
�th International Conference on Deductive and Object�Oriented Databases
�DOOD����� December 	�
��
���� Montreux� Switzerland�
Springer LNCS

�
� pp�
���

��

Well�Founded Semantics for Deductive

Object�Oriented Database Languages

Wolfgang May� Bertram Lud�ascher Georg Lausen

Institut f�ur Informatik� Universit�at Freiburg� Germany
fmay�ludaesch�lauseng�informatik�uni�freiburg�de

Abstract� We present a well�founded semantics for deductive object�
oriented database �dood� languages by applying the alternating��xpoint
characterization of the well�founded model to them� In order to com�
pute the state sequence� states are explicitly integrated by making them
�rst�class citizens of the underlying language� The concept is applied to
Florid� an implementation of F�Logic� previously supporting only in�
	ationary negation� Using our approach� well�founded models of F�Logic
programs can be computed�
The method is also applicable to arbitrary dood languages which provide
a su
ciently 	exible syntax and semantics� Given an implementation of
the underlying database language� any program given in this language
can be evaluated wrt� the well�founded semantics�

� Introduction

The well�founded semantics �WFS� �VGRS��� is generally accepted as a scep�
tical 	well�behaved
� semantics for logic programs with negation� It assigns a
unique� three�valued model W�P � to every program P � The third truth�value
unde�ned is assigned to atoms which depend negatively on themselves and for
which no independent 	well�founded
 derivation exists� Although several rela�
tional database systems now support WFS� this is not the case for dood systems�
Existing dood systems are limited to in
ationary or strati�ed semantics and may
bene�t from a WFS for the following reasons�

� In relational languages the notion of strati�cation is based on explicit de�
pendencies between relation symbols� For object�oriented �OO� frameworks�
those dependencies are conceptually more involved due to value inheritance�
a dynamic class hierarchy� and higher�order features like variables at method
or class positions�

� Since strati�ed negation is less expressive than well�founded negation� certain
concepts cannot be expressed in strati�ed semantics� most notably the notion
of deep equality �AdB��� �cf� Section �� in presence of set values� which
is crucial for OO�systems� Another example are argumentation frameworks
�Dun��� � which inherently require the WFS�

� Supported by grant no� GRK ��
����� of the Deutsche Forschungsgemeinschaft�
� Dix �Dix��� formally de�nes this notion using certain abstract properties of seman�
tics�

� Well�Founded Semantics for Deductive Object�Oriented Database Languages

In this paper� we show how WFS can be applied to dood languages� using
the well�known alternating��xpoint characterization �AFP� �VGRS��� VG����
For this� analogous to rei�cation in relational database languages� a notion of
states is incorporated into the modeling� and the program is transformed ac�
cordingly� Evaluating the transformed program with the original semantics of
the underlying framework yields the WFS of the original program�

The paper is structured as follows� the introduction is completed with an
overview of related work and some notational conventions� Section � exhibits
some problems of strati�ed semantics in the OO paradigm� In Section �� the WFS
and its alternating��xpoint characterization are reviewed and a formalization of
the alternating �xpoint characterization for the OO paradigm is given� In Section
�� the approach is instantiated for F�Logic� Section � illustrates the concept and
its application by examples� Section � closes with some concluding remarks�

Related Work� To our knowledge� none of the existing dood languages sup�
ports WFS� For several early logics introducing OO�features like object id�s�
types�classes� or set�values� e�g� O�Logic �Mai��� and its relatives presented in
�KW��� or �CW��� �C�Logic�� or ILOG �HY���� the semantics of programs is
reduced to the semantics of �rst�order logic programs via program transfor�
mations� but these approaches lack some typical OO�features� COL �complex
object language� �AG��� extends Datalog by structured values and set construc�
tors� without providing a class hierarchy or inheritance� Its semantics is given in
terms of minimal models and strati�cation� IQL �AK��� provides oid�s� set and
tuple types corresponding to method applications� and types corresponding to
classes where type inheritance corresponds to a subclass hierarchy� There is no
value inheritance� IQL is evaluated bottom�up using an in
ationary �xpoint op�
erator� LOGRES �CCCR���� additionally supports multisets� �multiple� value
inheritance� and integrity constraints� coming with an in
ationary or strati�ed
semantics� ROL �Liu��� is based on the standard notions of objects� methods�
and classes� Regarding classes� there is only structural inheritance� but no value
inheritance� Thus� strati�cation is possible in ROL� Strati�ed programs are eval�
uated wrt� a minimal�model semantics� The semantics of ROLL �BPF���� is
de�ned by a mapping to an internal Datalog representation which is then input
to an SLDNF resolution proof�procedure� Noodle �MR��� is based on HiLog and
comes with modularly strati�ed semantics� In �KLW���� F�Logic is de�ned with
a minimal�model and a perfect model semantics� The Florid implementation
provides an in
ationary semantics with user�de�ned strati�cation�

Summarizing� although a number of dood languages have been developed� to
our knowledge� none of them provides WFS for handling negation�

Notation� An Object�oriented model is represented by three types of atoms�
i�e�� method applications� class membership� and the subclass relation� In order to
obtain a uniform notation� we will use F�Logic syntax �cf� Section �� throughout
this paper� o�m�v� denotes that application of method m to object o results in
the value v� o�c denotes that o is a member of class c� and c��d denotes that c is
a subclass of d� We will use capital letters for variables�

Well�Founded Semantics for Deductive Object�Oriented Database Languages �

� Strati�ed Semantics

In the relational context� strati�cation is de�ned using a dependency graph over
relation symbols� a relation p depends positively�negatively on another rela�
tion q if there is a rule with p occurring in the head and q occurring posi�
tively�negatively in the body� The dependency graph is given as �V�E� s�t� V is
the set of relation symbols and E contains a 	positive
 edge y � x if x depends
positively on y� and a 	negative
 edge y

�
� x if x depends negatively on y� A

program is strati�ed if its dependency graph contains no cycle with a negative
edge�

For dood languages� strati�cation can also be de�ned via a dependency graph�
Given an atom o�m�v�� the method position m is the distinguished position�
for an atom o�c� c is the distinguished position� and for an atom c��d� d is the
distinguished position� A symbol x depends positively �negatively� on a symbol
y if there is a rule r s�t� x occurs at the distinguished position of the head of r
and y occurs in a positive �negative� literal in the body�

In restricted OO frameworks � such as ROL �Liu���� which provides no value
inheritance� only a static class hierarchy� and no variables at method name or
class positions �� this is a practicable solution�

However� in presence of non�monotonic inheritance� the notion of strati�ca�
tion becomes more complicated� Let c�m��v� denote an inheritable scalar method�
de�ned for the class c� If an object o is a member of class c� the value of m ap�
plied to o should be v by default� i�e�� unless another value has been de�ned for
o�m� This is expressed by the rule

O�m�Default� � c�m��Default�� O�c� not � W� �O�m�W� � W �� Default��

Thus� every application of an inheritable method to an object depends negatively
on itself� Consequently� such programs are not strati�able� In a full�
edged dood
framework� there are two additional aspects rendering already simple programs
non�strati�ed�

� If variables are allowed at distinguished positions� i�e�� method or class po�
sitions in o�M�v� resp� o�C� since the variables can potentially be replaced
by every symbol� the graph becomes very 	dense
 and almost all non�trivial
programs become non�strati�ed�

� If equalities can be de�ned in a framework where entities can simultaneously
play the roles of objects� classes� and methods� the result of equating two
entities x and y depends on all symbols on which one of them depends� Note
that equating is not detectable by static analysis of a program�

In some contexts� a user�de�ned strati�cation can be applied� However� this
approach is also problematic� overlooking certain dependencies can lead to un�
intended models� Even more important� independent of the chosen framework�
there are several problems which are not expressible with strati�ed semantics�
Two of them� deep equality� and the win�move�game� are sketched in Section ��

 Well�Founded Semantics for Deductive Object�Oriented Database Languages

� Well�Founded Semantics

��� Well�Founded Semantics in the Relational Context

For Datalog� the WFS has become widely accepted for general programs� Here�
we brie
y review the WFS �VGRS��� in the form of its bottom�up alternating
�xpoint characterization �VG����

Example � �Win�Move Game� One of the classical examples for WFS is the
win�move�game� A game is given by a set of positions and a set of moves between
them� It is played by two players moving alternately� if a player cannot move�
she loses� Thus� a position X is won� if there is a move to some position Y which
is not won �since then the opponent has to move�� The game is represented by
the single non�strati�ed rule

win�X� �move�X�Y�� � win�Y��

Consider e�g� a game wheremove � f�a� b�� �b� a�� �b� c�� �c� d�g� Obviously� win�d�
is false� since there are no moves from d� Consequently� win�c� is true� since it
is possible to move from c to d� On the other hand� the positions a and b in the
game are drawn� the player moving from b has no winning strategy �moving to
c would leave the opponent in a won position�� but she can enforce a game of
in�nite length by moving from b to a and thus avoid losing� Thus� win�a� and
win�b� are unde�ned because there is no 	well�founded
 argument to make each
of them either false or true� �

Alternating Fixpoint Characterization� The original de�nition of the WFS
is given in �VGRS���� In �VG���� its bottom�up alternating �xpoint character�
ization is given as follows� Given a �xed Herbrand interpretation J �i�e�� a set
of ground atoms�� every logic program P �containing the database D as a set of
facts� gives rise to an operator TJP � mapping interpretations to interpretations�

TJP �I� �� fH j �H � B�� � � � � Bn��C�� � � � ��Cm� � ground�P �
and Bi � I for all i � �� � � � � n
and Cj �� J for all j � �� � � �m g

Since J is �xed� TJP is a monotone operator� Let �P �J � �� lfp�TJP � be its least
�xpoint� The operator �P is antimonotone �observe how J is used in TJP �� i�e��
J� � J� implies �P �J�� � �P �J��� It follows that �

�
P ��� �P ��P � is a monotone

operator� Thus� the even indices in the sequence ��
P �� 	���

P ��
�
P � � � � form a

monotonically growing sequence of underestimates of the true atoms� �nally
reaching the least �xpoint� lfp���

P �� whereas the odd indices form a monotonically
decreasing sequence of overestimates� converging against the greatest �xpoint
gfp���

P ��

Theorem � �AFP Characterization� 	VG
��� For every ground atom A�
its truth value in the well�founded model W�P � of a given program P is

W�P ��A� �

���
��

true if A � lfp���
P ��

false if A �� gfp���
P ��

undef if A � gfp���
P �nlfp��

�
P �� �

Well�Founded Semantics for Deductive Object�Oriented Database Languages �

In Example �� the sequence ��
P ��

�
P ��

�
P � � � � yields the alternating sequence

	� fa� b� cg� fcg� fa� b� cg� fcg� � � �

of values for the win relation� Since win�c� � lfp���
P �� win�d� �� gfp���

P �� and
win�a�� win�b� � gfp���

P �nlfp��
�
P � the expected truth values from above are

obtained�

Computing WFS via States� The sequence of applications of �P can be com�
puted by a logic program which is obtained from the original program by intro�
ducing an additional argument position for IDB�relations� representing the state
sequence �this construction is a variant of �KRS���� see also �ZAO���� �LHL�����
Corresponding to the de�nition of TJP � in each rule� this argument is set to S��
for all positive literals �including the head literal�� otherwise to S� The distin�
guished state variable S is restricted by the additional literal state�S�� The rule
from Example � translates into

win�S	
� X� � move�X�Y�� � win�S� Y�� state�S��
state����
state�S	
� � state�S��

Note that negative dependencies in the translated program are only to the prede�
cessor state and to EDB relations� hence there are no cyclic negative dependen�
cies between state�ground atoms� Thus� using the rewritten program� the WFS
can be computed also by systems which do not originally provide a WFS� For ev�
ery �xed state s� a positive program is evaluated� since all negated atoms refer to
the � completely evaluated � predecessor state and thus can be regarded as input�
By successively instantiating S with �� �� �� � � �� precisely the AFP computation
is obtained� Given a �nite database� the computation �nally becomes stationary
or ��periodic� and the well�founded model can be determined from the �xpoints�
In the sequel� we will exploit this technique in the context of an object�oriented
data model� An optimization of AFP has been presented in �ZFB����

��� Translation into the OO�Paradigm

Although the de�nition in �VGRS��� is given in relational context� it does not
depend on the fact that the atoms of the respective logic programs are relational
atoms� Thus� the de�nition can be carried over to dood languages by generalizing
from �implicitely� relational atoms to atoms of an arbitrary deductive language�
Then� the handling of single�valued methods� transitivity of class hierarchy� and
inheritance must be integrated accordingly� Also� the AFP characterization can
be carried over�

As presented in Section ���� in Datalog� the AFP characterization can be
implemented via rei�cation� i�e�� every n�ary relation p�X�� � � � � Xn� is replaced
by an n���ary one� p�S�X�� � � � � Xn�� where the �rst argument holds the state�
In the OO paradigm� the extension by states can be done analogously� Each
atom has to be extended �in at least one position� with a state component�

� Well�Founded Semantics for Deductive Object�Oriented Database Languages

States in an Object�Oriented Model� With the rich variety of concepts to
cover di erent roles� i�e�� objects� classes� and methods� there are several possibil�
ities how to integrate the notion of states into a given program� The modeling of
explicit states in the OO paradigm and F�Logic in context of process modeling is
dealt with in �MSL���� here� the use of states as an internal tool is demonstrated�
States as objects � If the focus is on the computation
sequence represented by a program� it is preferable to
view states s as objects� Objects o act on them as
methods� addressing the instance i corresponding to
object o in this state�

s�

s�

i�

i�

i�

o�
o�

o�

o�

Dynamic objects � For an object o� a state s is a
method� giving the instance of o corresponding to
state s� In this case� the result of applying some
method m to an object o in state s is derived as the
result of the application of m to the corresponding
instance�

o�

o�

i�

i�

i�

s�

s�
s�

s�

Dynamic classes � For a class c� a state s is a method�
giving the instance of the class cs in this state� Dy�
namic classes are closely related with dynamic objects
since classes and objects can be seen as two roles of
the same entities�

c

c� �
fo�� o�g

c� �
fo�� o�g

s�
s�

s�

Dynamic methods � For an object o� a state s is an
additional argument of a method m� o�m!�s� � X ��
yielding the value of the method in this state� The
concept of dynamic methods is in some sense comple�
mentary to dynamic objects�

o �m��x�
m�!�s���y�
m�!�s���y�
m�!�s���z �

Depending on the semantic and syntactic capabilities of the chosen frame�
work� the choice between the above possibilities can be restricted� Especially�
	states as objects
� 	dynamic objects
� and 	dynamic classes
 require variables
to appear at method positions� With 	states as objects
� the objects are methods
to states� thus� variables at object positions become variables at method posi�
tions� With 	dynamic objects
 and 	dynamic classes
� states appear as methods�
thus state variables appear as variables at method positions� Both approaches
also require object creation� anonymous objects� and anonymous classes�

	Dynamic methods
 corresponds directly to rei�cation in relational frame�
works� but it must be complemented by one of the other approaches to cover
also a state�dependent class�membership and class hierarchy�

��� Alternating Fixpoint in the Object�Oriented Paradigm

Regarding the method application atoms o�m�v�� the state component must at
least be associated with the object or with the method� Due to the fact that is�a
atoms �i�e�� o�c or c��d� contain only objects and classes� dynamic methods would
not be su"cient there� Thus� states are associated with objects and classes� This
can be done equivalently by states as objects or by dynamic objects and dynamic
classes� In both cases� let a��S�� denote the atom a extended by a state S�

Well�Founded Semantics for Deductive Object�Oriented Database Languages �

For a given program P � assume that certain atoms are not subject to change�
we call these EDB atoms� The other atoms are called IDB atoms�

In the same way as presented in Statelog �LHL���� a program P is trans�
formed into a program PAFP computing the WFS via the alternating��xpoint
characterization� for every rule h � b�

� EDB literals �occurring only in the body� remain unchanged�
� every positive IDB literal l is replaced by l��S�����
� every negative IDB literal �l �which can occur only in the body� is replaced
by �l��S��� and

� the body is extended with the literal S���state�

Additionally� there are rules 	�state and S���state � S�state�
Negative dependencies in PAFP are only from atoms of one state to atoms of

the preceding state and to EDB atoms without state association� Thus� the state
sequence provides a local strati�cation� The program must now be evaluated
accordingly� i�e�� one state after another� Thus� the only control needed is to check
if a deductive �xpoint is reached and then starting the next deductive �xpoint�
and to check if the state sequence becomes stationary or ��periodic� i�e�� whether
the least and greatest �xpoints are computed �which will eventually be the case
for �nite databases�� Then� the computation can be stopped� yielding a �nite
structure AP � For arbitrary languages� the required control can be encoded using
the in
ationary semantics �cf� �AHV��� p� ��� � where it shown how WFS can
be computed using while��� In F�Logic� such control can be implemented much
more directly using its trigger mechanism as will be described in Section ����
W�l�o�g�� assume that the last state which has been computed has an even index
s�� For every s s�t� AP j� �s � state�� let

A
�s�
P �� fa j AP j� a��s��� a an IDB atomg
 fa j AP j� a� a an EDB atomg

be the 	snapshot
 at state s�

Then� either the last underestimate A
�s��
P and the last overestimate A

�s����
P coin�

cide� i�e�� A
�s��
P j� a � A

�s����
P j� a for all a� or some atoms a are false in the

underestimate and true in the overestimate� i�e�� A
�s��
P j� �a and A

�s����
P j� a�

Theorem � Analogous to Theorem �� the well�founded model WP is given as

WP �a� �

���
��

true � A
�s��
P j� a

undef � A
�s��
P j� �a and A

�s����
P j� a

false � A
�s����
P j� �a �

�

Like in the relational case�

� If A
�s��
P � A

�s����
P � the well�founded modelWP of P is total andWP � A

�s��
P �

� If the original program was locally strati�ed� WP is total�

In contrast to the relational case� in the object�oriented paradigm there are some
semantical intricacies due to the inherent semantics of functional methods and
object identity�

� Well�Founded Semantics for Deductive Object�Oriented Database Languages

� in the overestimates� i�e�� odd s� for some method applications o�m� � which
are intended to be single�valued� there can be v� �� v� s�t� AP j� �m�v����s��
and AP j� �m�v����s��� thus� the functionality requirement can be �tempo�
rally� violated in the overestimates �i�e�� for odd s�� Since at this intermedi�
ate point of the computation� true method atoms represent potential results�
functionality is not required�

� In the well�founded model� the truth value of a method application o�m�v�
can be unde�ned �not to be confused with the application of m to o being
unde�ned�� Moreover� for some method applications o�m� �� there can be
several such v�s� thus� unde�ned atoms in the result also do not �t the
functionality requirement�

Example � �Mutual Exclusion� Consider the following program� represent�
ing a database in which it is only known that John is either married to Jane or
to Mary�

P �� f john�spouse�mary� � not john�spouse�jane�

john�spouse�jane� � not john�spouse�mary�

O�married�true� � O�spouse�X� � g

Then� PAFP consists of the following rules�

john�spouse�mary���S���� � not john�spouse�jane���S��� S	
�state�
john�spouse�jane���S���� � not john�spouse�mary���S��� S	
�state�
O�married�true���S���� � O�spouse�X�� S	
�state�
��state�
S	
 � state � S � state�

The following AFP computation is obtained�

A
���
P � 	� A

���
P � fjohn�spouse�fjane�maryg�� john�married�true�g and A

���
P � 	�

hence the sequence becomes periodic for s� � �� Thus� in the well�founded
model�
W�john�spouse�jane�� � W�john�spouse�mary�� � W�john�married�true�� �
undef � �

Especially� if functionality is maintained by the underlying system �e�g�� by
equating of objects� or signaling an error�� this must be disabled during the AFP
computation� In some frameworks � e�g� F�Logic as shown in the subsequent
section �� this can be done by replacing single�valued methods by multivalued
ones�

Similarly� in the overestimates� the subclass�relation can happen to be cyclic�
and the �nal result may contain unde�ned class�membership atoms�

Summarizing� WFS can be applied to the dood context� but one has to take
care about the proper use of the truth�value unde�ned�

� Implementation in F�Logic

F�Logic �KLW��� is a dood language combining the advantages of deductive
databases with the rich modeling capabilities �objects� methods� class hierarchy�

Well�Founded Semantics for Deductive Object�Oriented Database Languages �

non�monotonic inheritance� signatures� of the OO data model� The syntax al�
lows to use variables for oid�s� method names� method arguments and results�
and class names� The full syntax and semantics is given in �KLW��� FLU����
F�Logic has been implemented in Florid �F�LOgic Reasoning In Databases�
�FHK������ Here� only the features which are relevant for applying the required
program transformations are presented� In brief� the syntax and semantics can
be described as follows�

� The alphabet of an F�Logic language consists of a set F of object construc�
tors� playing the role of function symbols� a set P of predicate symbols� a
set V of variables� several auxiliary symbols� containing �� �� �� �� �� ��� ���
���� �� and the usual �rst�order logic connectives� By convention� object con�
structors start with lowercase letters whereas variables start with uppercase
ones�

� id�terms are composed from object constructors and variables� They are
interpreted as elements of the universe�

In the sequel� let O� C� D� M � Xi� V � Vi� ScM� and MvM denote id�terms�
� A method application is an expression M!�X�� � � � � Xk��
� ifM!�X�� � � � � Xk� is a method application and O is an id�term� the path ex�

pression O��M!�X�� � � � � Xk��� denoting the object resulting from applying
M!�X�� � � � � Xk� to O� is an id�term� This results in an anonymous object
which is created when some object atom O�M!�X�� � � � � Xk��� � �� is de�ned�

� The following are object atoms �

 O�ScM!�X�� � � � � Xk��V �� applying the scalar method ScM with argu�
ments X�� � � � � Xk to O � as an object � results in V �

 O�ScM!�X�� � � � � Xk���V ��O � as a class � provides the inheritable scalar
method ScM to its members� which� if called with arguments X�� � � � � Xk

results in V �

 O�MvM!�X�� � � � � Xk���fV�� � � � � Vng�� applying themultivalued method

MvM with arguments X�� � � � � Xk to O results in some Vi�

 O�MvM!�X�� � � � � Xk����fV�� � � � � Vng�� analogous for an inheritable mul�

tivalued method�
� An is�a assertion is an expression of the form O � C �object O is a member
of class C�� or C �� D �class C is a subclass of class D��

� A predicate atom is an expression of the form p�X�� � � � � Xn� where p � P �
� Formulas are built from F�Logic�s atoms� i�e�� is�a assertions� object atoms�
and predicate atoms by �rst�order logic connectives�

� An F�Logic rule is a logic rule h� b over F�Logic�s atoms�
� An F�Logic program is a set of rules�

In Florid� F�Logic programs are evaluated wrt� in
ationary �xpoint semantics�
additionally� user�de�ned strati�cation is supported� Non�monotonic inheritance
is implemented via a trigger mechanism in a deduction precedes inheritance man�
ner which is described in the next section to implement the state sequence� We
exploit this mechanism to obtain a concise implementation of the state sequence�

� available at http���www�informatik�uni�freiburg�de��dbis�flogic�project�html�

�� Well�Founded Semantics for Deductive Object�Oriented Database Languages

��� Programming the State Sequence in F�Logic�

In F�Logic� the state�by�state evaluation can be enforced using its trigger mech�
anism which allows insertion of atoms into the database after a deductive �x�
point has been reached� Originally� this mechanism is used to implement non�
monotonic inheritance� Non�monotonic inheritance of a property from a class
to an object takes place if a� it is inheritable� and b� no other property can be
derived for the object� Thus� inheritance is done after pure deduction� �xpoint
computation and inheriting one fact at a time alternate until an outer �xpoint
is reached�

This mechanism can be utilized to de�ne a sequence of deductive �xpoint
computations by de�ning a set of inheritable methods which 	trigger
 the next
computation� By de�ning a class state which provides an inheritable boolean
method ready� the sequential computation of states can be controlled �see Table
�� recall that hatomi��S�� denotes the atom hatomi associated with state S�� The
alternating �xpoint computation is stopped when the underestimates become
stationary by comparing the even states�

	�state

	�even

state�ready��true�

state�running��false�

S�state � T�running�true�� T
ready� �� S � T � �

S�even � S�state� S � T � �� T�odd

S�odd � S�state� S � T � �� T�even

	�running�true�

S�running�true� � S�odd

S�running�true� � hatomi��S��� not hatomi��T ��� S � T �
� T�even

S��nal � S�running�false�

Table �� Implementation of the State Sequence

The rule state�ready��true� de�nes an inheritable method of the class state�
For every state s� its IDB is computed via deduction when s becomes a mem�
ber of state� Additionally� either s
�running�true� is derived �trivially for odd s�
or due to new atoms in the underestimate if s is even�� or the method running
remains unde�ned for s� Since deduction precedes inheritance� when the com�
putation of a state s is completed� s�ready�true� is inherited� and� if running is
still unde�ned� also s�running�false� is inherited� Depending on s
running� either
the computation is continued by making s�� the next state and starting the
computation of s��� or the subsequent deduction step derives s��nal�

Due to the higher�order syntax of F�Logic� the �xpoint check can be imple�
mented in a very generic way� using variables at object� method� argument� and
class�positions�

Well�Founded Semantics for Deductive Object�Oriented Database Languages ��

S�running�true� � O�S�M�V�� not O�T�M� �� S � T 	
� T�even�
S�running�true� � O�S�M��V�� not O�T�M��V�� S � T 	
� T�even�
S�running�true� � O�S�C�S� not O�T�C�T� S � T 	
� T�even�
S�running�true� � C�S��D�S� not C�T��D�T� S � T 	
� T�even�

��� AFP Transformation

Equality� Scalar Methods� For scalar methods� functionality is enforced in
F�Logic� i�e�� if two atoms are derived assigning di erent objects as results of a
method application to an object� e�g�� john�spouse�mary� and john�spouse�jane��
those objects are equated� To get around unintended equating of objects due to
di erent values of a method application to an object in overestimates� scalar
methods are encoded as multivalued methods during the computation�

De�nition � The operator # which transforms scalar methods into multivalued
methods is de�ned as follows� marking transformed methods by ��

is the identity on is�a atoms� is�subclass atoms� predicate atoms� and object
atoms handling multivalued methods� For object atoms handling scalar methods�

#�O�M��X��

 �Xn� �V�� �� O�M���X��

 �Xn� ��V� and
#�O�M��X��

 �Xn� ��V�� �� O�M���X��

 �Xn� ���V� �

�

Translation of the Program� For the translation� states are associated to
atoms following the ideas of dynamic objects and dynamic classes �

De�nition � For F�Logic atoms� the state associating operator ��S�� is de�ned
as follows�

O�M��X��

 �Xn�� V���S�� �� O
S�M��X��

 �Xn��V�
for 	�
� f�� ������ ���g�

O�C��S�� �� O
S�C
S �
O��C��S�� �� O
S��C
S � and
p�X��

 �Xn���S�� �� p�S�X��

 �Xn� � �

Here� path expressions are used to create and address anonymous objects�

De�nition � �Transformed Program� For a given program P � the trans�
formed program PAFP is obtained as follows� For every rule h � b�

� EDB literals �occurring only in the body� remain unchanged�
� every positive IDB literal l is replaced by #�l��S����
� every negative IDB literal �l �which can occur only in the body� is replaced
by �#�l��T ���� and

� the rule body is extended by the atom S�state if rule contains no negative
IDB literals�

� the body is extended by the atoms S�T�� and T
ready� � if the rule contains
negative IDB literals�

Then� the rules shown in Table � are added� �

�� Well�Founded Semantics for Deductive Object�Oriented Database Languages

Evaluation of the Result� Due to the transformation of scalar methods into
multivalued methods� in the well�founded modelWP of PAFP � all scalar methods
are replaced by the corresponding marked multivalued methods�

Example � Consider again the program of Example �� PAFP consists of the
rules given in Table � and the following ones�

john�S�spouse	��mary� � not john�T�spouse	��jane�� S � T 	
� T�ready� ��
john�S�spouse	��jane� � not john�T�spouse	��mary�� S � T 	
� T�ready� ��
P�S�married	��true� �P�S�spouse	��X�� S�state�

The alternating �xpoint computation stops for s� � �� i�e�� A j� � � �nal and

A��� j� john�spouse���fjane�maryg�
 john�married�true� � and for s � f�� �g�
A�s� j� �john�spouse���jane�
 �john�spouse���mary�
 �john�married���true�

Thus� in the well founded model�
W�john�spouse���jane�� �W�john�spouse���mary�� � undef and
W�john�married���true�� � undef � �

Depending on the application� there can be several ways how to retranslate
the well�founded model to the original signature� dealing with the requirements
of scalar methods and the interpretation of unde�nedness� The straightforward
case is� when a� the well�founded model is total� and b� the functionality of scalar
methods is satis�ed� Then� the following rules extract a total F�structure over
the signature of the original program from the alternating��xpoint computation�

O�M��X��� � � �Xn� �V� � O�S�M	��X��� � � �Xn� ��V�� S��nal�
O�M��X��� � � �Xn� ��V� � O�S�M	��X��� � � �Xn� ���V�� S��nal�
O�M��X��� � � �Xn� ��V� � O�S�M��X��� � � �Xn� ��V�� S��nal�
O�M��X��� � � �Xn� ���V� � O�S�M��X��� � � �Xn� ���V�� S��nal�
O�C � O�S�C�S� S��nal�
C��D � C�S��D�S� S��nal�
p�X��� � � �Xn� � p�S�X��� � � �Xn�� S��nal�
error � hatomi��T ��� not hatomi��S��� S � T 	
� T�state� S��nal�
error � O�S�M	��X��� � � �Xn� ���V�� O�S�M	��X��� � � �Xn� ���W�� not V � W� S��nal�

If the well�founded model is partial� the meaning of an unde�ned truth�value has
to be de�ned wrt� the application semantics� The examples in Section � illustrate
that there are several possibilities� depending on the application�

�i� In some cases �cf� win�move game� Example ����� unde�ned atoms are an
intended� reasonable result�

�ii� In some cases �cf� deep equality� Example ����� unde�ned atoms can be in�
terpreted as true or as false ones� depending on the intended application
semantics�

�iii� otherwise� they indicate an error in the program resp� in the speci�cation� e�g�
insu"cient knowledge or inconsistencies� �For instance� in Example �� where
W�john�spouse�mary�� � undef and W�john�spouse�jane�� � undef ��

Well�Founded Semantics for Deductive Object�Oriented Database Languages ��

� Applications and Examples

In this section� we illustrate the approach with two typical examples	�

��� Win�Move Games

An object�oriented formulation of the win�move game �cf� Example �� where the
move relation is assumed to be given as EDB is

P �� fgame�win��X� � move�X�Y�� not game�win��Y��g

The translated PAFP program comprises the rules given in Table � and addi�
tionally

S�running�true� � game�S�win��X�� not game�T�win��X�� S � T 	
� T�even�

game�S�win��X� � move�X�Y�� not game�T�win��Y�� S � T 	
� T�ready� ��

The model is evaluated by

game�win��X� � game�S�win��X�� S��nal�
game�undef��X� � game�T�win��X�� not game�S�win��X�� S��nal� T�state� S � T 	
�
game�lost��X� � X�dom� not game�T�win��X�� S��nal� T�state� S � T 	
�

An important application of win�move games is the area of argumentation frame�
works �Dun����

��� Deep Equality

In an object�oriented framework� objects are called deep�equal� if they cannot be
distinguished by looking at their values� possibly dereferencing the oid�s appear�
ing therein and doing this recursively� also called 	pointer�chasing
 �cf� �AdB�����
Deep equality is the coarsest equivalence relation among objects satisfying the
requirement that two objects are equivalent if their values are�

In �AdB��� it is shown that� provided that there are no set values� deep�
equality is expressible with strati�ed negation� for instance with the rules shown
in Table �� the strati�cation is given by EDB � not deep eq � deep eq� �The
rules are presented in the state�extended form for further usage��

Two objects are not deep equal� if

� they are either di erent basic values� or
� one is a member �or a subclass� of a class where the other is no member
�resp� subclass�� or

� there is a method application which is de�ned for only one of the objects
under consideration� or

� if there is a method application which results in di erent objects which are
not deep�equal�

Then� two objects are deep equal� if with the above characteristics� it cannot be
proven that they are not deep�equal�

� The examples are available at
http���www�informatik�uni�freiburg�de��dbis�flsys�morexamples�html�

�
 Well�Founded Semantics for Deductive Object�Oriented Database Languages

deep eq�S�X�Y� � X�dom� Y�dom� not not deep eq�T�X�Y�� S � T � �� T
ready� �

deep eq�S�X�X� � X�dom� S�state

not deep eq�S�X�Y� � X�basic value� Y�basic value� not X � Y� S�state

not deep eq�S�X�Y� � not deep eq�S�Y�X�� S�state

not deep eq�S�X�Y� � X�dom� Y�dom� X�C� not Y�C� S�state

not deep eq�S�X�Y� � X��C� not X � C� Y�dom� C�dom� not Y��C� S�state

not deep eq�S�X�Y� � X�dom� Y�dom� X�M�V�� not Y
M� �� S�state

not deep eq�S�X�Y� � X�dom� Y�dom� X�M�V�� Y�M�W��

not deep eq�S�V�W�� S�state

Table �� Deep Equality without Set Values

In contrast� in presence of set values � which is the case in F�Logic due to
the existence of multivalued methods �� deep�equality is not expressible with
strati�ed negation�

For two objects x and y under consideration� an object v which results from
applying a multivalued method m to x is matched if
there is an object w resulting from applying m to y
and v and w are deep�equal� Here� not�deep�equality
depends negatively on matching which itself depends
positively on deep�equality� thus negatively on not�
deep�equality� making up a negative cycle�

deq ndeq

matched

�

�

not deep eq�S�X�Y� � X�dom� Y�dom� X�M��V�� not Y
T�matched��M���V��
S � T � �� T
ready� �

Y
S�matched��M���V� � Y�dom� Y�M��W�� deep eq�S�V�W�� S�state

Table �� Deep Equality with Set Values

The rules of Tables �� �� and � together compute deep�equality in presence
of multivalued methods with the WFS�

In case a signature contains no multivalued methods� the well�founded model
is total� and coincides with the strati�ed model obtained by the rules given in
Table ��

Otherwise� if a signature contains multivalued methods� the above rules in�
duce cyclic dependencies of the form 	a is not deep�equal to b if c is not deep�
equal to d
� and 	c is not deep�equal to d if a is not deep�equal to b
� Then� there
can be no well�founded argumentation that the respective objects are deep�equal�
If there is also no well�founded argumentation that these objects are not deep�
equal� the respective deep�equalities are unde�ned in the well�founded model�
Note� that if two objects are not deep�equal� there is a well�founded derivation
for this fact� Thus� if W�deep eq�x�y�� � undef � x and y are actually deep�equal�
The well�founded model is evaluated as follows �note that since with s��nal� s is
even� thus t � s�� is odd� representing an overestimate��

Well�Founded Semantics for Deductive Object�Oriented Database Languages ��

deep eq�X�Y� � deep eq�T�X�Y�� S��nal� S � T 	
�

Deductive Equality� Furthermore� from the deductive point of view� two ob�
jects can also be distinguished by looking at their occurrences as results of
method applications� corresponding to following references in the inverse di�
rection� A �ner equivalence relation� deductive equality is de�ned as shown in
Table ��

ded eq�S�X�Y� � X�dom� Y�dom� not not ded eq�T�X�Y�� S � T 	
� T�ready� ��
ded eq�S�X�X� � X�dom� S�state�

not ded eq�S�X�Y� � not deep eq�S�X�Y��
not ded eq�S�X�Y� � not ded eq�S�Y�X�� S�state�
not ded eq�S�X�Y� � X�dom� Y�dom� X�M�V�� Y�M�W�� not ded eq�S�V�W�� S�state�

not ded eq�S�X�Y� � X�dom� Y�dom� X�M��V�� not Y�T�mvMatched��M���V��
S � T 	
� T�ready� ��

O�S�mvMatched��M���V� � O�dom� O�M��W�� ded eq�S�V�W�� S�state�

not ded eq�S�X�Y� � X�dom� Y�dom� V�M�X�� not Y�T�invScMatched��M���V��
S � T 	
� T�ready� ��

O�S�invScMatched��M���V� � O�dom� W�dom� W�M�O�� ded eq�S�V�W�� S�state�

not ded eq�S�X�Y� � X�dom� Y�dom� V�M��X�� not Y�T�invMvMatched��M���V��
S � T 	
� T�ready� ��

O�S�invMvMatched��M���V� � O�dom� W�dom� W�M��O�� ded eq�S�V�W�� S�state�

Table �� Additional Rules for Deductive Equality

Here again� unde�ned atoms can be interpreted as true�

ded eq�X�Y� � ded eq�T�X�Y�� S��nal� S � T 	
�

Theorem � Two objects are deductive equivalent i� they cannot be distinguished
by any program which does not refer to object id	s
 �

Example � Consider the following database�

a�value�
�next�b�� b�value�
�next�d�� c�value�
�next�e��
d�value���� e�value����

Then� b and c resp� d and e are deep�equal� although they are not deductive�equal
�since a�next�b�� but c is not the result of next applied to any object which is
deductive�equal to a�� If a is removed� W�deep eq�b�c�� � W�deep eq�d�e�� �
true� and W�ded eq�b�c�� � W�ded eq�d�e�� � undef due to the cyclic depen�
dency� Here� the above�mentioned policy to interpret unde�ned atoms as true
becomes important� �

� Conclusion

The work shows that the translation of well�founded semantics and its alternating�
�xpoint characterization to deductive object�oriented database languages is pos�
sible and yields a reasonable semantics� There are several problems due to object�
oriented features� such as scalar methods and object identity� or unde�nedness in

�� Well�Founded Semantics for Deductive Object�Oriented Database Languages

class�membership� We suspect that this is the reason that until now� no deduc�
tive object�oriented framework came up with a well�founded semantics� We have
shown that those problems can be described and solved in a model�theoretic�
generic way� Thus� given a problem and a speci�cation how to deal with dif�
ferent assignments to scalar methods and how to interpret unde�ned atoms� a
semantics wrt� those parameters based on the well�founded model is uniquely de�
termined and e ectively computable� The approach can be applied to arbitrary
dood languages�

Since there are several problems which are not expressible using only strati�
�ed negation� our approach makes this class of problems amenable to deductive
object�oriented database languages�

References

�AdB��� S� Abiteboul and J� V� den Bussche� Deep Equality Revisited� In Ling
et al� �LMV����

�AG��� S� Abiteboul and S� Grumbach� A rule based language with functions and
sets� ACM Transactions on Database Systems� ����������� �����

�AHV��� S� Abiteboul� R� Hull� and V� Vianu� Foundations of Databases� Addison
Wesley� �����

�AK��� S� Abiteboul and P� C� Kanellakis� Object Identity as a Query Language
Primitive� In F� Bancilhon� C� Delobel� and P� Kanellakis� editors� Build�
ing an Object�Oriented Database System � The Story of O�� chapter ��
pages ������� Morgan Kaufmann� �����

�BJZ�
� J� B� Bocca� M� Jarke� and C� Zaniolo� editors� Proc� Intl� Conference on
Very Large Data Bases� Santiago de Chile� ���
�

�BPF��
� M� L� Barja� N� W� Paton� A� A� A� Fernandes� M� H� Williams� and
A� Dinn� An E�ective Deductive Object�Oriented Database Through Lan�
guage Integration� In Bocca et al� �BJZ�
�� pages
���
�
�

�CCCR���� F� Cacace� S� Ceri� S� Crespi�Reghizzi� L� Tanca� and R� Zicari� Inte�
grating Object�Oriented Data Modeling with a Rule�Based Programming
Paradigm� In H� Garcia�Molina and H� V� Jagadish� editors� Proc� ACM
SIGMOD Intl� Conference on Management of Data� pages �������� �����

�CTT��� S� Ceri� K� Tanaka� and S� Tsur� editors� Proc� Intl� Conference on De�
ductive and Object�Oriented Databases �DOOD�� number ��� in LNCS�
Springer� �����

�CW��� W� Chen and D� S� Warren� C�Logic for complex objects� In Proc� ACM
Symposium on Principles of Database Systems� pages ��� � ���� �����

�Dix��� J� Dix� Semantics of Logic Programs� Their Intuitions and Formal Proper�
ties� In A� Fuhrmann and H� Rott� editors� Logic� Action and Information�
de Gruyter� �����

�Dun��� P� M� Dung� On the Acceptability of Arguments and its Fundamental Role
in Nonmonotonic Reasoning� Logic Programming and N�Person Games�
Arti�cial Intelligence� ����������� �����

�FHK���� J� Frohn� R� Himmer�oder� P��T� Kandzia� G� Lausen� and C� Schlepphorst�
FLORID� A Prototype for F�Logic� In Proc� Intl� Conference on Data
Engineering� �����

�FLU�
� J� Frohn� G� Lausen� and H� Upho�� Access to Objects by Path Expres�
sions and Rules� In Bocca et al� �BJZ�
��

Well�Founded Semantics for Deductive Object�Oriented Database Languages ��

�HY��� R� Hull and M� Yoshikawa� ILOG� Declarative Creation and Manipulation
of Object Identi�ers� In D� McLeod� R� Sacks�Davis� and H��J� Schek�
editors� Proc� Intl� Conference on Very Large Data Bases� pages
�� �

��� Brisbane� �����

�KLW��� M� Kifer� G� Lausen� and J� Wu� Logical Foundations of Object�Oriented
and Frame�Based Languages� Journal of the ACM�
��
���
���
�� July
�����

�KRS��� D� B� Kemp� K� Ramamohanarao� and P� J� Stuckey� ELS Programs and
the E
cient Evaluation of Non�Strati�ed Programs by Transformation to
ELS� In Ling et al� �LMV����

�KW��� M� Kifer and J� Wu� A logic for programming with complex objects� Jour�
nal of Computer and System Sciences�
������� � ���� August �����

�LHL��� B� Lud�ascher� U� Hamann� and G� Lausen� A Logical Framework for Ac�
tive Rules� In Proc� 	th Intl� Conf� on Management of Data �COMAD��
Pune� India� December ����� Tata McGraw�Hill�

�Liu��� M� Liu� ROL� A Deductive Object Base Language� Information Systems�
������
���
��� �����

�LMV��� T� W� Ling� A� O� Mendelzon� and L� Vieille� editors� Proc� Intl� Confer�
ence on Deductive and Object�Oriented Databases �DOOD�� number ����
in LNCS� Singapore� ����� Springer�

�Mai��� D� Maier� A logic for objects� In Workshop on Foundations of Deductive
Databases and Logic Programming� pages � � ��� �����

�MR��� I� S� Mumick and K� A� Ross� Noodle� A Language for Declarative Query�
ing in an Object�Oriented Database� In Ceri et al� �CTT����

�MSL��� W� May� C� Schlepphorst� and G� Lausen� Integrating Dynamic As�
pects into Deductive Object�Oriented Databases� In A� Geppert and
M� Berndtsson� editors� Proc� of the
nd Intl� Workshop on Rules in
Database Systems �RIDS�� LNCS� Sk�ovde� Sweden� �����

�VG��� A� Van Gelder� The Alternating Fixpoint of Logic Programs with Nega�
tion� Journal of Computer and System Sciences�
������������� �����

�VGRS��� A� Van Gelder� K� Ross� and J� Schlipf� Unfounded Sets andWell�Founded
Semantics for General Logic Programs� In Proc� ACM Symposium on
Principles of Database Systems� pages �������� �����

�ZAO��� C� Zaniolo� N� Arni� and K� Ong� Negation and Aggregates in Recursive
Rules� the LDL�� Approach� In Ceri et al� �CTT����

�ZFB��� U� Zukowski� B� Freitag� and S� Brass� Improving the Alternating Fix�
point� The Transformation Approach� In �th Intl�Conference on Logic
Programming and Non�Monotonic Reasoning �LPNMR�
	�� LNAI� Berlin�
����� Springer�

