model semantics — ie coincides with the perfect model on
locally stratified semantics — we use it as the canonical model M:

Definition 10 (Event Base). The event base EB := {ev(Z) | ev(Z) is signaled}
is the set of all external events signaled in the current state. 5
Definition 11 (Semantics of P). The semantics M(P, EDB, EB) of a State-
log program P w.r.t. a database EDB and an event base EB is the well-founded
model of

P U{r([e0],2) « . | 7(&) € EDBYU{ bev([.0],7) « . | ev(z) € EB} _

Termination of rules can be guaranteed by enforcing that only finite models are
actually generated:®

Definition 12 (Termination). Given an EDB and an event base EB, a pro-
gram P terminates if there are only finitely many states in M(P, EDB, EB). 5
Since the chosen model-theoretic semantics M is deterministic, confluence is
implied. Moreover, from the following lemma the uniqueness of the final state —
if one exists — follows directly.

Lemmal3. In every frame [F| there is at most one state [F.m] such that
M(P,EDB,EB™) |= EOT([F.m]). In this case [F.m+1] is an empty state, and
there are no states [F.m'] with m' > m+1.

Proof. Frame rules are deactivated when FOT holds, thus EDB and proto-
col relations are empty in [Fom+1]. From M | EOT([F.m]) follows M |=
—alive([F.m+1]), disabling the local rules from P([F]) in [F.m+1]. Thus IDB
and request relations are empty, no procedure is called in [F.m+1], and no pro-
cedure return rule can insert any requests into [F.m+1]. Hence neither running,
BOT, EOT, nor alive are derivable, so [F.m+1] is really an empty state. Thus,
M = —state([F.m+2]).

Theorem 14. If a program P terminates w.r.t. an EDB and EB, there is a
unique final state [e.m] such that M(P, EDB,EB) = EOT([e.m]).

¥ Another approach is to use a finite representation of infinite models, cf. [CI93].



In case of termination, the final state [e.m] represents the effect of executing
the transaction given by EB and P on the database EDB: if M |= —abort([e.m]),
then [e.m] is the new database state reached after executing this transaction.
If M = abort([e.m]), then the transaction aborts, and the database remains
unchanged.

Note, that the converse of Theorem 14 does not hold, since EOT can be
derived even if infinitely many states are nonempty. For example, the following
program creates an infinitely deep nesting of procedure calls of m but derives
EOT on the top-level in the first state:

proc main; initial: 7 +. , abort+. endproc
proc 7; initial: 7 <. endproc

There are different ways to enforce termination of rule processing, even though
the problem of deciding whether a program P terminates for all databases is
undecidable in general. One way, similar to that of [Zan95], is to enforce ter-
mination at runtime by adjusting frame (and procedure) rules in such a way,
that changes may not be revoked. In the presence of procedures, one has the
additional requirement, that the procedure call graph induced by P is acyclic
(local rules may be recursive, of course).

Another approach, pursued in flat Statelog, is the class of A-monotone pro-
grams which guarantees termination at compile-time [LHL95]. A similar notion
can be defined for Statelog with procedures, but is beyond the scope of this

paper.

6 Kripke-Style Semantics

In this section, a model-theoretic Kripke-style semantics is given, which inter-
prets the state space as a suitable Kripke structure. It provides the connection
between the intuitive understanding of procedure calls and the state-oriented
model obtained by the logic programming semantics and can serve as a ba-
sis for formal verification. A class of Kripke structures appropriate to model
nested transactions is defined together with the notion of a minimal Kripke
model of a Statelog program w.r.t. an EDB and an EB. Then the equivalence of
the Herbrand-style model (Section 5) and the minimal Kripke model is shown,
showing the adequacy of the concept.

The Kripke-style semantics is presented in its two-valued version, thus cov-
ering all “well-behaved” computations, ie those where all states are completely
defined. This is the case if and only if the well-founded model is total.

6.1 Statelog Kripke Structures

Definition 15 (Statelog Kripke Structure). A Statelog Kripke structure over
a given Statelog signature ¥ is a tuple K = (G, 4, Q, R, S, U, M, P), (cf. Fig. 4)
where

G is a set of states,
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A (actions) is a set of procedure names,

9,8 CGxAxUY x G, are two marked accessibility relations between states
representing the procedure-call resp. -return relation: Q(g,n(Z),¢’) means
that the first state of the subtransaction induced by a call of procedure m
with arguments Z is ¢'. S(¢', 7(Z), g) means that ¢’ is the final state of the
subtransaction induced by a call of procedure m with arguments Z in g. Thus,
results of subtransactions have to be communicated along S.

R C G x G is another accessibility relation modeling the temporal successor
relation. Let R* denote the reflexive transitive closure of R.

U is the universe of elements,

M is a function which maps every state to a first-order interpretation over
with universe U,

P is a function which maps every g € G to a set of local rules (the rules visible
in g). -

To obtain a simpler notation, every state g € G is identified with the correspond-

ing first-order structure M(g).

Definition 16. A Statelog Kripke structure K = (G, 4, Q,R,S,U, M, P) over
a signature X is a model of a Statelog program P over the same signature if

e A is the set II of procedure names occurring in P

e External actions are only present in the initial state on the highest hierarchical
level: for all g € G with P(g) # P(main) or 3¢’ : R(¢', g), g|sz. = 0.

e States with no temporal predecessor which are not targets of a procedure
call, are initial states on the highest hierarchical level: for all ¢ € G with
{h | R(h,g9)} =0 and {(h,a)| Q(h,a,g9)} =0 : P(g) = P(main) and there
exists at least one state with this property.

e States which have no temporal predecessor or which are targets of a procedure
call are beginnings of transactions and their protocol relations are empty:
for all g € G with {h | R(h,9)} =0 or Ih, 7, z: Q(h,7(Z),9):

g = BOT and g|sprot =0
e Every g € G is a model of the corresponding set of local rules: g = P(g) .



e Q represents exactly the procedure calls:
forallge g, me A, 2 €lUU”: g En(Z) & Fh:0Q(g,7(Z),h) .
e S represents exactly the return-from-subtransaction relation:
for all g,¢',h' € G, m€ A, T € U¥:

g, m(%),9') AR (g, ') AR(K, 1) & S(h',m(Z),g) .

e The temporal accessibility relation R models the relationship between the
EDB and request relations of one state and the EDB and protocol relations
of the successor state: for all g, h € G:

R(g,h) & P(g) =P(h) and for all R € XFPE .
h(R) = (g(R) U g(ins:R)) \ g(del:R) and g(ins:R) N g(del:R) = and
h(insd:R) = (g(insd:R) U g(ins:R)) \ g(del:R) and
h(deld:R) = (g(deld:R) U g(del:R)) \ g(ins:R)
e The (marked) relation @ models the procedure calls:
forall g, € G, me A, T eUY:
Q(g,7(2),g") = P(g") =P(r)U{h+be P(g) | h € IPBAXImP} and
for all R € XFPB . ¢/(R) = g(R) if R € ©Imp,
g'(R) =0 if R ¢ XImp
e The (marked) relation S models the feedback from subtransactions:
forallge G, R€ Xgpp, 7 € A:

g(inS:R) 2 U{g’ | EW,E:S(g’,W(E),g)/\g’I;éabort/\REEf”} gl(in"Sd"R) ’
g(delR) 2 U{g’ | 3m,z:S(g",7(Z),9)Ag' eabort AREXE™P} g’(deldR) ’
g(aborted:w) = {Z e U¥ | 3¢' : S(¢', 7 (&), g) A g' = abort}
g(committed:m) = {z e U* | 3¢9’ : S(¢',7(Z),g) A g' [~ abort}

e All M(g) are minimal s.t. the above-mentioned conditions hold. 5

Definition 17. Let C(g) be the subset of requests which are contributed to g
by subtransactions:
C(g) ={ins:R(Z) | g € G, mre A,geU“:
S(g',m(9),9) AN R € SE® A ¢ |= insd:R(z) A —abort} U
{del:R(z) | 3¢’ € G,mre A,je U :
S(g',7(9),9) AR € SE%P A ¢ |= deld:R(Z) A —abort} O

Lemma 18. The temporal successor relation R is deterministic:
for all g,h,h' € G: R(g,h) AR(g,h') = h="n

Definition 19. A computation path in a Statelog Kripke structure K is a se-
quence (g1, g2, - . .) with R(g;, git+1) for all i. 5

Computation paths in the Kripke model correspond to frames in the Her-
brand model. Since R is deterministic, in every model K of P, for every g € G
there is exactly one maximal (infinite, but possibly becoming stationary) com-
putation path through g.



Definition 20. The non-extendable sequences in R* are collected in a relation
R™g,h) & R*(g,h) A=3h #h:R(h, 1) ,
and for 7 € £F7°¢ 7 € Y“, g € G such that g = 7(7), let
(7(z))(g) := h € G such that 3¢’ € G : Q(g,7(x),g9') AR"(g', h)

denote the result of executing 7(Z) in state g. -

Using this definition, C(g) can be characterized without explicitly mentioning S:

Clg) ={ins:R(Z) | Ir€e A, ge U :
g = 7(7) AR € ZE2P A (7(9))(g) | insd:R(Z) A —abort} U
{del:R(Z) | Im € A,gelU® :
g = 7(y) AR € XE A (7(9))(g) |& deld:R(Z) A ~abort}
In the following, for a set Z of facts and a logic program P, let ®p(Z) denote
the set of true atoms in the well-founded model of P UZ.

Theorem 21. For every Statelog program P, database EDB, and event base
EB, there is a unique minimal Kripke model (ie with a minimal number of
states) of P with a distinguished initial state go € G such that P(go) = main
and M(go) = ®mmain(EDB U EB).

Corresponding to Theorem 14, we have

Theorem 22. If the minimal model K of a Statelog program P, a database
EDB, and an event base EB is finite and R has no cycles of length > 1, then
there is a unique computation path (go, g1, -, 9n,9n,-..) with g, |E EOT.

6.2 Adequacy of Statelog Kripke Structures

Theorem 23 (Adequacy). Statelog Kripke structures are an adequate model
of the intended intuitive semantics of nested transactions:

e EDB relations are changed exactly via requests:
for all R e XFPB zcU~, g heq:
if (g,h) € R thenh|=R(Z) & (9= R(Z) Ag e del:R(Z)) V g |= ins:R(Z) .
o Fvery state contains all requests contributed by subtransactions:
forallge G:g2DC(g) .
e IDB relations are derived locally by user-defined rules: for all g € G, R €
ZIDB, TEeEUY: g ': R(z) & R(z) € (I)’p(g)(g|EEDB UcC(g)) .
e Requests are derived by user-defined rules or contributed by subtransactions:
forallge G, Re XIPB 3 cuy~:
g = ns:R(T) < ins:R(T) € ®p(g)(g9lseps UC(g)) (Analogously for del:R).
o In all states the protocol relations contain all non-revoked changes of the corre-
sponding subtransactions. For imported EDB relations, they subsume the dif-
ferences between the EDB in the state where the subtransaction was initiated
and the current state, while they represent exactly the EDB for non-imported
relations: for all g,h € G:
(g,h) € QR* = VR e SEPBaxImp . ph(R) = (g(R) U h(insd:R)) \ h(deld:R)
and VR € SEPB\ 2Imp . 1 (R) = h(insd:R)



6.3 Equivalence of Both Semantics

For every program P, database EDB and event base EB, the Herbrand-style
model of P, M(P, EDB, EB) can be split into states by its state term compo-
nents and can be mapped bijectively to the minimal model K of P.

Definition 24. For a Statelog signature ¥, a Herbrand interpretation #H over
YU Z(£Fre¢) is contained in a Statelog Kripke structure K = (G, A, Q, R, S, U,
M, P) if A= XFroc f is the underlying domain of 7, and there is a (partial)
mapping 71 : Z(3F7°¢) — G such that

o for all [z] € Z(XFroe):
if {(p,ﬁf) |pe X,z €U, HEp(z],z)} #0 then [z] € dom(n).

o for all Z]Edom( ), peEX, zelU”:n(z]) Ep(x) & HEDp(z],z).
o for all [2] € dom(n): # = ~FOT([2]) & ROyl +1))
o for all [2] € dom(n): H [= EOT([2]) < R(n([z]),n([=])) -
e for all [2] € dom(n), m € BF°¢ 7 € U~:
H = n(z],2) & Qn(z]),n(lz.7(2).0]) .
e for all [2] € dom(n), 7 € "¢ n € Ny, T € U“:
(H En(lz],2) A = EOT([z.7(Z).n])) & Sz (z).n]),n([])) - .

The following theorem states that the model obtained from the logic program-
ming semantics is equivalent to the Kripke structure representing the model-
theoretic semantics:

Theorem 25. Let P be a program, EDB a database, and EB an event base

such that M(P, EDB, EB) is total. Then M(P,EDB, EB) is contained in the
minimal Kripke model IC of P via a surjective mapping 1.

Proof. Set n([e.0]) := go, n([F"N+1]) := g such that R(n([F.N]), g) (well-defined
by Lemma 18), n([Z.7(Z).0]) := ¢ such that Q(n([Z]),n(Z),g) for those [Z] to
be contained in dom(n) according to Definition 24.

In particular, the unique final state [e.m] of the Herbrand model M is the same as
the stationary state of the unique computation path beginning in go in the min-
imal Kripke Model K. Thus, the logic programming semantics is also adequate
w.r.t. the intuitive semantics.

7 Related Work

The idea of using state terms to refer to different states in logical rules has
come up several times, e.g. in XY-Datalog [Zan93, ZA093], to allow a unified
semantics for active and deductive rules, and in [KLS92, LL94] as a means to
specify updates in a declarative way. Flat Statelog [LHL95], XY-Datalog, and
the temporal query languages Datalogs and Templog [Cho90, AM89, Bau95]
are closely related, since they all extend Datalog by a linear state space. In



contrast, our present approach uses a branching hierarchical state space (similar
to that of Datalog,s [CI93] which does not deal with active rules and procedures,
however). The presented Kripke semantics extends that of [LS93] which is now
a special case restricted to flat sequential computations.

[Zan95] proposes a “transaction-conscious” stable model semantics to cope
with the problem that occurs when ephemeral changes (changes whose effect is
undone within the same transaction) trigger active rules. Thus, to avoid unin-
tended behavior, only durable changes should be visible to active rules. In our
approach this problem is solved in a different way by the concept of “atomically
executing” procedures which encapsulate their changes until the end of transac-
tion. Thus, only the net effect of a subtransaction may trigger rules in the calling
transaction.

Transaction Logic Tr [BK93, BK94] deals, on a high level of abstraction,
with the phenomenon of state changes in logic databases and employs a pow-
erful model theory and proof theory. Primitive updates (so-called elementary
transitions) are not part of 7Tr, but a parameter which is supplied by a tran-
sition oracle. In contrast, Statelog semantics provides a complete specification
of changes from primitive updates to complex transactions and has a standard
logic programming and Kripke-style semantics. Both languages can be combined
by “plugging in” Statelog procedures in the transition oracle of 7x.

The concept of nested transactions in Statelog is similar to that of HiPAC
[DBB*88, DBC96]. Statelog declarations initial, always and final allow execu-
tion of rules at specific points within a transaction and thus can be used in a
similar way as coupling modes in HiPAC. E.g. integrity maintenance may be
deferred until EOT by declaring the corresponding rules final.

The idea to structure rule sets using procedures or modules has already been
introduced in the area of logic programming. E.g. [BMPT94, BT94] develop a
modular design for logic programs including union, intersection, and encapsu-
lation. However, they do not deal with active rules and state change, so their
concept does not cover sequential composition, transactions etc.

[FT96] proposes Eztended ECA rules as a common framework for a large
number of existing active database systems and prototypes. In existing systems,
the semantics of programs depends on the implicitly given operational seman-
tics. These implicit assumptions are made apparent by encoding them in user-
readable EECA rules. Heraclitus[Alg,C] [GHIJT93, GHJ96], is an extension of C
which incorporates the relational algebra and elevates deltas to be “first-class
citizens” of the database programming language. It allows to combine deltas and
to express hypothetical updates, however no logical semantics is given.

Related to our work are approaches dealing with updates in deductive data-
bases. Often, the rule semantics depends on a certain evaluation strategy, e.g.
[Abi88, AV91, SK96] (bottom-up), or [MW88, Che95] (top-down), whereas e.g.
[MBMO95] is — like Statelog — independent of a certain strategy. However, these
works do not cover the ECA-rule paradigm of active databases or the concept
of nested transactions. Although Statelog allows a very intuitive “bottom-up
reading” of rules (cf. Example 1), evaluation may also be done top-down due



to the presence of explicit state terms [S] and [S + 1]. This is in contrast to
approaches like [Abi88, AV91] or [MW88, Che95], which refer to different states
only implicitly. Thus their semantics is more tied to either bottom-up or top-
down evaluation, respectively.

8 Conclusion

In recent work, the benefits of an integration of active and deductive rules have
become apparent [Zan95, MZ95, LHL95]. First of all, a logical framework unam-
biguously specifies the semantics of rules — a necessary precondition to verify and
reason about the behavior of rules. For example, the semantics of transactional
events like abort and commit is completely specified in our logical framework.
Moreover, properties like termination or expressive power can be investigated,
as in [LHL95], independent of a given implementation. This complements work
on termination and confluence of active rules which focuses more on specific
systems like e.g. [AWH92, AWH95, BCP95, KU96].

In this paper, we have presented Statelog, based on a concept which inte-
grates transaction-oriented programming of complex (trans)actions with logical
foundations of deductive rules in a seamless way. This framework is an exten-
sion of flat Statelog [LL94, LHL95|, and uses procedures as a means to structure
rules and to encapsulate their behavior. Statelog programs have a declarative
and deterministic semantics which is given (i) by a compilation into a standard
logic programming semantics, which yields a (naive) implementation of the lan-
guage, and (ii) by a Kripke-style semantics which describes a conceptual and
implementation-independent model of active rule behavior. Procedures execute
isolated and in an all-or-nothing style. The underlying nested transaction model
facilitates parallel execution of concurrent transactions and allows to specify
complex transactions in a natural way using subtransactions. We plan to extend
the prototypical implementation of flat Statelog [Ham95] to the full language
including procedures.
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