
Intl� Workshop on Logic In Databases �LID�
��� July ���	
 S� Miniato
 Pisa
 Italy
LNCS ����
 Springer

Nested Transactions in a Logical Language for

Active Rules

Bertram Lud�ascher Wolfgang May� Georg Lausen

Institut f�ur Informatik� Universit�at Freiburg
Am Flughafen ��� ����� Freiburg� Germany

fludaesch�may�lauseng�informatik	uni
freiburg	de

Abstract� We present a hierarchically structured transaction
oriented
concept for a rule
based active database system	 In �LL��� LHL�
�� we
have proposed Statelog as a uni�ed framework for active and deductive
rules	 Following the need for better structuring capabilities� we intro

duce procedures as a means to group semantically related rules and to
encapsulate their behavior	 In addition to executing elementary updates�
procedures can be called� thereby de�ning �sub�transactions which may
perform complex computations	 A Statelog procedure is a set of ECA

style Datalog rules together with an import�export interface	 System

immanent frame and procedure rules ensure both propagation of facts
and processing of results of committed subtransactions	 Thus� Statelog
programs specify a nested transaction model which allows a much more
structured and natural modeling of complex transactions than previ

ous approaches	 Two equivalent semantics for a Statelog program P are
given� �i� a logic programming style semantics by a compilation into a
logic program� and �ii� a model
theoretic Kripke
style semantics	 While
�ii� serves as a conceptual model of active rule behavior and allows to
reason about properties of the speci�ed transactions� �i� � together with
the appropriate execution model � yields an operational semantics and
can be used as an implementation of P 	

� Introduction

The need for a logically de�ned and intuitive semantics has been recognized
as one of the major theoretical problems in the area of active databases� The
active database manifesto� for example� requires as an essential feature that
�� � � rule execution must have a clear semantics� ie must de�ne when� how� and
on what database state conditions are evaluated and actions executed� �DGG��	�
Nevertheless� researchers continue to complain about the unpredictable behavior
of active rules and the lack of a uniform and clear semantics��

To overcome these di
culties� it has been suggested to use the logical foun�
dations of deductive databases � with certain extensions � as a declarative se�
mantics for active rules �Zan�
� ZS��� Zan��� LL��� LHL��	� The main bene�ts

� Supported by grant no	 GRK �����
�� of the Deutsche Forschungsgemeinschaft	
� �The unstructured� unpredictable� and often nondeterministic behavior of rule pro�
cessing can become a nightmare for the database rule programmer� �AWH�
�	 See
also �Wid��� WC��� PCFW�
� DHW�
� FT���	

of this approach are better understanding� maintainability and reasoning about
rules when compared to the usual implementation�dependent operational seman�
tics� However� as we will show in Section �� the existing �mergers� of active and
deductive rules are not su
cient to model complex �trans�actions in a natural
way� since they �i� lack structuring capabilities� and �ii� do not encapsulate the
e�ect of semantically related rules� In particular� they neglect the fact that com�
plex database transactions can be adequately modeled by nested transactions
where the parent transaction may consult the outcome of subtransactions in or�
der to perform its own complex tasks� As a solution� we propose the extension
of our declarative framework for active rules �LHL��	 by the concept of update
procedures� Procedures execute as �closed� nested transactions whereas previous
rule based approaches were limited to �at transactions� A Statelog procedure
consists of a set of ECA�style Datalog rules each of which de�nes either

� a non�state�changing query� ie a �potentially recursive� view� or
� an action� ie

� a primitive update request �insert� delete� modify��
� a complex update request �procedure call�� or
� an external action to be issued by the database system� or

� a transaction control predicate�

System�immanent frame and procedure rules provide a declarative speci�cation
of state transitions and integrity preserving policies within the logical language
without bothering the user with those problems�
The paper is structured as follows� The remainder of this section is devoted

to an introduction to ��at� Statelog� Section � introduces the main ideas of
procedures and nested transactions and their realization in Statelog� In Section

 the syntax of the language is de�ned� Section � provides some examples� A logic
programming semantics for Statelog is presented in Section � using a compilation
from Statelog to logic programs� Section � de�nes a model�theoretic Kripke�style
semantics which provides the connection between the intuitive understanding of
procedure calls and the underlying state�oriented conceptual model� We give an
overview on related work in Section � and conclude in the last section�

��� Statelog� Datalog and States

In this section� we introduce the basic ideas underlying �at Statelog� �LHL��	�
The extended framework with procedures and nested transactions is described
in Section ��
While for query processing a �one�state logic� like Datalog is su
cient� active

state�changing rules require access to di�erent states and delta relations� In
Statelog� this is accomplished by state terms of the form �S � k	� where S � k
denotes the k�fold application of the unary function symbol ���� to the state
variable S� The domain of S is IN�� ie relations of a Statelog program evolve

� We refer to the language described in �LHL�
� as �at Statelog� since the state space
is IN�� ie a �at structure	 In contrast� Statelog with procedures uses a hierarchical
state space to model the execution of nested transactions	

over the linear state space IN�� S may only occur in state terms� A Statelog rule
is of the form

�S � k�	H� �X� � �S � k�	B�� �X��� � � � � �S � kn	Bn� �Xn� �

where the head H� �X� is an atom� and Bi� �Xi� are atoms or negated atoms� A
rule is progressive� resp� local� if k� � ki� resp� k� � ki� for all i � f�� � � � � ng�
Since past states cannot be changed� we require that all rules are progressive�

Here and in the sequel� we denote by �X a vector X�� � � � � Xm of arguments
�variables or terms� of suitable arity� ground terms are denoted by lower case
letters�

State Transitions and Frame Rules� The user is relieved from handling
states explicitly and may de�ne only actions �including change requests to EDB
relations� and views by local rules� The actual state change from �S	 to �S � �	
is speci�ed by system�generated frame and procedure rules �Section
���� E�g�
the following frame rules de�ne the e�ect of insert and delete requests in �at
Statelog�

�S � �	 R�X� � �S	 R�X�� �S	 �del�R�X��
�S � �	 R�X� � �S	 ins�R�X��

Here R is an EDB relation� while del�R� ins�R� mod�R denote user�de�nable
request relations �also called delta relations� or deltas� which are used to issue
update requests�

Remark� Depending on the underlying assumptions about modi�cations� the
modify request mod�R� �Xold� �Xnew� is not always equivalent to del�R� �Xold� �
ins�R� �Xnew�� In this paper� we con�ne ourselves to describe insert and delete
requests only� A declarative semantics for modi�cations can be found in �LML	
��

Execution Model� In addition to EDB� IDB� and request relations� there are
relations which model the interface to the external application domain� External
events �ev��x� occurring within a certain �atomic� time interval are mapped
to the current state �S	� E�g� an external temporal event may be denoted as
�daily�Date�� or� raised by some monitoring device� it may specify an event from
the real world like �runway clear�R�� etc� External actions �a��x� are requests
to perform some action in the application domain �like �move�Thing�From�To���
It is assumed that external actions issued by the database system have no side�
e�ects on the state of the database�

Triggered by the occurrence of one or more external events �evi in �S	� the
corresponding rules become activated� According to the additional conditions
given in the rule bodies� the database is queried and the actions speci�ed in
the rule heads are performed using frame rules �for internal actions� ie update
requests� or signaled to the outside �external actions�� In the subsequent state
�S � �	� �evi is regarded as consumed� Thus� for a current database state �S	D
and a set of events� the logical semantics of a program P yields a sequence of
intermediate states� a set of external actions� and a new database state �S�nal	D�
see Fig� �� In �at Statelog� a transaction beginning at �S	 terminates when there
are no changes to successive states� ie when �S�nal	D � �S�nal � �	D�

��� �fev�� � � � � evk�
g � � � �S� �fev�� � � � � evkS

g � � �

��� �fa�� � � � � al�
g � � � �S� �fa�� � � � � alS

g � � �

P �

�S��� R�X� �
�S� ins�R�X�	� � �

�S� del�Q�X� �
del�T�X	Y�	� � �

� � �

���
IDB

EDB
� � � �S�

IDB

EDB
� � � �Sfinal�

IDB

EDB
� � �

Fig� �� Mapping of External Events to External Actions and Database States

� Transaction�Oriented Hierarchical Structuring

The need for structuring capabilities and a more elaborated transaction model
can be exempli�ed as follows �this example is adopted from �MW��� Che��	��

Example � �To Hire or Not to Hire�� The employee Emp with salary Sal
should be hired for department Dept provided the average salary after the up�
date does not exceed a certain limit� This may be expressed in �at Statelog �or
similarly in the related XY�Datalog approach �Zan�
	� as follows��

�S	 newemp�Emp�Sal�Dept�� �S��	 checksal�Dept� � �S	 �hire�Emp� Sal� Dept��
�S	 ins�empsal�Emp�Sal�� ins�empdep�Emp�Dept� � �S	 newemp�Emp�Sal�Dept��
�S��	 del�empsal�Emp�Sal��del�empdep�Emp�Dept� �

�S	 �hire�Emp�Sal�Dept�� �S��	 �check ok�
�S	 check ok ��S	 checksal�Dept�� avg�Dept� Amt�� Amt � ������

When an external event �hire�Emp�Sal�Dept� occurs in the current state �S	� the
new employee is preliminarily inserted and the new average salary is checked in
�S � �	 �rules � and ��� If it exceeds the admissible amount� the e�ect of the
insert is undone �rule
��

Problems� Although the above program speci�es the desired transaction� there
are some potential pitfalls and drawbacks with this ��at� approach�

� Undoing the e�ect of changes �here� the compensation of insertions by corre�
sponding deletions� has to be programmed by the rule designer� However� it
is often desirable to automatically propagate the failure of a subtransaction
like checksal�

� There is no structure which allows grouping of semantically closely related
rules� E�g� it is useful to view the insertion using newemp �rule �� as an atomic
subtransaction callable by the top�level transaction hire�

� It is assumed that the average avg�Dept�Amt� for each department is given by other
rules	 A conjunction H�� H� � B in the head of a rule is equivalent to two rules
H� � B and H� � B� ie denotes simultaneous �execution�	

� The e�ects of ephemeral changes �Zan��	� ie changes whose e�ect is undone
later within the same transaction� and hypothetical changes are visible to other
rules� since there is no encapsulation of e�ects of semantically related rules�
E�g�� if �hire����� occurs in �S	� the delete requests ins�empsal and ins�empdep
may trigger other active rules� although in �S��	 the updates are revoked� This
may lead to unjusti�ed �re�actions by other rules� similar to those described
in �Zan��	�

��� Procedures and Nested Transactions

In order to solve these problems� we propose the concept of Statelog procedures�
A procedure � is a set of local Statelog rules with an import�export interface
describing which relations are visible and updatable by �� When � is called at
runtime� it de�nes a transaction T� by issuing primitive updates �through request
relations� and�or calling other procedures which in turn de�ne subtransactions
etc� T� terminates either successfully� ie if commit is true in some state� or aborts�
When � calls another procedure �� a subtransaction T� is started whose results
are either incorporated in T�� if T� commits� or discarded otherwise� From the
point of view of the calling transaction T�� the subtransaction T� is atomic�
therefore requests derived directly within T� and those submitted by T� should
be indistinguishable� This is achieved by frame and procedure rules �Section
����

The behavior of � is encapsulated� since deltas de�ned by T� are only visible
within T�� but not in other �concurrent� transactions� Transactions execute in
isolation and in an all�or�nothing manner� ie no results of T� will be visible in T�
if T� aborts� Note that this does not mean that T� also aborts � on the contrary�
� can detect the failure of T� and issue alternative or compensating actions or
retry the execution of � later�

The way in which procedures execute �ie as nested transactions� induces a
hierarchical structure of the state space� The model�theoretic foundation of this
concept is given by Kripke structures with di�erent accessibility relations� see
Section �� We represent this hierarchy by transaction frames and complex state
terms which extend the �at state terms �S � k	 of �LHL��	�

The usual partitioning of the signature into base relations �EDB� and derived
relations �IDB� is carried over to the hierarchical concept� base relations are
passed from the current state to successor states �modulo the changes given by
deltas� while IDB relations are not passed on but are rederived when needed� All
user�de�ned changes to base relations have to be done via requests� ie by using
request relations ins�R� del�R�mod�R �also called delta relations� or deltas��

Protocol relations insd�R� deld�R�modd�R �for inserted� deleted� modi�ed� re�
spectively� accumulate the net e
ect of user�de�ned requests and are automat�
ically maintained by the system� Requested changes become e�ective in the
transition to the successor state� Finally� there is a set of procedure names
and transaction control relations BOT� EOT � abort etc�

In this structured model� Example � can be speci�ed as follows ���� denotes

sequential composition� ie �rst do �� then do ����

Example � �To Hire or Not to Hire revisited�� The procedure hire de�nes
an atomic transaction� First it calls newemp to insert the employee into the
database� then it calls checksal to check the average salary� If this exceeds a cer�
tain amount� the transaction aborts� In the rules of hire it is speci�ed that in this
case hire should also abort� making no e�ects visible to its parent transaction�

proc hire�Emp�Sal�Dept�� Oempsal�empdep� Mempsal�empdep�
initial� newemp�Emp�Sal�Dept� � checksal�Dept� � �
always� abort � aborted�checksal�Dept��

endproc

proc newemp�Emp�Sal�Dept�� Mempsal�empdep�
initial� ins�empsal�Emp�Sal� ��

ins�empdep�Emp�Dept� ��
endproc

proc checksal�Dept�� Oempdep�empsal�
initial� abort � avg�Dept�Amt�� �Amt�������

endproc

The symbols �O� and �M� denote import resp� export of relations �Section ��
��
The declarations initial� always �and 	nal� specify when the corresponding rules
should be executed� ie in the �rst state of the subtransaction� in every state�
or in the last state� respectively� see Section
�� for details� hire may be called
automatically from the top�level transaction using a rule of the form

hire�Emp�Sal�Dept� � �hire someone�Emp�Sal�Dept��

Whenever the external event �hire someone occurs� hire is executed as an atomic
transaction� Fig�
 depicts the state space which is created when hire�john�
�����d��
is called �and eventually aborted� since the average after the hypothetical update
exceeds �!!!!��

��� Hierarchical State Space

In the hierarchical context� state terms are more complex and extend those of �at
Statelog� every state term encodes the complete transaction hierarchy from the
top�level transaction down to the current transaction� States on the same level
are grouped into �transaction� frames� Given a set of procedure names� the
syntax of frame terms F� � and state terms Z� � over is de�ned recursively�

�� ��	 is a frame term�
�� �F�n	 is a state term� if �F 	 is a frame term and n � IN��

� �Z����x�	 is a frame term� if �Z	 is a state term� � � is an n�ary procedure
name� and �x is a vector of n terms from the underlying Herbrand universe�

� The symbol ��� is borrowed from �BK���� where it is called serial conjunction	

�F������� �F�����n�
�F�����

�F��� �F��� �F��� �F��� � � �

�F������� �F�����m�

�F������� �F�����m� ��
�F�����

�F����������� �F���������k�
�F���������

Fig� �� States and Frames

With these� a hierarchically structured state space is constructed �Fig� ��� the
initial frame ��	 denotes the top�level transaction� its initial state is ���!	� Let �Z	
be the current state� Then for a procedure call ���x� the frame of the subtrans�
action induced by the execution of ���x� is �F 	 � �Z����x�	� the �rst state of the
transaction is �F�!	 � �Z����x��!	� The successor state of �F�n	 �on the same level�
is ��F�n� � �	 �� �F��n� ��	� The grouping of states into frames is de�ned as

�F 	 �� f�F�n	 j n � IN�g �

which implies that every state �F�n	 belongs to exactly one frame �F 	�
Using this representation� the frames �Z����x�	 and �Z����y�	 induced by dif�

ferent parallel procedure calls of � and � in the same state �Z	 can be uniquely
identi�ed �if the name of the procedure is the same� at least the parameters are
di�erent�� Similarly� frames of transactions induced by the same procedure call
from di
erent states� �Z�����x�	 and �Z�����x�	� can also be distinguished�

��� Signatures and Visibility

When procedures execute in parallel or as nested transactions� the question arises
which �versions� of relations should be visible within a transaction� In Statelog
this issue is resolved using the hierarchical state space�

Assume two procedures � and � are called simultaneously in the same state�
say �F��	 �Fig� ��� This creates two di�erent frames �F����	 and �F����	� thereby al�
lowing � and � to maintain their own �view� of relations� Initially� ie in �F�����!	
and �F�����!	� � and � �see� the same versions of relations� � and � may up�
date their versions subsequently and return the accumulated changes to �F��	
as soon as they commit � here� in �F�����m	 and �F�����n	� For handling con�
tradictory requests� con�ict resolution policies can be speci�ed by appropriate

frame rules� Real parallelism is supported since frames maintain their own ver�
sions of relations� and simultaneously called procedures like � and � can execute
independently and in parallel�
Given a frame �F 	� we denote by "F the signatures visible in �F 	� In particular�

"EDB
F and "IDB

F denote base resp� derived relations visible in �F 	� For the top�
level frame ��	 this induces signatures "EDB

� �� EDB and "IDB
� �� IDB� where

EDB and IDB denote the global database scheme�
The local signature "F�n����x� of a frame �F�n����x�	 is de�ned in terms of

imported and private relations of the procedure � which de�nes that frame�
Let "Imp

� and "Exp� denote the signatures of imported relations and exported
relations of �� respectively� All relation names occurring in � but neither in "Imp

�

nor in "Exp� are assumed private and belong to the private signature of � which
is split into private base relations "EDB

� and private derived relations "IDB
� �

"EDB and "IDB denote the union of all EDB�IDB relations used in pro�
cedures of a given program� Using private and imported relations� the visible
relations of a frame are de�ned as follows�

De�nition � �Visible EDB	IDB Relations�� Let �F �	 �� �F�n����x�	 be the
frame created by the procedure call ���x� in �F�n	� Then the signature of visible
EDB�IDB relations of the new frame �F �	 is given by

"EDB
F � �� �"EDB

F � "Imp
� � 	 "EDB

� � "IDB
F � �� �"IDB

F � "Imp
� � 	 "IDB

�
�

Therefore� �F �	 �sees� all imported EDB�IDB relations which are visible in the
frame �F 	 of the calling transaction and all private EDB�IDB relations of ��
EDB relations are imported by taking over their extensions from the calling

state into the initial state of the subtransaction �rules �D� in Section
���� In
contrast� IDB relations are imported by including their de�ning rules into the
rule set of the subtransaction frame �cf� De�nition ���
The export of an EDB relation is accomplished by �copying� the contents

of the protocol relations of the �nal state of a subtransaction into the request
relations of the parent transaction �rules �E� in Section
����	

User�de�ned rules may change EDB relations only through request rela�
tions� Protocol relations accumulate all non�revoked requests� ie the net e�ect
of changes of a subtransaction is automatically maintained by the system� The
extensions of the protocol relations are translated into requests for the calling
transaction when the subtransaction commits�

De�nition � �Request and Protocol Relations�� Let "EDB
F be the signa�

ture of visible EDB relations in a frame �F 	� Then the signatures "ReqF and "ProtF

of request relations and protocol relations of �F 	 are de�ned as

"ReqF �� fins�R� del�R j R � "EDB
F g � "ProtF �� finsd�R� deld�R j R � "EDB

F g
�

� This provides a natural facility for implementing hypothetical updates� A procedure
imports a relation without exporting it	 Then it can operate on this relation without
making changes visible to any other transaction	

Note that of the above�mentioned signatures� only "IDB
F and "ReqF are user�

de�nable� the relations from "EDB
F and "ProtF are maintained by the system�

The interface to the application domain is provided by sets E of external event
names and A of external action names� These induce signatures for external
events and actions�

De�nition � �External Events and Actions�� Given sets E and A of exter�
nal events resp� actions� the signatures for external events and actions are

"Ev �� f�e j e � Eg � "Act �� f�a j a � Ag �
�

"Ev is visible �read�only� only within the distinguished procedure main �Section

� de�ning the top�level transaction ��	� while "Act is visible �write�only� in all
frames�

Finally� the global signature contains additional relations for handling pro�
cedure calls and transaction management�

De�nition
 �Transaction Management�� For a given set of procedure
names� the signature "Proc �� is used to represent procedure calls� Transaction
control is provided through the signature

"Subtr �� faborted��� committed�� j � � "Procg

of relations indicating which subtransactions have committed or aborted� and
through the !�ary relations in

"Ctl �� fBOT� running�EOT� alive� abortg �
�

All relations in "Subtr and "Ctl are globally visible �but in general have di�erent
extensions for each frame�� "Act and "Proc are completely user�de�ned� abort is
partly user�de�ned� the others are internally de�ned�

The signature " comprises all previously mentioned signatures�

� Syntax� Programs and Rules

In this section� we describe the syntax of user�de�ned rules and built�in frame
and procedure rules� The logic programming semantics of programs is presented
in Section ��

��� User�De�ned Rules

Programs and Procedures� A Statelog program is a �nite set of Statelog pro�
cedures� There is a distinguished !�ary procedure main �which is used to de�ne
the top�level transaction for the initial frame ��	�� An n�ary Statelog procedure
� is of the form

proc ��A�� � � � � An�� OI�� � � � � Ik� MO�� � � � � Ol�
initial� Pinitial���� always� Palways���� �nal� Pfinal���

endproc

where the arguments Ai of � are variables that may occur in the rules of P�������
The relations Ii � "EDB 	 "IDB and Oj � "EDB denote the imported� resp�
exported relations
� The P������ are �nite sets of Datalog rules �possibly with
negation� of the following form�

Pinitial��� is the set of initial rules� These are only enabled in the initial state of
the transaction T� de�ned by � and may be used for initialization purposes�

Palways��� is the set of permanent rules� applicable in all states of T��
Pfinal��� de�nes �nal rules which can be applied only in the last state of T��

They have to be of the form �abort � ic�condition� and may be used for
integrity maintenance� if an inconsistency is detected �ic�condition becomes
true�� the current transaction is automatically aborted�

Rules� The user may de�ne rules only through the sets P������ above� therefore�
all user�de�nable rules have standard Datalog syntax� Depending on the relation
symbol in the head of a rule� the following cases can be distinguished�

Views� V � �X� � � � � for all V � "IDB

Change Requests� ins�R� �X�� � � � for all R � "EDB

del�R� �X� � � � � for all R � "EDB

Procedure Calls� �� �X� � � � � for all � � "Proc

External Actions� �A� �X� � � � � for all �A � "Act

Transaction Control� abort � � � � where abort � "Ctl

External events are allowed only in the body of rules of main� whereas actions
may occur in all procedures� but are only allowed in rule heads� Since EDB rela�
tions are not directly user�de�nable by rules� all changes to base relations have
to be accomplished through insert and delete requests� The materialization of
these requests is implemented by frame rules which are described in the following
section�

Visibility� Every procedure � de�nes a set of internal rules P ��� implementing
the desired semantics of initial� always and 	nal declarations� For every frame
�Z����x�	 there is a set P ��Z����x�	� of visible local rules� namely rules of � and
rules for imported IDB relations�

De�nition �� For a procedure �� the set of internal rules P ��� is de�ned as

P ��� �� fh� b�BOT j h� b � Pinitial���g
	 fh� b� alive j h� b � Palways���g
	 fh� b�EOT j h� b � Pfinal���g �

Using these� the set of visible local rules P ��F 	� of a frame is de�ned as

P ���	� �� P �main�
P ��F�n����x�	� �� P ��� 	

fh� b � P ��F 	� j h � "IDB
F � "Imp

� g for all n � IN�� � � "Proc
�

� W	l	o	g	� we assume that relation names are unique� even when the arity is ignored	

The way IDB relations are treated re�ects the intention that derived relations are
imported by importing their de�ning rules� whereas EDB relations are imported
by taking over their extensions into the initial state of a subtransaction�

��� System�De�ned Rules

System�generated frame and procedure rules implement the intended semantics
of request relations and procedure calls� All changes are encapsulated within
the current transaction frame and invisible everywhere else until the transaction
commits� State terms are used in the speci�cation of transitions and transaction
management� Let �F 	 be the current frame� Then the following rules are visible
�labels to the right of rules will be used in the compilation into a logic program
in Section ���

Frame Rules� Frame rules specify the correct handling of update requests and
transitions� For all EDB relations R visible in F � the following frame rules are
also visible�

Updates on EDB relations are executed in the transition to the successor
state� EDB relations are propagated to the successor state as long as EOT does
not hold�

�Z � �	 R� �X�� �Z	 ins�R� �X���EOT�
�Z � �	 R� �X�� �Z	 R� �X���del�R� �X���EOT�

�B�

The non�revoked updates of �F 	 are accumulated in protocol relations�

�Z � �	 insd�R� �X�� �Z	 ins�R� �X���EOT�
�Z � �	 insd�R� �X�� �Z	 insd�R� �X���del�R� �X���EOT�
�Z � �	 deld�R� �X�� �Z	 del�R� �X���EOT�
�Z � �	 deld�R� �X�� �Z	 deld�R� �X���ins�R� �X���EOT�

�B�

While there are pending change requests� a transaction is running�

�Z	 running� �Z	 ins�R� �X���R� �X��
�Z	 running� �Z	 del�R� �X�� R� �X��

�C�

A �xpoint is reached when there are no more changes� so EOT is signaled�

�Z	 EOT� �Z	 BOT��running�
�Z � �	 EOT� �Z	 running��abort� �Z � �	 �running�

�A�

The internal event abort terminates a transaction prematurely�

�Z	 EOT� �Z	 abort� �A�

Apart from user�de�ned aborts� a transaction aborts if inconsistent requests are
raised�

�Z	 abort� �Z	 ins�R� �X�� del�R� �X�� �C�

States of a frame are alive if the transaction really uses them�

�Z	 alive � �Z	 BOT�
�Z � �	 alive � �Z	 running��EOT�

�A�

Procedure Rules� Procedure rules implement the semantics of procedure calls�
ie the execution of subtransactions� For all procedures �� in a frame �F 	 the
following procedure rules are visible�
A procedure call creates the initial state of a new frame� signals BOT and ini�
tializes all imported relations�

�Z��� �X��!	 BOT� �Z	 �� �X�� �A�

for all R � "Imp
� � "EDB

F � �Z��� �X��!	 R� �Y �� �Z	 R� �Y �� �� �X� � �D�

The processing of the results is implemented by rules checking the successful
termination of the subtransactions and evaluating their protocol relations� Since
these contain the changes made by the subtransactions� their extensions are
copied into the request relations of the parent transaction according to the export
speci�cation�

for all R � "Exp� �"EDB
F �

�Z	 ins�R� �Y �� �Z	 �� �X�� �Z��� �X��N 	 insd�R� �Y ��EOT��abort�
�Z	 del�R� �Y � � �Z	 �� �X�� �Z��� �X��N 	 deld�R� �Y ��EOT��abort�

�E�

Thus� �Z����x��n	 insd�R��y� and �Z����x��n	 deld�R��y� with �Z	���x�� �Z����x��n	EOT�
� abort are equivalent to requests �Z	 ins�R��y� resp� �Z	 del�R��y� which are de�
rived directly�
Parent transactions also perform some bookkeeping about committed and aborted
subtransactions�

�Z	 committed��� �X�� �Z	 �� �X�� �Z��� �X��N 	 EOT��abort�
�Z	 aborted��� �X� � �Z	 �� �X�� �Z��� �X��N 	 EOT� abort�

�A�

The user can formulate application�speci�c aspects of transaction management�
e�g� that the parent transaction should abort� if the child aborts�

abort� �� �X�� aborted��� �X� �

��� Sequential Composition

To provide sequential execution of procedures as a built�in� the signature is
extended with a connective ���� which may be only used in the head of user�
de�ned rules� e�g�

�A�B�� body �

means �rst do A� then do B� if body is true� �A�B� is compiled into two internal
rules�

�Z	 A� running� �Z	 �A�B��
�Z � �	 B � �Z	 �A�B���abort�

The previous scheme generalizes to the polyadic case A��

�Ak in the obvious
way�

Sequential composition is not only useful to serialize the execution of proce�
dures� but also for directly manipulating relations� E�g� the rule

del�R� �X�� ins�R� �X�� body �

generates exactly one intermediate state in which �X is not in R� This can be
useful in de�ning hypothetical updates� e�g� to test this intermediate state and
see what would happen if R� �X� were deleted�

� Examples

The hierarchical transaction model with import and export declarations allows
a �exible treatment of several interesting features of databases� like for example
the following�

� Static integrity constraints can be implemented by using the �nal rules for
aborting transactions �Example ���

� Checking the admissibility of changes and blocking inadmissible ones� for any
fact p��x� that should be guaranteed� derive ins�p��x�� Every request to delete
it causes an inconsistency�

� Ephemeral updates� every transaction can try some updates� check their re�
sults and decide whether it should commit or abort �Example ���

� Hypothetical updates� every transaction can work on relations which are im�
ported but not exported without having any e�ect at commit�time� By this
it can create a hypothetical scenario� check the outcome and report the con�
sequences� This can be used to evaluate several alternatives in parallel�

Example � �To Hire or Not to Hire� State Space and Database��
The program given in Example � creates the frames and database states given in
Fig�
� Frames are presented by shadowed boxes� states are presented by ordinary
boxes� In all states� the upper entry gives the state term� the data below the �rst
horizontal line are facts which are derived by frame rules or local rules� and the
data below the second line �if it exists� are facts which are derived from results
of subtransactions�
In this example it is assumed that the average salary exceeds the admissible
amount� so that the transaction hire�john�
�����d�� aborts� making no e�ects
visible to its parent transaction�

Example
 �The Christmas�Problem�� Consider a relation empl�Employee�
BirthDay� Salary� with the obvious meaning� We want to implement the following�
informally given procedure� Every employee shall be given a salary raise by ��
at his�her birthday� on Christmas every employee shall get an extra ������ This
is accomplished in �at Statelog as follows �LHL��	�

�S � �	 mod�empl�E�Bday�Sal�Sal�� �
�S	 �daily� date�Day�� Day�Bday� empl�E�Bday�Sal�� Sal�
� Sal�������

�S � �	 mod�empl�E�Bday�Sal�Sal�� �
�S	 �daily� date�Day�� xmas�Day�� empl�E�Bday�Sal�� Sal�
� Sal�������

� � � ���n� ��

���n�

hire�john�������d��
running� alive

aborted�hire�john�������d��

���n � �� � � �

��	

���n�hire�john�
����� d�����

BOT� alive�
�newemp�john�������d�� �

checksal�d����
newemp�john�������d���
running�

ins� empsal�john��������
ins� empdep�john��������

���n�hire�john�
����� d�����

alive�
empsal�john��������
empdep�john��������
insd�empsal�john��������
insd�empdep�john��������
checksal�d��

aborted�checksal�d���
abort� EOT

���n�hire�john�
����� d���

���n�hire�john�
����� d�����
newemp�john�
����� d�����

BOT� alive�
ins� empsal�john��������
ins� empdep�john��������
running

���n�hire�john�
����� d�����
newemp�john�
����� d�����

alive�
empsal�john��������
empdep�john��������
insd�empsal�john��������
insd�empdep�john��������
EOT

���n�hire�john�
����� d�����newemp�john�
����� d���

���n�hire�john�
����� d�����
checksal�d�����

BOT� alive�
avg�d��	������
abort� EOT

���n�hire�john�
����� d�����checksal�d���

Fig� �� Frames and Database States �cf� Example ��

These rules work �ne unless there is some employee whose birthday is on Christ�
mas� Then two inconsistent modify�requests are generated� and the subsequent
state is not well�de�ned� In a �at model� the problem could be solved by complete
case splitting or by a rule using three states �however� this raises the problem
that the intermediate state should not trigger other rules�� In the structured
model� the sequential composition inc xmas � inc bday is used by the top�level
transaction incsal to specify the order of execution�

proc main� always� incsal�Day� � �daily� date�Day�� endproc

proc incsal�Day�� Oempl� Mempl�
initial� inc xmas�Day� � inc bday�Day� ��

endproc

proc inc xmas�Day�� Oempl� Mempl�
initial� mod�empl�E�Bday�Sal �Sal�� �

xmas�Day��empl�E�Bday�Sal�� Sal�
� Sal������
endproc

proc inc bday�Day�� Oempl� Mempl�
initial� mod�empl�E�Bday�Sal �Sal�� �

Day�Bday� empl�E�Bday�Sal�� Sal�
� Sal������
endproc

If ��� were replaced by the simultaneous conjunction inc xmas�Day� � inc bday�Day��
then two con�icting requests would be derived and the transaction would be
aborted automatically by corresponding frame rules�

� Logic Programming Semantics

In this section� we de�ne the declarative semantics of a Statelog program P by
a compilation into a logic program P �� which in turn de�nes a certain canonical
Herbrand�style model�

��� Compilation Scheme

The basic idea of the compilation is to code state terms into predicates� ie every
term �Z	R� �X� is transformed into a term R��Z	� �X�� In the following de�nitions�
� ranges over the �nite set of procedure names which is given a priori by the
user program �ie� the rule scheme is applied for all � � "Proc�� Moreover� all
��expressions may be de�ned by rules in the obvious way� but are omitted to
avoid unnecessary details�

In a �rst step� state and frame terms� the visibility of relations �Section ��
��
and the import of IDB rules are de�ned��

De�nition
 �Frames and States�� If a procedure � �with arguments �X� is
called� a frame and all necessary states are created�

state����!	��
state��Z��� �X��!	� � ���Z	� �X��
state��Z � �	� � state��Z	�� alive��Z	��

frame���	��
frame��Z��� �X�	� � ���Z	� �X��

�

De�nition � �Visible EDB�� The relation visible � F � "EDB de�nes "EDB
F

�De�nition ��� ie visible��F 	� R� means that R is a visible EDB relation in frame
�F 	�

visible���	�R� � R � "EDB
main�

visible��Z��� �X�	�R� � frame��Z��� �X�	�� R � "EDB
� �

visible��F�N��� �X�	�R� � frame��F�N��� �X�	�� visible��F 	�R�� R � "Imp
� �

�

De�nition � �Visible IDB�� The relation imports � F �"IDB �"Proc de�nes
which IDB rules are visible in a frame� ie imports��F 	� R� P � means that in frame
�F 	 the IDB rules for R from procedure P are imported�

imports���	� R� �� � R � "IDB
main�

imports��Z��� �X�	� R� �� � frame��Z��� �X�	�� R � "IDB
� �

imports��F�N��� �X�	� R� P � � frame��F�N��� �X�	�� imports��F 	� R� P �� R � "Imp
� �

The main step consists of a compilation of the various rules from Section

�nesting of procedure calls� import of EDB�IDB relations� materialization of
requests� etc�� into a logic program P �� In particular� the restricted visibilities
of relations have to be considered�
� Expressions of the form �F�N � denote standard terms in the obvious way� ie
f	
�fdot�F�N��	

De�nition � �Compilation P �
 P ��� Apart from the preceding rules� the com�
piled program P � of a Statelog program P contains the following rules�

�a� On the highest level the rules of the main part are activated�
for all rules h� �X��� b�� �X��� � � � � bn� �Xn� � P �main��

h����N 	� �X��� b�����N 	� �X��� � � � � bn����N 	� �Xn�� state����N 	��

�b� In every frame� the rules of the corresponding procedure are activated�
for every � � "Proc and all rules h� �X��� b�� �X��� � � � � bn� �Xn� � P ����

h��Z��� �Y���N 	� �X��� b���Z��� �Y���N 	� �X��� � � � � bn��Z��� �Y���N 	� �Xn��
state��Z��� �Y���N 	��

�� In all frames the appropriate de�ning rules of imported IDB relations are
used� for every � � "Proc and all rules h� �X�� � b�� �X��� � � � � bn� �Xn� �
P ����

h��F�N 	� �X��� b���F�N 	� �X��� � � � � bn��F�N 	� �Xn��
state��F�N 	�� imports��F 	� h� ���

� The application of frame and procedure rules from Section
�� has to be
restricted�

a� In every state� all rules marked with �A� are activated� for all such rules
�Z�	 h� �X��� �Z�	 b�� �X��� � � � � �Zn	 bn� �Xn� with state variable Z in all Zi�

h��Z�	� �X��� b���Z�	� �X��� � � � � bn��Zn	� �Xn�� state��Z	��

b� Frame rules marked with �B� are restricted to visible EDB relations� for all
such rules �Z � �	 h� �X��� �Z	 b�� �X��� � � � � bn� �Xn� with EDB relation R�

h��F�N � �	� �X��� b���F�N 	� �X��� � � � � bn��F�N 	� �Xn��
state��F�N 	�� visible��F 	� R��

c� Frame rules marked with �C� are also restricted to visible EDB relations�
for all such rules �Z	 h� �Z	 b�� �X��� � � � � bn� �Xn� with EDB relation R�

h��F�N 	�� b���F�N 	� �X��� � � � � bn��F�N 	� �Xn�� state��F�N 	�� visible��F 	� R��

d� Procedure rules marked with �D� are restricted to imported EDB relations�
for all such rules �Z��� �X��!	 R� �Y �� �Z	 R� �Y �� �� �X� with EDB relation R�

R��Z��� �X��!	� �Y �� R��Z	� �Y �� ���Z	� �X�� state��Z	�� R � "Imp
� �

e� Procedure rules marked with �E� are restricted to exported EDB relations�
for all such rules �Z	 h� �Y �� �Z	 �� �X�� �Z��� �X��N 	 b�� �Y �� � � � � bn� �Y � with
EDB relation R�

h��Z	� �Y �� ���Z	� �X�� b���Z��� �X��N 	� �Y �� � � � � bn��Z��� �X��N 	� �Y ��
state��Z��� �X��N 	�� R � "Exp� �

�

Note that the generated rules may be safely evaluated in a bottom�up style� since
all rules are range�restricted provided the user�de�ned rules are range�restricted
themselves�� Furthermore� by De�nition � frames and states are only created
when needed by the computation�

� A rule r is range�restricted if every variable in r occurs positively in the body of r	

��� Semantics and Termination

The semantics of a Statelog program P depends on an EDB and a set EB of
external events which have occurred in the current state and is given as a model
M�

Similar to �LHL��	 one can �nd a syntactical condition which ensures that
rules are state�strati�ed �ie� strati�ed within a state�� Since all rules are progres�
sive� this implies that P � is locally strati�ed and therefore has a unique perfect
model �Prz��	� In case rules are not necessarily state�strati�ed� the well�founded
model �VG��� VGRS��	 provides a natural and generally accepted semantics� As
it extends the perfect model semantics � ie coincides with the perfect model on
locally strati�ed semantics � we use it as the canonical model M�

De�nition �� �Event Base�� The event base EB �� fev��x� j ev��x� is signaledg
is the set of all external events signaled in the current state�

�

De�nition �� �Semantics of P �� The semantics M�P�EDB�EB� of a State�
log program P w�r�t� a database EDB and an event base EB is the well�founded
model of

P � 	 f r����!	� �x�� � j r��x� � EDBg 	 f �ev����!	� �x�� � j ev��x� � EBg
�

Termination of rules can be guaranteed by enforcing that only �nite models are
actually generated�

De�nition �� �Termination�� Given an EDB and an event base EB� a pro�
gram P terminates if there are only �nitely many states in M�P�EDB�EB��

�

Since the chosen model�theoretic semantics M is deterministic� con�uence is
implied� Moreover� from the following lemma the uniqueness of the �nal state �
if one exists � follows directly�

Lemma��� In every frame �F 	 there is at most one state �F�m	 such that
M�P�EDB�EBn� j� EOT��F�m	�� In this case �F�m��	 is an empty state� and
there are no states �F�m�	 with m� � m���

Proof� Frame rules are deactivated when EOT holds� thus EDB and proto�
col relations are empty in �F�m��	� From M j� EOT��F�m	� follows M j�
�alive��F�m��	�� disabling the local rules from P ��F 	� in �F�m��	� Thus IDB
and request relations are empty� no procedure is called in �F�m��	� and no pro�
cedure return rule can insert any requests into �F�m��	� Hence neither running�
BOT� EOT� nor alive are derivable� so �F�m��	 is really an empty state� Thus�
M j� �state��F�m��	��

Theorem�
� If a program P terminates w�r�t� an EDB and EB� there is a
unique �nal state ���m	 such that M�P�EDB�EB� j� EOT����m	��

� Another approach is to use a �nite representation of in�nite models� cf	 �CI���	

In case of termination� the �nal state ���m	 represents the e�ect of executing
the transaction given by EB and P on the database EDB� ifM j� �abort����m	��
then ���m	 is the new database state reached after executing this transaction�
If M j� abort����m	�� then the transaction aborts� and the database remains
unchanged�
Note� that the converse of Theorem �� does not hold� since EOT can be

derived even if in�nitely many states are nonempty� For example� the following
program creates an in�nitely deep nesting of procedure calls of � but derives
EOT on the top�level in the �rst state�

proc main� initial� � �� � abort�� endproc
proc �� initial� � �� endproc

There are di�erent ways to enforce termination of rule processing� even though
the problem of deciding whether a program P terminates for all databases is
undecidable in general� One way� similar to that of �Zan��	� is to enforce ter�
mination at runtime by adjusting frame �and procedure� rules in such a way�
that changes may not be revoked� In the presence of procedures� one has the
additional requirement� that the procedure call graph induced by P is acyclic
�local rules may be recursive� of course��
Another approach� pursued in �at Statelog� is the class of #�monotone pro�

grams which guarantees termination at compile�time �LHL��	� A similar notion
can be de�ned for Statelog with procedures� but is beyond the scope of this
paper�

� Kripke�Style Semantics

In this section� a model�theoretic Kripke�style semantics is given� which inter�
prets the state space as a suitable Kripke structure� It provides the connection
between the intuitive understanding of procedure calls and the state�oriented
model obtained by the logic programming semantics and can serve as a ba�
sis for formal veri�cation� A class of Kripke structures appropriate to model
nested transactions is de�ned together with the notion of a minimal Kripke
model of a Statelog program w�r�t� an EDB and an EB� Then the equivalence of
the Herbrand�style model �Section �� and the minimal Kripke model is shown�
showing the adequacy of the concept�
The Kripke�style semantics is presented in its two�valued version� thus cov�

ering all �well�behaved� computations� ie those where all states are completely
de�ned� This is the case if and only if the well�founded model is total�

�� Statelog Kripke Structures

De�nition �� �Statelog Kripke Structure�� A Statelog Kripke structure over
a given Statelog signature " is a tuple K � �G�A�Q�R�S�U �M�P�� �cf� Fig� ��
where

G is a set of states�

� � � � � �

� � � � � � � �

� � � � � �

R R R

R R R

R R R

Q

Q

S

S

Fig�
� Hierarchical Kripke Structure

A �actions� is a set of procedure names�
Q�S � G � A � U� � G� are two marked accessibility relations between states
representing the procedure�call resp� �return relation� Q�g� ���x�� g�� means
that the �rst state of the subtransaction induced by a call of procedure �
with arguments �x is g�� S�g�� ���x�� g� means that g� is the �nal state of the
subtransaction induced by a call of procedure � with arguments �x in g� Thus�
results of subtransactions have to be communicated along S�

R � G � G is another accessibility relation modeling the temporal successor
relation� Let R� denote the re�exive transitive closure of R�

U is the universe of elements�
M is a function which maps every state to a �rst�order interpretation over "
with universe U �

P is a function which maps every g � G to a set of local rules �the rules visible
in g��

�

To obtain a simpler notation� every state g � G is identi�ed with the correspond�
ing �rst�order structureM�g��

De�nition �
� A Statelog Kripke structure K � �G�A�Q�R�S�U �M�P� over
a signature " is a model of a Statelog program P over the same signature if

� A is the set of procedure names occurring in P
� External actions are only present in the initial state on the highest hierarchical
level� for all g � G with P�g� �� P �main� or �g� � R�g�� g�� gj�Ev � ��

� States with no temporal predecessor which are not targets of a procedure
call� are initial states on the highest hierarchical level� for all g � G with
fh j R�h� g�g � � and f�h� a� j Q�h� a� g�g � � � P�g� � P �main� and there
exists at least one state with this property�

� States which have no temporal predecessor or which are targets of a procedure
call are beginnings of transactions and their protocol relations are empty�
for all g � G with fh j R�h� g�g � � or �h� �� �x � Q�h� ���x�� g��
g j� BOT and gj�Prot � � �

� Every g � G is a model of the corresponding set of local rules� g j� P�g� �

� Q represents exactly the procedure calls�
for all g � G� � � A� �x � U� � g j� ���x� � �h � Q�g� ���x�� h� �

� S represents exactly the return�from�subtransaction relation�
for all g� g�� h� � G� � � A� �x � U� �

Q�g� ���x�� g�� � R��g�� h�� � R�h�� h�� � S�h�� ���x�� g� �

� The temporal accessibility relation R models the relationship between the
EDB and request relations of one state and the EDB and protocol relations
of the successor state� for all g� h � G�

R�g� h� � P�g� � P�h� and for all R � "EDB �
h�R� � �g�R� 	 g�ins�R�� n g�del�R� and g�ins�R� � g�del�R� � � and
h�insd�R� � �g�insd�R� 	 g�ins�R�� n g�del�R� and
h�deld�R� � �g�deld�R� 	 g�del�R�� n g�ins�R� �

� The �marked� relation Q models the procedure calls�
for all g� g� � G� � � A� �x � U��

Q�g� ���x�� g�� � P�g�� � P ��� 	 fh� b � P�g� j h � "IDB � "Imp
� g and

for all R � "EDB � g��R� � g�R� if R � "Imp
� �

g��R� � � if R �� "Imp
� �

� The �marked� relation S models the feedback from subtransactions�
for all g � G� R � "EDB � � � A�

g�ins�R� �
S
fg� j ����x�S�g�����x��g��g� �j�abort�R��Exp� g g

��insd�R� �

g�del�R� �
S
fg� j ����x�S�g�����x��g��g� �j�abort�R��Exp� g g

��deld�R� �

g�aborted��� � f�x � U� j �g� � S�g�� ���x�� g� � g� j� abortg �

g�committed��� � f�x � U� j �g� � S�g�� ���x�� g� � g� �j� abortg �

� AllM�g� are minimal s�t� the above�mentioned conditions hold�
�

De�nition ��� Let C�g� be the subset of requests which are contributed to g
by subtransactions�

C�g� �� fins�R��x� j �g� � G� � � A� �y � U� �
S�g�� ���y�� g� � R � "Exp� � g� j� insd�R��x� � �abortg 	

fdel�R��x� j �g� � G� � � A� �y � U� �
S�g�� ���y�� g� � R � "Exp� � g� j� deld�R��x� � �abortg �

Lemma��� The temporal successor relation R is deterministic�

for all g� h� h� � G � R�g� h� � R�g� h�� � h � h� �

De�nition ��� A computation path in a Statelog Kripke structure K is a se�
quence �g�� g�� � � �� with R�gi� gi��� for all i�

�

Computation paths in the Kripke model correspond to frames in the Her�
brand model� Since R is deterministic� in every model K of P � for every g � G
there is exactly one maximal �in�nite� but possibly becoming stationary� com�
putation path through g�

De�nition ��� The non�extendable sequences in R� are collected in a relation

R��g� h� �� R��g� h� � ��h� �� h � R�h� h�� �

and for � � "Proc� �x � U�� g � G such that g j� ���x�� let

����x���g� �� h � G such that �g� � G � Q�g� ���x�� g�� � R��g�� h�

denote the result of executing ���x� in state g�
�

Using this de�nition� C�g� can be characterized without explicitly mentioning S�

C�g� � fins�R��x� j �� � A� �y � U� �
g j� ���y� � R � "Exp� � ����y���g� j� insd�R��x� � �abortg 	

fdel�R��x� j �� � A� �y � U� �
g j� ���y� � R � "Exp� � ����y���g� j� deld�R��x� � �abortg �

In the following� for a set I of facts and a logic program P � let $P �I� denote
the set of true atoms in the well�founded model of P 	 I�

Theorem��� For every Statelog program P � database EDB� and event base
EB� there is a unique minimal Kripke model �ie with a minimal number of
states� of P with a distinguished initial state g� � G such that P�g�� � main

and M�g�� � $main�EDB 	 EB��

Corresponding to Theorem ��� we have

Theorem��� If the minimal model K of a Statelog program P � a database
EDB� and an event base EB is �nite and R has no cycles of length � �� then
there is a unique computation path �g�� g�� � � � � gn� gn� � � �� with gn j� EOT �

�� Adequacy of Statelog Kripke Structures

Theorem�� �Adequacy�� Statelog Kripke structures are an adequate model
of the intended intuitive semantics of nested transactions�

� EDB relations are changed exactly via requests�
for all R � "EDB� �x � U�� g� h � G�
if �g� h� � R then h j� R��x� � �g j� R��x� � g �j� del�R��x�� � g j� ins�R��x� �

� Every state contains all requests contributed by subtransactions�
for all g � G� g � C�g� �

� IDB relations are derived locally by user�de�ned rules� for all g � G� R �
"IDB� �x � U�� g j� R��x� � R��x� � $P�g��gj�EDB 	 C�g�� �

� Requests are derived by user�de�ned rules or contributed by subtransactions�
for all g � G� R � "IDB� �x � U��
g j� ins�R��x� � ins�R��x� � $P�g��gj�EDB 	 C�g�� �Analogously for del�R��

� In all states the protocol relations contain all non�revoked changes of the corre�
sponding subtransactions� For imported EDB relations� they subsume the dif�
ferences between the EDB in the state where the subtransaction was initiated
and the current state� while they represent exactly the EDB for non�imported
relations� for all g� h � G�

�g� h� � QR� � �R � "EDB � "Imp
� � h�R� � �g�R� 	 h�insd�R�� n h�deld�R�

and �R � "EDB n"Imp
� � h�R� � h�insd�R� �

�� Equivalence of Both Semantics

For every program P � database EDB and event base EB� the Herbrand�style
model of P � M�P�EDB�EB� can be split into states by its state term compo�
nents and can be mapped bijectively to the minimal model K of P �

De�nition �
� For a Statelog signature "� a Herbrand interpretation H over
" 	 Z�"Proc� is contained in a Statelog Kripke structure K � �G�A�Q�R�S�U �
M�P� if A � "Proc� U is the underlying domain of H� and there is a �partial�
mapping 	 � Z�"Proc�
 G such that

� for all �z	 � Z�"Proc��
if f�p� �x� j p � "� �x � U��H j� p��z	� �x�g �� � then �z	 � dom�	��

� for all �z	 � dom�	�� p � "� �x � U�� 	��z	� j� p��x� � H j� p��z	� �x� �
� for all �z	 � dom�	�� H j� �EOT��z	� � R�	��z	�� 	��z � �	�� �
� for all �z	 � dom�	�� H j� EOT��z	� � R�	��z	�� 	��z	�� �
� for all �z	 � dom�	�� � � "Proc� �x � U��
H j� ���z	� �x� � Q�	��z	�� 	��z����x��!	�� �

� for all �z	 � dom�	�� � � "Proc� n � IN�� �x � U��
�H j� ���z	� �x� � H j� EOT��z����x��n	�� � S�	��z����x��n	�� 	��z	�� �

�

The following theorem states that the model obtained from the logic program�
ming semantics is equivalent to the Kripke structure representing the model�
theoretic semantics�

Theorem��� Let P be a program� EDB a database� and EB an event base
such that M�P�EDB�EB� is total� Then M�P�EDB�EB� is contained in the
minimal Kripke model K of P via a surjective mapping 	�

Proof� Set 	����!	� �� g�� 	��F�N��	� �� g such that R�	��F�N 	�� g� �well�de�ned
by Lemma ���� 	��Z����x��!	� �� g such that Q�	��Z	�� ���x�� g� for those �Z	 to
be contained in dom�	� according to De�nition ���

In particular� the unique �nal state ���m	 of the Herbrand modelM is the same as
the stationary state of the unique computation path beginning in g� in the min�
imal Kripke Model K� Thus� the logic programming semantics is also adequate
w�r�t� the intuitive semantics�

	 Related Work

The idea of using state terms to refer to di�erent states in logical rules has
come up several times� e�g� in XY�Datalog �Zan�
� ZAO�
	� to allow a uni�ed
semantics for active and deductive rules� and in �KLS��� LL��	 as a means to
specify updates in a declarative way� Flat Statelog �LHL��	� XY�Datalog� and
the temporal query languages Datalog�S and Templog �Cho�!� AM��� Bau��	
are closely related� since they all extend Datalog by a linear state space� In

contrast� our present approach uses a branching hierarchical state space �similar
to that of DatalognS �CI�
	 which does not deal with active rules and procedures�
however�� The presented Kripke semantics extends that of �LS�
	 which is now
a special case restricted to �at sequential computations�

�Zan��	 proposes a �transaction�conscious� stable model semantics to cope
with the problem that occurs when ephemeral changes �changes whose e�ect is
undone within the same transaction� trigger active rules� Thus� to avoid unin�
tended behavior� only durable changes should be visible to active rules� In our
approach this problem is solved in a di�erent way by the concept of �atomically
executing� procedures which encapsulate their changes until the end of transac�
tion� Thus� only the net e�ect of a subtransaction may trigger rules in the calling
transaction�

Transaction Logic TR �BK�
� BK��	 deals� on a high level of abstraction�
with the phenomenon of state changes in logic databases and employs a pow�
erful model theory and proof theory� Primitive updates �so�called elementary
transitions� are not part of TR� but a parameter which is supplied by a tran�
sition oracle� In contrast� Statelog semantics provides a complete speci�cation
of changes from primitive updates to complex transactions and has a standard
logic programming and Kripke�style semantics� Both languages can be combined
by �plugging in� Statelog procedures in the transition oracle of TR�

The concept of nested transactions in Statelog is similar to that of HiPAC
�DBB���� DBC��	� Statelog declarations initial� always and �nal allow execu�
tion of rules at speci�c points within a transaction and thus can be used in a
similar way as coupling modes in HiPAC� E�g� integrity maintenance may be
deferred until EOT by declaring the corresponding rules �nal�

The idea to structure rule sets using procedures or modules has already been
introduced in the area of logic programming� E�g� �BMPT��� BT��	 develop a
modular design for logic programs including union� intersection� and encapsu�
lation� However� they do not deal with active rules and state change� so their
concept does not cover sequential composition� transactions etc�

�FT��	 proposes Extended ECA rules as a common framework for a large
number of existing active database systems and prototypes� In existing systems�
the semantics of programs depends on the implicitly given operational seman�
tics� These implicit assumptions are made apparent by encoding them in user�
readable EECA rules� Heraclitus�Alg�C� �GHJ��
� GHJ��	� is an extension of C
which incorporates the relational algebra and elevates deltas to be ��rst�class
citizens� of the database programming language� It allows to combine deltas and
to express hypothetical updates� however no logical semantics is given�

Related to our work are approaches dealing with updates in deductive data�
bases� Often� the rule semantics depends on a certain evaluation strategy� e�g�
�Abi��� AV��� SK��	 �bottom�up�� or �MW��� Che��	 �top�down�� whereas e�g�
�MBM��	 is � like Statelog � independent of a certain strategy� However� these
works do not cover the ECA�rule paradigm of active databases or the concept
of nested transactions� Although Statelog allows a very intuitive �bottom�up
reading� of rules �cf� Example ��� evaluation may also be done top�down due

to the presence of explicit state terms �S	 and �S � �	� This is in contrast to
approaches like �Abi��� AV��	 or �MW��� Che��	� which refer to di�erent states
only implicitly� Thus their semantics is more tied to either bottom�up or top�
down evaluation� respectively�

 Conclusion

In recent work� the bene�ts of an integration of active and deductive rules have
become apparent �Zan��� MZ��� LHL��	� First of all� a logical framework unam�
biguously speci�es the semantics of rules � a necessary precondition to verify and
reason about the behavior of rules� For example� the semantics of transactional
events like abort and commit is completely speci�ed in our logical framework�
Moreover� properties like termination or expressive power can be investigated�
as in �LHL��	� independent of a given implementation� This complements work
on termination and con�uence of active rules which focuses more on speci�c
systems like e�g� �AWH��� AWH��� BCP��� KU��	�

In this paper� we have presented Statelog� based on a concept which inte�
grates transaction�oriented programming of complex �trans�actions with logical
foundations of deductive rules in a seamless way� This framework is an exten�
sion of �at Statelog �LL��� LHL��	� and uses procedures as a means to structure
rules and to encapsulate their behavior� Statelog programs have a declarative
and deterministic semantics which is given �i� by a compilation into a standard
logic programming semantics� which yields a �naive� implementation of the lan�
guage� and �ii� by a Kripke�style semantics which describes a conceptual and
implementation�independent model of active rule behavior� Procedures execute
isolated and in an all�or�nothing style� The underlying nested transaction model
facilitates parallel execution of concurrent transactions and allows to specify
complex transactions in a natural way using subtransactions� We plan to extend
the prototypical implementation of �at Statelog �Ham��	 to the full language
including procedures�

References

�Abi��� S	 Abiteboul	 Updates� a new frontier	 In ICDT� Springer LNCS ���� pp	
����� ����	

�AM��� M	 Abadi and Z	 Manna	 Temporal logic programming	 Journal of Symbolic
Comp�� ����� ����	

�AV��� S	 Abiteboul and V	 Vianu	 Datalog extensions for database queries and up

dates	 JCSS� ��� ����	

�AWH��� A	 Aiken� J	 Widom� and J	 M	 Hellerstein	 Behavior of database production
rules� Termination� con�uence� and observable determinism	 In SIGMOD�
����	

�AWH�
� A	 Aiken� J	 Widom� and J	 M	 Hellerstein	 Static analysis techniques for
predicting the behavior of active database rules	 TODS� ����������� ���
	

�Bau�
� M	 Baudinet	 On the expressiveness of temporal logic programming	 Infor�
mation and Computation� ������� ���
	

�BCP�
� E	 Baralis� S	 Ceri� and S	 Paraboschi	 Run
time detection of non

terminating active rule systems	 In Ling et al	 �LMV�
�	

�BK��� A	 J	 Bonner and M	 Kifer	 Transaction logic programming	 In D	 S	 Warren�
editor� ICLP	 MIT Press� ����	

�BK��� A	 J	 Bonner and M	 Kifer	 An overview of transaction logic	 Theoretical
Comp� Sci�� ���� ����	

�BMPT��� A	 Brogi� P	 Mancarella� D	 Pedreschi� and F	 Turini	 Modular logic pro

gramming	 ACM TOPLAS� ���������������� July ����	

�BT��� A	 Brogi and F	 Turini	 Semantics of meta
logic in an algebra of programs	
In LICS� pp	 �������� Paris� France� July ����	

�Che�
� W	 Chen	 Programming with logical queries� bulk updates and hypothetical
reasoning	 In B	 Thalheim� ed	� Proc� of the Workshop Semantics in Data�
bases� Prague� ���
	 TU Cottbus	

�Cho��� J	 Chomicki	 Polynomial time query processing in temporal deductive data

bases	 PODS� ����	

�CI��� J	 Chomicki and T	 Imieli�nski	 Finite representation of in�nite query answers	
TODS ������ ����	

�DBB
��� U	 Dayal� B	 Blaustein� A	 Buchmann� U	 Chakravarthy� M	 Hsu� R	 Ledin�
D	 McCarthy� A	 Rosenthal� S	 Sarin� M	 J	 Carey� M	 Livny� and R	 Jauhari	
The HiPAC project� Combining Active Databases and Timing Constraints	
In SIGMOD� ����	

�DBC��� U	 Dayal� A	 Buchmann� and S	 Chakravarthy	 The HiPAC Project	 In
J	 Widom and S	 Ceri� editors� Active Database Systems	 Triggers and Rules
for Advanced Database Processing� Morgan Kaufmann� ����	

�DGG�
� K	 R	 Dittrich� S	 Gatziu� and A	 Geppert	 The active database management
system manifesto� A rulebase of adbms features	 In Sellis �Sel�
�	

�DHW�
� U	 Dayal� E	 Hanson� and J	 Widom	 Active database systems	 In W	 Kim�
ed	� Modern Database Systems	 The Object Model� Interoperability� and Be�
yond� Ch	 ��	 ACM Press� ���
	

�FT��� P	 Fraternali and L	 Tanca	 A structured approach for the de�nition of the
semantics of active databases	 TODS� ����	 to appear	

�GHJ
��� S	 Ghandeharizadeh� R	 Hull� D	 Jacobs et al	 On implementing a language
for specifying active database execution models	 In VLDB� ����	

�GHJ��� S	 Ghandeharizadeh� R	 Hull� and D	 Jacobs	 Heraclitus� Elevating deltas to
be �rst
class citizens in a database programming language	 TODS� ����	 To
appear	

�Ham�
� U	 Hamann	 Ein System zur Beschreibung und Ausf�uhrung von �Anderungs

operationen in einer zustandsorientierten Erweiterung von Datalog	 Master�s
thesis� Institut f�ur Informatik� Universit�at Freiburg� ���
	

�KLS��� M	 Kramer� G	 Lausen� and G	 Saake	 Updates in a rule
based language for
objects	 VLDB� ����	

�KU��� A	 P	 Karadimce and S	 D	 Urban	 Re�ned triggering graphs� A logic
based
approach to termination analysis in an active object
oriented database	 In

�th ICDE� ����	

�LHL�
� B	 Lud�ascher� U	 Hamann� and G	 Lausen	 A logical framework for active
rules	 In Proc� �th Intl� Conf� on Management of Data
COMAD�� Pune�
���
	 Tata McGraw
Hill	 ftp���ftp	informatik	uni
freiburg	de�documents�re

ports�report���report��	ps	gz	

�LL��� G	 Lausen and B	 Lud�ascher	 Updates by reasoning about states	 In �nd
Intl� East�West Database Workshop� Workshops in Computing� Klagenfurt�
Austria� ����	 Springer	

�LML��� B	 Lud�ascher� W	 May� and G	 Lausen	 Nested Transactions in a Logical
Language for Active Rules	 Technical Report ��� Institut f�ur Informatik�
Universit�at Freiburg� ����	

�LMV�
� T	 W	 Ling� A	 O	 Mendelzon� and L	 Vieille� editors	 DOOD� Springer
LNCS ����� ���
	

�LS��� G	 Lausen and G	 Saake	 A possible world semantics for updates by ver

sioning	 In Proc� of �th Workshop on Modelling Database Dynamics� Volkse�
����	 Springer	

�MBM�
� D	 Montesi� E	 Bertino� and M	 Martelli	 Transactions and updates
in deductive databases	 Technical Report �� Dipartimento di Scienze
dell�Informazione� Universit�a di Milano� ���
	

�MW��� S	 Manchanda and D	 S	 Warren	 A logic
based language for database up

dates	 In J	 Minker� ed	� Foundations of Deductive Databases and Logic Pro�
gramming� pp	 �������	 ����	

�MZ�
� I	 Motakis and C	 Zaniolo	 Composite temporal events in active database
rules� A logic
oriented approach	 In �th DOOD� LNCS ����� ���
	

�PCFW�
� N	 W	 Paton� J	 Campin� A	 A	 A	 Fernandes� and M	 H	 Williams	 Formal
speci�cation of active database functionality� A survey	 In Sellis �Sel�
�	

�Prz��� T	 C	 Przymusinski	 On the declarative semantics of deductive databases and
logic programs	 In J	 Minker� ed	� Foundations of Deductive Databases and
Logic Programming� pp	 ��� � ���	 Morgan Kaufmann� ����	

�Sel�
� T	 K	 Sellis� editor	 Proc� of the �nd Intl� Workshop on Rules in Database
Systems
RIDS�� Athens� Greece� ���
� Springer LNCS ��
	

�SK��� E	 Simon and J	 Kiernan	 The a
rdl system	 In Widom and Ceri �WC����
Chapter
	

�VG��� A	 Van Gelder	 The alternating �xpoint of logic programs with negation	 In
PODS� ����	

�VGRS��� A	 Van Gelder� K	 Ross� and J	 Schlipf	 The well
founded semantics for
general logic programs	 JACM� ��������� � �
�� July ����	

�WC��� J	 Widom and S	 Ceri� editors	 Active Database Systems	 Triggers and Rules
for Advanced Database Processing	 Morgan Kaufmann� ����	

�Wid��� J	 Widom	 Active databases	 In M	 Stonebraker� ed	 Readings in Database
Systems� �nd edition	 Morgan Kaufmann� ����	 Introduction to Chapter �	

�Zan��� C	 Zaniolo	 A uni�ed semantics for active and deductive databases	 Proc�
of the
st Intl� Workshop on Rules in Database Systems
RIDS�� Edinburgh�
����	 Springer	

�Zan�
� C	 Zaniolo	 Active database rules with transaction conscious stable model
semantics	 In Ling et al	 �LMV�
�	

�ZAO��� C	 Zaniolo� N	 Arni� and K	 Ong	 Negation and Aggregates in Recursive
Rules� the LDL � � Approach	 In S	 Ceri� K	 Tanaka� and S	 Tsur� eds	�
DOOD� Springer LNCS ���� ����	

�ZS��� C	 Zaniolo and R	 Sadri	 A simple model for active rules and their behavior
in deductive databases	 Proc� �nd ICLP Workshop on Deductive Databases
and Logic Programming� Santa Margherita Ligure� Italy� ����	

This article was processed using the LATEX macro package with LLNCS class	

