5th International Conference on Deductive and Object-Oriented Databases
(DOOD’97), December 8-12, 1997, Montreux, Switzerland.
Springer LNCS 1341, pp. 320-336.

Well-Founded Semantics for Deductive
Object-Oriented Database Languages

Wolfgang May™ Bertram Ludéascher Georg Lausen

Institut fiir Informatik, Universitdt Freiburg, Germany
{may,ludaesch,lausen}@informatik.uni-freiburg.de

Abstract. We present a well-founded semantics for deductive object-
oriented database (dood) languages by applying the alternating-fixpoint
characterization of the well-founded model to them. In order to com-
pute the state sequence, states are explicitly integrated by making them
first-class citizens of the underlying language. The concept is applied to
FLORID, an implementation of F-Logic, previously supporting only in-
flationary negation. Using our approach, well-founded models of F-Logic
programs can be computed.

The method is also applicable to arbitrary dood languages which provide
a sufficiently flexible syntax and semantics. Given an implementation of
the underlying database language, any program given in this language
can be evaluated wrt. the well-founded semantics.

1 Introduction

The well-founded semantics (WFS) [VGRS88] is generally accepted as a scep-
tical “well-behaved”? semantics for logic programs with negation. It assigns a
unique, three-valued model W(P) to every program P. The third truth-value
undefined is assigned to atoms which depend negatively on themselves and for
which no independent “well-founded” derivation exists. Although several rela-
tional database systems now support WES, this is not the case for dood systems.
Existing dood systems are limited to inflationary or stratified semantics and may
benefit from a WFS for the following reasons:

e In relational languages the notion of stratification is based on explicit de-
pendencies between relation symbols. For object-oriented (OO) frameworks,
those dependencies are conceptually more involved due to value inheritance,
a dynamic class hierarchy, and higher-order features like variables at method
or class positions.

e Since stratified negation is less expressive than well-founded negation, certain
concepts cannot be expressed in stratified semantics, most notably the notion
of deep equality [AdB95] (cf. Section 5) in presence of set values, which
is crucial for OO-systems. Another example are argumentation frameworks
[Dun95] — which inherently require the WFS.

* Supported by grant no. GRK 184/1-97 of the Deutsche Forschungsgemeinschaft.
? Dix [Dix95] formally defines this notion using certain abstract properties of seman-
tics.

2 Well-Founded Semantics for Deductive Object-Oriented Database Languages

In this paper, we show how WFS can be applied to dood languages, using
the well-known alternating-fixpoint characterization (AFP) [VGRS88, VG93].
For this, analogous to reification in relational database languages, a notion of
states is incorporated into the modeling, and the program is transformed ac-
cordingly. Evaluating the transformed program with the original semantics of
the underlying framework yields the WFS of the original program.

The paper is structured as follows: the introduction is completed with an
overview of related work and some notational conventions. Section 2 exhibits
some problems of stratified semantics in the OO paradigm. In Section 3, the WFS
and its alternating-fixpoint characterization are reviewed and a formalization of
the alternating fixpoint characterization for the OO paradigm is given. In Section
4, the approach is instantiated for F-Logic. Section 5 illustrates the concept and
its application by examples. Section 6 closes with some concluding remarks.

Related Work. To our knowledge, none of the existing dood languages sup-
ports WES: For several early logics introducing OO-features like object id’s,
types/classes, or set-values, e.g. O-Logic [Mai86] and its relatives presented in
[KW93] or [CW89] (C-Logic), or ILOG [HY90], the semantics of programs is
reduced to the semantics of first-order logic programs via program transfor-
mations, but these approaches lack some typical OO-features. COL (complex
object language) [AG91] extends Datalog by structured values and set construc-
tors, without providing a class hierarchy or inheritance. Its semantics is given in
terms of minimal models and stratification. IQL [AK92] provides oid’s, set and
tuple types corresponding to method applications, and types corresponding to
classes where type inheritance corresponds to a subclass hierarchy. There is no
value inheritance. IQL is evaluated bottom-up using an inflationary fixpoint op-
erator. LOGRES [CCCR190] additionally supports multisets, (multiple) value
inheritance, and integrity constraints, coming with an inflationary or stratified
semantics. ROL [Liu96] is based on the standard notions of objects, methods,
and classes. Regarding classes, there is only structural inheritance, but no value
inheritance. Thus, stratification is possible in ROL. Stratified programs are eval-
uated wrt. a minimal-model semantics. The semantics of ROLL [BPFT94] is
defined by a mapping to an internal Datalog representation which is then input
to an SLDNF resolution proof-procedure. Noodle [MR93] is based on HiLog and
comes with modularly stratified semantics. In [KLW95], F-Logic is defined with
a minimal-model and a perfect model semantics. The FLORID implementation
provides an inflationary semantics with user-defined stratification.

Summarizing, although a number of dood languages have been developed, to
our knowledge, none of them provides WFS for handling negation.

Notation. An Object-oriented model is represented by three types of atoms,
i.e., method applications, class membership, and the subclass relation. In order to
obtain a uniform notation, we will use F-Logic syntax (cf. Section 4) throughout
this paper: o[m—v] denotes that application of method m to object o results in
the value v; o:c denotes that o is a member of class ¢; and c::d denotes that c is
a subclass of d. We will use capital letters for variables.

Well-Founded Semantics for Deductive Object-Oriented Database Languages 3
2 Stratified Semantics

In the relational context, stratification is defined using a dependency graph over
relation symbols: a relation p depends positively /negatively on another rela-
tion ¢ if there is a rule with p occurring in the head and ¢ occurring posi-
tively /negatively in the body. The dependency graph is given as (V, E) s.t. V' is
the set of relation symbols and E contains a “positive” edge y — = if depends
positively on y, and a “negative” edge y — z if depends negatively on y. A
program is stratified if its dependency graph contains no cycle with a negative
edge.

For dood languages, stratification can also be defined via a dependency graph:
Given an atom o[m—v], the method position m is the distinguished position,
for an atom o:c, ¢ is the distinguished position, and for an atom c::d, d is the
distinguished position. A symbol = depends positively (negatively) on a symbol
y if there is a rule r s.t. & occurs at the distinguished position of the head of r
and y occurs in a positive (negative) literal in the body.

In restricted OO frameworks — such as ROL [Liu96], which provides no value
inheritance, only a static class hierarchy, and no variables at method name or
class positions —, this is a practicable solution.

However, in presence of non-monotonic inheritance, the notion of stratifica-
tion becomes more complicated: Let c[me+v] denote an inheritable scalar method,
defined for the class c. If an object o is a member of class ¢, the value of m ap-
plied to o should be v by default, i.e., unless another value has been defined for
o.m. This is expressed by the rule

O[m— Default] < c[me+Default], O:c, not 3 W: (O[m—W] A W # Default).

Thus, every application of an inheritable method to an object depends negatively
on itself. Consequently, such programs are not stratifiable. In a full-fledged dood
framework, there are two additional aspects rendering already simple programs
non-stratified:

e If variables are allowed at distinguished positions, i.e., method or class po-
sitions in o[M—v] resp. 0:C, since the variables can potentially be replaced
by every symbol, the graph becomes very “dense” and almost all non-trivial
programs become non-stratified.

e If equalities can be defined in a framework where entities can simultaneously
play the roles of objects, classes, and methods, the result of equating two
entities and y depends on all symbols on which one of them depends. Note
that equating is not detectable by static analysis of a program.

In some contexts, a wuser-defined stratification can be applied. However, this
approach is also problematic: overlooking certain dependencies can lead to un-
intended models. Even more important, independent of the chosen framework,
there are several problems which are not expressible with stratified semantics.
Two of them, deep equality, and the win-move-game, are sketched in Section 5.

4 Well-Founded Semantics for Deductive Object-Oriented Database Languages

3 Well-Founded Semantics

3.1 Well-Founded Semantics in the Relational Context

For Datalog, the WFS has become widely accepted for general programs. Here,
we briefly review the WFS [VGRS88] in the form of its bottom-up alternating
fixpoint characterization [VG93].

Example 1 (Win-Move Game) One of the classical examples for WFS is the
win-move-game: A game is given by a set of positions and a set, of moves between
them. It is played by two players moving alternately; if a player cannot move,
she loses. Thus, a position X is won, if there is a move to some position ¥ which
is not won (since then the opponent has to move). The game is represented by
the single non-stratified rule

win(X) <move(X,Y), = win(Y).

Counsider e.g. a game where move = {(a,b), (b,a), (b, c), (¢,d)}. Obviously, win(d)
is false, since there are no moves from d. Consequently, win(c) is true, since it
is possible to move from ¢ to d. On the other hand, the positions a and b in the
game are drawn: the player moving from b has no winning strategy (moving to
¢ would leave the opponent in a won position), but she can enforce a game of
infinite length by moving from b to a and thus avoid losing. Thus, win(a) and
win(b) are undefined because there is no “well-founded” argument to make each
of them either false or true. o

Alternating Fixpoint Characterization. The original definition of the WFS
is given in [VGRS88]. In [VGI3], its bottom-up alternating fixpoint character-
ization is given as follows: Given a fixed Herbrand interpretation J (i.e., a set
of ground atoms), every logic program P (containing the database D as a set of
facts) gives rise to an operator TPJ , mapping interpretations to interpretations:
TJ(I):={H| (H + Bi,...,By,~Cy,...,~Cy,) € ground(P)
and B; € Zforalli=1,...,n
and C; ¢ Jforallj=1,...m}

Since J is fixed, T¥ is a monotone operator. Let Tp(J) := lfp(T§) be its least
fixpoint. The operator I'p is antimonotone (observe how J is used in Tg), ie.,
Ji C Jz implies T'p(J2) C Tp(J1). It follows that T'% (:= ['pol'p) is a monotone
operator. Thus, the even indices in the sequence I'% := (,I'L,T'%,... form a
monotonically growing sequence of underestimates of the true atoms, finally
reaching the least fixpoint, Ifp(I'%), whereas the odd indices form a monotonically
decreasing sequence of overestimates, converging against the greatest fixpoint

gfp(T'%).
Theorem 1 (AFP Characterization, [VG93]) For every ground atom A,
its truth value in the well-founded model W(P) of a given program P is

true if A €lfp(l'%),
W(P)(A) = { Jalse if A ¢ gp(T3),
undef if A € gfp(T'p)\Ifp(T'3). o

Well-Founded Semantics for Deductive Object-Oriented Database Languages 5

In Example 1, the sequence I')%, T'L, %, ... yields the alternating sequence

0,{a,b,c},{c}, {a,b,c},{c},...

of values for the win relation. Since win(c) € 1fp(I'%), win(d) ¢ gfp(I'%), and
win(a),win(b) € gfp(I'%)\lfp(I'%) the expected truth values from above are
obtained.

Computing WFS via States. The sequence of applications of I'p can be com-
puted by a logic program which is obtained from the original program by intro-
ducing an additional argument position for IDB-relations, representing the state
sequence (this construction is a variant of [KRS95], see also [ZA093], [LHL95]).
Corresponding to the definition of TP‘7, in each rule, this argument is set to S+1
for all positive literals (including the head literal), otherwise to S. The distin-
guished state variable S is restricted by the additional literal state(S). The rule
from Example 1 translates into

win(S+1, X) < move(X,Y), = win(S, Y), state(S).
state(0).
state(S+1) « state(S).

Note that negative dependencies in the translated program are only to the prede-
cessor state and to EDB relations, hence there are no cyclic negative dependen-
cies between state-ground atoms. Thus, using the rewritten program, the WFS
can be computed also by systems which do not originally provide a WFS: For ev-
ery fixed state s, a positive program is evaluated, since all negated atoms refer to
the — completely evaluated — predecessor state and thus can be regarded as input.
By successively instantiating S with 0,1,2, ..., precisely the AFP computation
is obtained. Given a finite database, the computation finally becomes stationary
or 2-periodic, and the well-founded model can be determined from the fixpoints.
In the sequel, we will exploit this technique in the context of an object-oriented
data model. An optimization of AFP has been presented in [ZFB97].

3.2 Translation into the OO-Paradigm

Although the definition in [VGRSS88] is given in relational context, it does not
depend on the fact that the atoms of the respective logic programs are relational
atoms. Thus, the definition can be carried over to dood languages by generalizing
from (implicitely) relational atoms to atoms of an arbitrary deductive language.
Then, the handling of single-valued methods, transitivity of class hierarchy, and
inheritance must be integrated accordingly. Also, the AFP characterization can
be carried over.

As presented in Section 3.1, in Datalog, the AFP characterization can be
implemented via reification, i.e., every n-ary relation p(X,...,X,,) is replaced
by an n+1-ary one, p(S, X1,...,X,), where the first argument holds the state.
In the OO paradigm, the extension by states can be done analogously: Each
atom has to be extended (in at least one position) with a state component.

6 Well-Founded Semantics for Deductive Object-Oriented Database Languages

States in an Object-Oriented Model. With the rich variety of concepts to
cover different roles, i.e., objects, classes, and methods, there are several possibil-
ities how to integrate the notion of states into a given program. The modeling of
explicit states in the OO paradigm and F-Logic in context of process modeling is
dealt with in [MSL97]; here, the use of states as an internal tool is demonstrated.
01

@W‘g
(s F—

States as objects: If the focus is on the computation
sequence represented by a program, it is preferable to
view states s as objects. Objects o act on them as
methods, addressing the instance ¢ corresponding to
object o in this state.

Dynamic objects: For an object o, a state s is a
method, giving the instance of o corresponding to
state s. In this case, the result of applying some
method m to an object o in state s is derived as the
result of the application of m to the corresponding
instance.

Dynamic classes: For a class ¢, a state s is a method,
giving the instance of the class c¢g in this state. Dy-
namic classes are closely related with dynamic objects
since classes and objects can be seen as two roles of
the same entities.

Dynamic methods: For an object o, a state s is an

additional argument of a method m, o[m@(s) — X], ° [zlgﬁ;’ =
yielding the value of the method in this state. The e
m2@(s2)—y,

concept, of dynamic methods is in some sense comple-
mentary to dynamic objects.

m2@(s3)—z |

Depending on the semantic and syntactic capabilities of the chosen frame-
work, the choice between the above possibilities can be restricted. Especially,
“states as objects”, “dynamic objects”, and “dynamic classes” require variables
to appear at method positions: With “states as objects”, the objects are methods
to states, thus, variables at object positions become variables at method posi-
tions. With “dynamic objects” and “dynamic classes”, states appear as methods,
thus state variables appear as variables at method positions. Both approaches
also require object creation, anonymous objects, and anonymous classes.

“Dynamic methods” corresponds directly to reification in relational frame-
works, but it must be complemented by one of the other approaches to cover
also a state-dependent class-membership and class hierarchy.

3.3 Alternating Fixpoint in the Object-Oriented Paradigm

Regarding the method application atoms o[m—v], the state component must at
least be associated with the object or with the method. Due to the fact that is-a
atoms (i.e., o:c or c::d) contain only objects and classes, dynamic methods would
not be sufficient there. Thus, states are associated with objects and classes. This
can be done equivalently by states as objects or by dynamic objects and dynamic
classes. In both cases, let a[S] denote the atom a extended by a state S.

Well-Founded Semantics for Deductive Object-Oriented Database Languages 7

For a given program P, assume that certain atoms are not subject to change,
we call these EDB atoms. The other atoms are called IDB atoms.

In the same way as presented in Statelog [LHL95], a program P is trans-
formed into a program P4pp computing the WFES via the alternating-fixpoint
characterization: for every rule h < b,

EDB literals (occurring only in the body) remain unchanged,

every positive IDB literal [is replaced by {[S+1],

e every negative IDB literal =/ (which can occur only in the body) is replaced
by —I[S], and

the body is extended with the literal S+1:state.

Additionally, there are rules O:state and S+1:state < S:state.

Negative dependencies in P4pp are only from atoms of one state to atoms of
the preceding state and to EDB atoms without state association. Thus, the state
sequence provides a local stratification. The program must now be evaluated
accordingly, i.e., one state after another. Thus, the only control needed is to check
if a deductive fixpoint is reached and then starting the next deductive fixpoint,
and to check if the state sequence becomes stationary or 2-periodic, i.e., whether
the least and greatest fixpoints are computed (which will eventually be the case
for finite databases). Then, the computation can be stopped, yielding a finite
structure Ap. For arbitrary languages, the required control can be encoded using
the inflationary semantics (cf. [AHV95, p. 400 ff] where it shown how WFS can
be computed using while™). In F-Logic, such control can be implemented much
more directly using its trigger mechanism as will be described in Section 4.1.
W.l.o.g., assume that the last state which has been computed has an even index
so. For every s s.t. Ap |= (s : state), let

A[Ii] ={a| Ap = a[s], a an IDB atom} U {a | Ap = a, a an EDB atom}
be the “snapshot” at state s.
Then, either the last underestimate AEﬁO] and the last overestimate A[;Ofl] coin-

cide, i.e., Agf,o] EFa < Agf,ofl] E a for all a, or some atoms a are false in the
underestimate and true in the overestimate, i.e., Agf,o] = —a and AE?,O’” Ea.

Theorem 2 Analogous to Theorem 1, the well-founded model Wp is given as

true < A[;O] =a
Wp(a) = § undef < A[;O] = —a and A[Igrl] Fa
false < A[;O*l] E-a . =

Like in the relational case,

o If A[;O] = AE?P’”, the well-founded model Wp of P is total and Wp = A[;O].
e If the original program was locally stratified, Wp is total.

In contrast to the relational case, in the object-oriented paradigm there are some
semantical intricacies due to the inherent semantics of functional methods and
object identity:

8 Well-Founded Semantics for Deductive Object-Oriented Database Languages

e in the overestimates, i.e., odd s, for some method applications o[m—_] which
are intended to be single-valued, there can be v; # vy s.t. Ap |= [m—v1][s]
and Ap | [m—wv2][s], thus, the functionality requirement can be (tempo-
rally) violated in the overestimates (i.e., for odd s). Since at this intermedi-
ate point of the computation, true method atoms represent potential results,
functionality is not required.

e In the well-founded model, the truth value of a method application o[m—uv]
can be undefined (not to be confused with the application of m to o being
undefined). Moreover, for some method applications o[m—_], there can be
several such v’s, thus, undefined atoms in the result also do not fit the
functionality requirement:

Example 2 (Mutual Exclusion) Consider the following program, represent-
ing a database in which it is only known that John is either married to Jane or

to Mary:
P := {john[spouse—mary] < not john[spouse—jane].

john[spouse—jane] < not john[spouse—mary].
O[married—true] + O[spouse—X] . }

Then, Pypp consists of the following rules:

john[spouse—mary][S+1] < not john[spouse—jane][S], S+1:state.
john[spouse—jane][S+1] <« not john[spouse—mary][S], S+1:state.
O[married—true][S+1] + O[spouse—X], S+1:state.

O:state.

S+1 : state < S : state.

The following AFP computation is obtained:

A[Ig] =0, A%] = {john[spouse—{jane,mary}], john[married—true|} and AE?,] =0,
hence the sequence becomes periodic for sy = 2. Thus, in the well-founded
model,

W(john[spouse—jane]) = W(john[spouse—mary]) = W(john[married—true]) =
undef . o

Especially, if functionality is maintained by the underlying system (e.g., by
equating of objects, or signaling an error), this must be disabled during the AFP
computation. In some frameworks — e.g. F-Logic as shown in the subsequent
section —, this can be done by replacing single-valued methods by multivalued
ones.

Similarly, in the overestimates, the subclass-relation can happen to be cyclic,
and the final result may contain undefined class-membership atoms.

Summarizing, WFS can be applied to the dood context, but one has to take
care about the proper use of the truth-value undefined.

4 TImplementation in F-Logic

F-Logic [KLW95] is a dood language combining the advantages of deductive
databases with the rich modeling capabilities (objects, methods, class hierarchy,

Well-Founded Semantics for Deductive Object-Oriented Database Languages 9

non-monotonic inheritance, signatures) of the OO data model. The syntax al-
lows to use variables for oid’s, method names, method arguments and results,
and class names. The full syntax and semantics is given in [KLW95, FLU94].
F-Logic has been implemented in FLORID (F-LOgic Reasoning In Databases)
[FHKT97]%. Here, only the features which are relevant for applying the required
program transformations are presented. In brief, the syntax and semantics can
be described as follows:

e The alphabet of an F-Logic language consists of a set F of object construc-
tors, playing the role of function symbols, a set P of predicate symbols, a
set V of variables, several auxiliary symbols, containing), (,], [, =, &>, =%,
o>, :, and the usual first-order logic connectives. By convention, object con-
structors start with lowercase letters whereas variables start with uppercase
ones.

e id-terms are composed from object constructors and variables. They are
interpreted as elements of the universe.

In the sequel, let O, C, D, M, X;, V', V;, ScM, and MvM denote id-terms.

e A method application is an expression MQ(Xy,..., X).

o if MQ(X,,...,X}) is a method application and O is an id-term, the path ez-
pression O.(MQ@(Xq,...,X})), denoting the object resulting from applying
M@(Xy,...,X) to O, is an id-term. This results in an anonymous object
which is created when some object atom O.M@(X,..., X)[...] is defined.

e The following are object atoms:

— O[ScM@(X71, ..., X;)—=V]: applying the scalar method ScM with argu-
ments Xq,..., X to O — as an object — results in V,

— O[ScMQ(X1,..., X;)e>V]: O — as a class — provides the inheritable scalar
method ScM to its members, which, if called with arguments X1, ..., X
results in V,

— O[MvMQ(Xy,..., X)—{V1,..., V, }]: applying the multivalued method
MvM with arguments X1, ..., Xy to O results in some V;.

— O[MvMQ(X,,..., Xi)e»{V1,..., V,}], analogous for an inheritable mul-
tivalued method.

e An is-a assertion is an expression of the form O : C (object O is a member
of class C'), or C :: D (class C is a subclass of class D).

e A predicate atom is an expression of the form p(Xy,...,X,,) where p € P.

e Formulas are built from F-Logic’s atoms, i.e., is-a assertions, object atoms,
and predicate atoms by first-order logic connectives.

e An F-Logic rule is a logic rule h < b over F-Logic’s atoms.

e An F-Logic program is a set of rules.

In FLORID, F-Logic programs are evaluated wrt. inflationary fixpoint semantics,
additionally, user-defined stratification is supported. Non-monotonic inheritance
is implemented via a trigger mechanism in a deduction precedes inheritance man-
ner which is described in the next section to implement the state sequence. We
exploit this mechanism to obtain a concise implementation of the state sequence.

% available at http://www.informatik.uni-freiburg.de/~dbis/flogic-project.html.

10 Well-Founded Semantics for Deductive Object-Oriented Database Languages

4.1 Programming the State Sequence in F-Logic.

In F-Logic, the state-by-state evaluation can be enforced using its trigger mech-
anism which allows insertion of atoms into the database after a deductive fix-
point has been reached. Originally, this mechanism is used to implement non-
monotonic inheritance: Non-monotonic inheritance of a property from a class
to an object takes place if a) it is inheritable, and b) no other property can be
derived for the object. Thus, inheritance is done after pure deduction: fixpoint
computation and inheriting one fact at a time alternate until an outer fixpoint
is reached.

This mechanism can be utilized to define a sequence of deductive fixpoint
computations by defining a set of inheritable methods which “trigger” the next
computation: By defining a class state which provides an inheritable boolean
method ready, the sequential computation of states can be controlled (see Table
1, recall that (atom)[S] denotes the atom (atom) associated with state S). The
alternating fixpoint computation is stopped when the underestimates become
stationary by comparing the even states.

O:state.

O:even.

state[readyetrue].

state[runninge-false].

S:state < T[running—true], T.ready[], S=T + 1.
S:even < S:state, S =T + 1, T:odd.

S:odd < S:state, S =T + 1, T:even.

O[running—true].
S[running—true] + S:odd.

S[running—true] < (atom)[S], not (atom)[T], S =T + 2, T:even.
S:final «— S[running—false].

Table 1. Implementation of the State Sequence

The rule state[readye>true] defines an inheritable method of the class state.
For every state s, its IDB is computed via deduction when s becomes a mem-
ber of state. Additionally, either s.[running—true] is derived (trivially for odd s,
or due to new atoms in the underestimate if s is even), or the method running
remains undefined for s. Since deduction precedes inheritance, when the com-
putation of a state s is completed, s[ready—true] is inherited, and, if running is
still undefined, also s[running—false] is inherited. Depending on s.running, either
the computation is continued by making s+1 the next state and starting the
computation of s+1, or the subsequent deduction step derives s:final.

Due to the higher-order syntax of F-Logic, the fixpoint check can be imple-
mented in a very generic way, using variables at object, method, argument, and
class-positions:

Well-Founded Semantics for Deductive Object-Oriented Database Languages 11

S[running—true] + O.S[M—=V], not O.T.M[], S=T + 2, T:even.
S[running—true] + O.S[M—»V], not O.T[M—»V], S=T + 2, T:even.
S[running—true] < O.S:C.S, not O.T:C.T, S =T + 2, T:even.
S[running—true] - C.S::D.S, not C.T::D.T, S =T + 2, T:even.

4.2 AFP Transformation

Equality, Scalar Methods. For scalar methods, functionality is enforced in
F-Logic, i.e., if two atoms are derived assigning different objects as results of a
method application to an object, e.g., john[spouse—mary] and john[spouse—jane],
those objects are equated. To get around unintended equating of objects due to
different values of a method application to an object in overestimates, scalar
methods are encoded as multivalued methods during the computation.

Definition 1 The operator ¥ which transforms scalar methods into multivalued
methods is defined as follows, marking transformed methods by #:

V¥ is the identity on is-a atoms, is-subclass atoms, predicate atoms, and object
atoms handling multivalued methods. For object atoms handling scalar methods,

T(O[MO(Xy,. .., Xn) —V]) := O[M#Q(X,,... X,) =»V] and
T(O[MO(X.... X,) &>V]) := O[M#Q(X,,... Xy,) eV] . .

Translation of the Program. For the translation, states are associated to
atoms following the ideas of dynamic objects and dynamic classes:

Definition 2 For F-Logic atoms, the state associating operator [S] is defined
as follows:
O[M@(Xj,. ... X,)~ V][S] := O.S[MQ(X; ..., X;)~ V]
for “~"€ {—, 05, =, o}

0:C[9] :=0.S:CS,
0:C[9] = 0.5:CS, and
pP(X1,... . Xn)[5] = p(S.X1,.... Xp) . g

Here, path expressions are used to create and address anonymous objects.

Definition 3 (Transformed Program) For a given program P, the trans-
formed program P4rp is obtained as follows: For every rule h « b,

e EDB literals (occurring only in the body) remain unchanged,

e every positive IDB literal / is replaced by ¥(I[S]),

e every negative IDB literal —/ (which can occur only in the body) is replaced
by =¥ (I[T]), and

e the rule body is extended by the atom S:state if rule contains no negative
IDB literals.

e the body is extended by the atoms S=T+1 and T.ready][] if the rule contains
negative IDB literals.

Then, the rules shown in Table 1 are added. o

12 Well-Founded Semantics for Deductive Object-Oriented Database Languages

Evaluation of the Result. Due to the transformation of scalar methods into
multivalued methods, in the well-founded model Wp of Pspp, all scalar methods
are replaced by the corresponding marked multivalued methods.

Example 3 Consider again the program of Example 2. P4pp consists of the
rules given in Table 1 and the following ones:

john.S[spouse#—»mary| < not john.T[spouse#—+jane], S = T + 1, T.ready][].
john.S[spousett—+jane] « not john.T[spouse#—»mary], S =T + 1, T.ready]].
P.S[married#—»true] <—P.S[spouse#—+X], S:state.

The alternating fixpoint computation stops for so = 2, i.e., A = 2 : final and

Al = john[spouse#—+{jane,mary}] A john[married—true] , and for s € {0,2}.
Alsl = —john[spouse#—sjane] A —john[spouse#—mary] A —john[married#—sstrue] .

Thus, in the well founded model,
W(john[spouse#—sjane]) = W (john[spouse#—+mary]) = undef and
W(john[married#—+true]) = undef. o

Depending on the application, there can be several ways how to retranslate
the well-founded model to the original signature, dealing with the requirements
of scalar methods and the interpretation of undefinedness. The straightforward
case is, when a) the well-founded model is total, and b) the functionality of scalar
methods is satisfied. Then, the following rules extract a total F-structure over
the signature of the original program from the alternating-fixpoint computation:

O[M@(X1,. .. X,) =V] < O.S[M#Q(X ..., X,) —»V], Stfinal.
O[M@(X1,. .. X,) &3V] < O.S[M#Q(X, ..., X,,) e»V], Stfinal.
O[M@(X1,... . Xs) V] « O.S[M@(X1,... . X,) —»V], S:final.
O[M@(X1,. .. X,) e»V] « O.S[M@(X1,. .. X,) e»V], S:final.

0:C + 0.S:C.S, S:final.

C::D « C.S::D.S, S:final.

p(X1,...,.Xp) < p(S5.X1,...,Xy), S:final.

error < (atom)[T], not (atom)[S], S = T + 1, T:state, S:final.

error <— O.S[M#Q(X4,...,X,) e»V], O.S[M#Q(Xy,...,X,) e»W], not V = W, S:final.

If the well-founded model is partial, the meaning of an undefined truth-value has
to be defined wrt. the application semantics. The examples in Section 5 illustrate
that there are several possibilities, depending on the application:

(i) In some cases (cf. win-move game, Example 5.1), undefined atoms are an
intended, reasonable result.

(ii) In some cases (cf. deep equality, Example 5.2), undefined atoms can be in-
terpreted as true or as false ones, depending on the intended application
semantics.

(iii) otherwise, they indicate an error in the program resp. in the specification, e.g.
insufficient knowledge or inconsistencies. (For instance, in Example 2, where
W(john[spouse—mary]) = undef and W(john[spouse—jane]) = undef).

Well-Founded Semantics for Deductive Object-Oriented Database Languages 13

5 Applications and Examples

In this section, we illustrate the approach with two typical examples?.

5.1 Win-Move Games

An object-oriented formulation of the win-move game (cf. Example 1) where the
move relation is assumed to be given as EDB is

P := {game[win—»X] + move(X,Y), not game[win—>Y].}

The translated P4pp program comprises the rules given in Table 1 and addi-
tionally

S[running—true] - game.S[win—X], not game.T[win—X], S = T + 2, T:even.
game.S[win—X] < move(X,Y), not game.T[win—Y], S = T + 1, T.ready[].

The model is evaluated by

game[win—X] < game.S[win—X], S:final.
game[undef—>X] - game.T[win—+X], not game.S[win—>X], S:final, T:state, S =T + 1.
game[lost—X] < X:dom, not game.T[win—+X], S:final, T:state, S =T + 1.

An important application of win-move games is the area of argumentation frame-
works [Dun95].

5.2 Deep Equality

In an object-oriented framework, objects are called deep-equal, if they cannot be
distinguished by looking at their values, possibly dereferencing the oid’s appear-
ing therein and doing this recursively, also called “pointer-chasing” (cf. [AdB95]).
Deep equality is the coarsest equivalence relation among objects satisfying the
requirement that two objects are equivalent if their values are.

In [AdB95] it is shown that, provided that there are no set values, deep-
equality is expressible with stratified negation, for instance with the rules shown
in Table 2; the stratification is given by EDB < not_deep_eq < deep_eq. (The
rules are presented in the state-extended form for further usage.)

Two objects are not deep equal, if

e they are either different basic values, or

e one is a member (or a subclass) of a class where the other is no member
(resp. subclass), or

e there is a method application which is defined for only one of the objects
under consideration, or

e if there is a method application which results in different objects which are
not, deep-equal.

Then, two objects are deep equal, if with the above characteristics, it cannot be
proven that they are not deep-equal.

* The examples are available at
http://www.informatik.uni-freiburg.de/“dbis/flsys/morexamples.html.

14 Well-Founded Semantics for Deductive Object-Oriented Database Languages

deep_eq(S,X,Y) « X:dom, Y:dom, not not_deep_eq(T,XY),S =T + 1, T.ready[].
deep_eq(S,X,X) « X:dom, S:state.
not_deep_eq(S,X,Y
not_deep_eq(S,X,Y
not_deep_eq(S,X,Y
not_deep_eq(S,X,Y
(
(

« X:basic_value, Y:basic_value, not X = Y, S:state.

+ not_deep_eq(S,Y,X), S:state.

< X:dom, Y:dom, X:C, not Y:C, S:state.

< X::C, not X = C, Y:dom, C:dom, not Y::C, S:state.

+ X:dom, Y:dom, X[M—=V], not Y.M[], S:state.

+ X:dom, Y:dom, X[M—=V], Y[M—=W],
not_deep_eq(S,V,W), S:state.

not_deep_eq(S.X,Y
not_deep_eq(S.X,Y

~— e N N N

Table 2. Deep Equality without Set Values

In contrast, in presence of set values — which is the case in F-Logic due to
the existence of multivalued methods —, deep-equality is mot expressible with
stratified negation:

For two objects z and y under consideration, an object v which results from
applying a multivalued method m to x is matched if

there is an object w resulting from applying m to y @
and v and w are deep-equal. Here, not-deep-equality

depends negatively on matching which itself depends -
positively on deep-equality, thus negatively on not- w

deep-equality, making up a negative cycle.

not_deep_eq(S,X,Y) « X:dom, Y:dom, X[M—»V], not Y.T[matched®@(M)—»V],
S=T+1, T.ready[].
Y.S[matched®(M)—»V] < Y:dom, Y[M—+W], deep_eq(S,V,W), S:state.

Table 3. Deep Equality with Set Values

The rules of Tables 1, 2, and 3 together compute deep-equality in presence
of multivalued methods with the WFS.

In case a signature contains no multivalued methods, the well-founded model
is total, and coincides with the stratified model obtained by the rules given in
Table 2.

Otherwise, if a signature contains multivalued methods, the above rules in-
duce cyclic dependencies of the form “a is not deep-equal to b if ¢ is not deep-
equal to d”’, and “c is not deep-equal to d if a is not deep-equal to b”. Then, there
can be no well-founded argumentation that the respective objects are deep-equal.
If there is also no well-founded argumentation that these objects are not deep-
equal, the respective deep-equalities are undefined in the well-founded model.
Note, that if two objects are not deep-equal, there is a well-founded derivation
for this fact. Thus, if WW(deep-eq(x,y)) = undef, x and y are actually deep-equal.
The well-founded model is evaluated as follows (note that since with s:final, s is
even, thus ¢t = s—1 is odd, representing an overestimate):

Well-Founded Semantics for Deductive Object-Oriented Database Languages 15

deep_eq(X,Y) < deep_eq(T,XY), S:final, S=T + 1.

Deductive Equality. Furthermore, from the deductive point of view, two ob-
jects can also be distinguished by looking at their occurrences as results of
method applications, corresponding to following references in the inverse di-
rection. A finer equivalence relation, deductive equality is defined as shown in
Table 4.

ded_eq(S.X,Y) < X:dom, Y:dom, not not_ded_eq(T ,X,Y), S =T + 1, T.ready[|.

ded_eq(S,X,X) « X:dom, S:state.

not_ded_eq(S,X,Y) < not_deep_eq(S,X,Y).

not_ded_eq(S,X,Y) < not_ded_eq(S,Y X), S:state.

not_ded_eq(S,X,Y) < X:dom, Y:dom, X[M—V], Y[M—W], not_ded_eq(S,V,W), S:state.

not_ded_eq(S,X,Y) < X:dom, Y:dom, X[M—+V], not Y.T[mvMatched@(M)—+V],
S=T+1, T.ready[].

O.S[mvMatched®(M)—+V] < O:dom, O[M—»W], ded_eq(S,V,W), S:state.

not_ded_eq(S,X,Y) + X:dom, Y:dom, V[M—X], not Y.T[invScMatched®@(M)—»V],
S=T+1, T.ready[].

O.S[invScMatched®(M)—V] < O:dom, W:dom, W[M—0], ded_eq(S,V,W), S:state.

not_ded_eq(S,X,Y) + X:dom, Y:dom, V[M—+X], not Y.T[invMvMatched@(M)—»V],
S=T+1, T.ready[].

O.S[invMvMatched@(M)—+V] <~ O:dom, W:dom, W[M—+0], ded_eq(S,V,W), S:state.

Table 4. Additional Rules for Deductive Equality

Here again, undefined atoms can be interpreted as true:
ded_eq(X,Y) <+ ded_eq(T,X,Y), S:final, S=T + 1.

Theorem 3 Two objects are deductive equivalent iff they cannot be distinguished
by any program which does not refer to object id’s. o

Example 4 Consider the following database:

a[value—1;next—b]. b[value—2;next—d]. c[value—2;next—e].
d[value—3]. e[value—3].

Then, b and c resp. d and e are deep-equal, although they are not deductive-equal
(since a[next—b], but ¢ is not the result of next applied to any object which is
deductive-equal to a). If a is removed, W(deep_eq(b,c)) = W(deep_eq(d,e)) =
true, and YW (ded_eq(b,c)) = W(ded_eq(d,e)) = undef due to the cyclic depen-
dency. Here, the above-mentioned policy to interpret undefined atoms as true
becomes important. o

6 Conclusion

The work shows that the translation of well-founded semantics and its alternating-
fixpoint characterization to deductive object-oriented database languages is pos-
sible and yields a reasonable semantics. There are several problems due to object-
oriented features, such as scalar methods and object identity, or undefinedness in

16 Well-Founded Semantics for Deductive Object-Oriented Database Languages

class-membership. We suspect that this is the reason that until now, no deduc-
tive object-oriented framework came up with a well-founded semantics. We have
shown that those problems can be described and solved in a model-theoretic,
generic way. Thus, given a problem and a specification how to deal with dif-
ferent assignments to scalar methods and how to interpret undefined atoms, a
semantics wrt. those parameters based on the well-founded model is uniquely de-
termined and effectively computable. The approach can be applied to arbitrary
dood languages.

Since there are several problems which are not expressible using only strati-
fied negation, our approach makes this class of problems amenable to deductive
object-oriented database languages.

References

[AdB95] S. Abiteboul and J. V. den Bussche. Deep Equality Revisited. In Ling
et al. [LMV95].

[AGI1] S. Abiteboul and S. Grumbach. A rule based language with functions and

sets. ACM Transactions on Database Systems, 16(1):1-30, 1991.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

[AK92] S. Abiteboul and P. C. Kanellakis. Object Identity as a Query Language
Primitive. In F. Bancilhon, C. Delobel, and P. Kanellakis, editors, Build-
ing an Object-Oriented Database System — The Story of O, chapter 5,
pages 98-127. Morgan Kaufmann, 1992.

[BJZ94] J. B. Bocca, M. Jarke, and C. Zaniolo, editors. Proc. Intl. Conference on
Very Large Data Bases, Santiago de Chile, 1994.

[BPFT94] M. L. Barja, N. W. Paton, A. A. A. Fernandes, M. H. Williams, and
A. Dinn. An Effective Deductive Object-Oriented Database Through Lan-
guage Integration. In Bocca et al. [BJZ94], pages 463-474.

[CCCR™90] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Inte-
grating Object-Oriented Data Modeling with a Rule-Based Programming
Paradigm. In H. Garcia-Molina and H. V. Jagadish, editors, Proc. ACM
SIGMOD Intl. Conference on Management of Data, pages 225-236, 1990.

[CTT9I3] S. Ceri, K. Tanaka, and S. Tsur, editors. Proc. Intl. Conference on De-
ductive and Object-Oriented Databases (DOOD), number 760 in LNCS.
Springer, 1993.

[CW89] W. Chen and D. S. Warren. C-Logic for complex objects. In Proc. ACM
Symposium on Principles of Database Systems, pages 369 — 378, 1989.

[Dix95] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Proper-
ties. In A. Fuhrmann and H. Rott, editors, Logic, Action and Information.
de Gruyter, 1995.

[Dun95] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role
in Nonmonotonic Reasoning, Logic Programming and N-Person Games.
Artificial Intelligence, 77:312-357, 1995.

[FHKT97] J. Frohn, R. Himmerdder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst.
FLORID: A Prototype for F-Logic. In Proc. Intl. Conference on Data
Engineering, 1997.

[FLU94] J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expres-
sions and Rules. In Bocca et al. [BJZ94].

Well-Founded Semantics for Deductive Object-Oriented Database Languages 17

[HY90]

[KLW95]

[KRS95]

[KW93]

[LHL95]

[Liu96]

[LMV95]

[Mais6]
[MR93]

[MSL97]

[VG93]

[VGRSSS]

[ZAO93]

[ZFBO7]

R. Hull and M. Yoshikawa. ILOG: Declarative Creation and Manipulation
of Object Identifiers. In D. McLeod, R. Sacks-Davis, and H.-J. Schek,
editors, Proc. Intl. Conference on Very Large Data Bases, pages 455 —
468, Brisbane, 1990.

M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42(4):741-843, July
1995.

D. B. Kemp, K. Ramamohanarao, and P. J. Stuckey. ELS Programs and
the Efficient Evaluation of Non-Stratified Programs by Transformation to
ELS. In Ling et al. [LMV95].

M. Kifer and J. Wu. A logic for programming with complex objects. Jour-
nal of Computer and System Sciences, 47(1):77 — 120, August 1993.

B. Ludéscher, U. Hamann, and G. Lausen. A Logical Framework for Ac-
tive Rules. In Proc. 7th Intl. Conf. on Management of Data (COMAD),
Pune, India, December 1995. Tata McGraw-Hill.

M. Liu. ROL: A Deductive Object Base Language. Information Systems,
21(5):431-457, 1996.

T. W. Ling, A. O. Mendelzon, and L. Vieille, editors. Proc. Intl. Confer-
ence on Deductive and Object-Oriented Databases (DOOD), number 1013
in LNCS, Singapore, 1995. Springer.

D. Maier. A logic for objects. In Workshop on Foundations of Deductive
Databases and Logic Programming, pages 6 — 26, 1986.

I. S. Mumick and K. A. Ross. Noodle: A Language for Declarative Query-
ing in an Object-Oriented Database. In Ceri et al. [CTT93].

W. May, C. Schlepphorst, and G. Lausen. Integrating Dynamic As-
pects into Deductive Object-Oriented Databases. In A. Geppert and
M. Berndtsson, editors, Proc. of the 3nd Intl. Workshop on Rules in
Database Systems (RIDS), LNCS, Skévde, Sweden, 1997.

A. Van Gelder. The Alternating Fixpoint of Logic Programs with Nega-
tion. Journal of Computer and System Sciences, 47(1):185-221, 1993.

A. Van Gelder, K. Ross, and J. Schlipf. Unfounded Sets and Well-Founded
Semantics for General Logic Programs. In Proc. ACM Symposium on
Principles of Database Systems, pages 221-230, 1988.

C. Zaniolo, N. Arni, and K. Ong. Negation and Aggregates in Recursive
Rules: the LDL++ Approach. In Ceri et al. [CTT93].

U. Zukowski, B. Freitag, and S. Brass. Improving the Alternating Fix-
point: The Transformation Approach. In 4th Intl. Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR’97), LNAI, Berlin,
1997. Springer.

