5th Intl. Conf. on Deductive and Object-Oriented Databases
(DOOD’97), December 8-12, 1997, Montreux, Switzerland.
To appear in Springer LNCS.

On a Declarative Semantics for Web Queries

Rainer Himmeroder*  Georg Lausen
Bertram Ludéischer  Christian Schlepphorst*

Institut fiir Informatik, Universitat Freiburg, Germany
{himmeroe,lausen,ludaesch,schlepph}@informatik.uni-freiburg.de

Abstract. With the increasing importance of the World Wide Web as
an information source, there is a growing interest for integration of Web
and database technology. Several Web query languages have been pre-
sented to overcome the shortcomings of conventional search engines, most
of them lacking a formal semantics. In this paper, we propose F-logic as
a means to explore, query and restructure Web information, and to in-
tegrate it with a local database. Two major advantages of this approach
are its declarative semantics, based on the semantics of F-logic, and the
rich modeling capabilities which make F-logic particularly suitable to
handle heterogeneous data. The presented semantics directly yields a
bottom-up evaluation algorithm that can be easily incorporated into the
existing F-logic prototype FLORID.

1 Introduction

With the World Wide Web (WWW) an information repository is provided on
top of the Internet which is interesting and relevant for science, research and
industry as well. However, it can be hard to locate documents of interest in
this huge and almost unstructured system. In practice, the only alternative to
browsing the network by following links is the use of search engines, e.g. Alta
Vista or HotBot, which return lists of documents containing the given keywords.
The limitations of browsing as a search technique are obvious, given the large
number of documents in the Web. Search engines lack the possibility to take
the structure of the Web into consideration. Not surprisingly, there has been a
very strong interest in providing query languages for the Web similar to those
developed for database systems, see e.g. [KS95, LSS96, MMM96, Suc97].

The benefits of such query capabilities are locating, filtering and present-
ing WWW-held information in a declarative way. In this paper, we use F-logic
[KLW95] for this purpose. F-logic is well-suited for querying and restructuring
Web data, since it combines a logical semantics with the powerful modeling ca-
pabilities of the object-oriented paradigm. The querying facilities take document
structure and Web topology into account. Here, restructuring means to reorga-
nize parts of the Web into a database view. The main features of our approach
are:

* The work of these authors is supported by the Deutsche Forschungsgemeinschaft, La
598/3-2.



e a declarative semantics for Web queries is defined by incorporating Web
access into an existing DOOD framework. This allows to integrate Web data
with a local database.

e explored and unexplored parts of the Web can be distinguished. Exploration
of the Web corresponds to extending the (partial) F-logic model by newly
derived information. Therefore, the access semantics can be smoothly inte-
grated into the existing bottom-up evaluation technique.

After giving a brief survey of F-logic in Section 2, we present in Section 3 our
model of the Web. In Section 4, we show by example how to query and restruc-
ture the Web using our extension of F-logic. The underlying semantics of Web
exploration and the resulting bottom-up evaluation algorithm are given in Sec-
tion 5. We conclude with a discussion about further extensions of our proposal,
which has been implemented in the F-logic prototype FLORID! [FHK97].

Related Work At present, there are particularly two interesting streams of
publications discussing the integration of the Web and database technology. The
first one are the so-called Web query languages that provide features for query-
ing contents and structure of the Web analogously to known database query lan-
guages. WebSQL [MMMO96] has a formal semantics in terms of a virtual graph
model, and a notion of locality for query analysis. Regular path expressions en-
able querying the topology of the Web. In contrast, W3QL [KS95] is a SQL-like
Web language without formal semantics, but has additional features as filling
forms. Lakshmanan et al. [LSS96] propose WebLog, a rule language for querying
and restructuring the Web. Instead of regular expressions as used in WebSQL,
WebLog relies on possibly recursive rules. The syntax resembles that of F-logic,
but no formal semantics for WebLog is given. Abiteboul and Vianu [AV97] in-
troduce theoretical foundations to investigate the computability of Web queries,
based on so-called Web machines, but do not present a concrete Web query
language. Mendelzon and Milo [MM97] present a formal model of Web queries
which is closely related to [AV97], in which especially the effects of limited access
to data and the lack of concurrency are discussed. In contrast to the approach
of Abiteboul and Vianu, they consider the Web as a finite structure.

The other direction is centered around the topic of semi-structured data
[Abi97]. In the context of data integration, especially integration of data found
on the Web, this topic has received a lot of attention [Suc97]. The term “semi-
structured data” refers to data that has a certain structure, but is not as strictly
structured (typed) as data in conventional database systems. Most information
in the Web is present in the form of Hypertext Markup Language (HTML) doc-
uments, a typical example for semi-structured data. Two prominent query lan-
guages for semi-structured data are Lorel [AQM*] and UnQL [BDHS96]. Both
use a data model that is based on labeled graphs. Lorel is an extension of OQL
[Cat94], providing additional features as coercion and general path expressions

! FLORID is available from
http://www.informatik.uni-freiburg.de/~“dbis/flogic-project.html



that are useful for querying semi-structured data. Coercion means to relax the
typing requirements of OQL by extending comparison predicates and base func-
tions. Thus, the user does not have to know the precise types of objects. The
idea of general path expressions is to allow queries even if the structure is not
completely known. An important feature of UnQL is a construct called traverse
that allows tree restructuring up to an arbitrary depth. UnQL can be translated
into UnCal, a calculus enabling certain optimization techniques.

Our approach follows the first direction by enhancing F-logic’s semantics to
cope with Web queries. However, F-logic also has powerful capabilities to handle
data from heterogeneous sources, an important problem of semi-structured data.
Indeed, F-logic matches many of the criteria for query languages tailored for
semi-structured data given in [Abi97].

2 Preliminaries: F-Logic in a Nutshell

In this section, we briefly review the basic constructs of F-logic and its extension
by path expressions. For a comprehensive description of the syntax and semantics
the reader is referred to [KLW95, FHKS97b]. In F-logic, objects have logical oids,
so-called id-terms which are ground first-order terms built from a set of functors
F. For example, john and father(mary) denote objects holding information about
individuals. Facts about objects are syntactically represented by molecules, e.g.:

person[name =>string; children ==person].
john:employee[name —" John Smith"; children —»{mary,bob}].
father(mary)[address@(1997)—" Main St. USA"; spouse —sally].

The first molecule gives the types of the methods name und children on a
class person. The second molecule states, that john is a employee and gives the
values of these methods. The arrow “—” denotes single-valued methods whereas
“—+” denotes multi-valued methods?. Signatures of methods are specified by the
double-shafted arrows “=" and “==". 0-ary methods are also called attributes.
Note that F-logic does not distinguish between method names and other logical
oids, i.e., methods are objects as well.

Molecules may be split into several atoms where each atom expresses exactly
one property. The molecule about john is equivalent to the conjunction of atoms

john:person, john[name—" John Smith"],
john[children—»{mary}], john[children—>{bob}].

Objects that share the same properties are grouped into classes. For example
john : employee means that john is an instance of class employee and employee :
person means that employee is a subclass of person. Due to the closure properties
john is also an instance of class person. F-logic overcomes the strict separation
of schema manipulation and access to data and allows uniform handling of data

? F-logic distiguishes between inheritable and non-inheritable properties. We do not
consider inheritance here, since it is not needed for our purpose.



on the instance and on the schema level. In F-logic, a higher-order syntax is
obtained by allowing variables also at method and class positions. So objects
may act at the same time as classes, objects, and methods. As usual, in F-logic
variables are capitalized, while constants are denoted by lower case letters.

Path Expressions. In [FLU94] an extension of F-logic by path expressions
is introduced. The idea of path expressions is to follow a link between objects
without having to write down explicit join conditions. Path expressions can be
used to reduce the number of variables in a program and often result in more
concise and readable programs. Consider for example the rules:

X[grandfather —Z] <— X[father —Y], Y[father —Z].
X[grandfather —Z] <— X father[father —Z].

In the second rule X father is a path expression denoting the result of the single-
valued method father applied to any object that defines this method. Multi-
valued paths are denoted by “..”. Paths and molecules may be mutually nested:?

X[oldgrandma —Z] <— X.father[age —A].father[spouse —Z], A > 60.

Paths and molecules together form the set of references. Besides enabling efficient
object navigation, single-valued path expressions, when appearing in the head
of a rule, can also create objects*. This effect occurs whenever a path expression
consists of a host object with a method application that has not been defined
otherwise:

X.father : man <— X : man, not X = adam. (2.1)

If a man other than adam is known, e.g. john, a new object john.father repre-
senting his father is created (if the method father was not already defined for
this person) and made an instance of man, too. Note, that this rule will then
create an infinite number of ancestors john.father.father, john.father.father.father
etc. This shows that object creation has to be used with care, similar to function
symbols, to ensure the existence of a finite model.

3 The Web Model

Every resource available in the Web has a unique address, called Uniform Re-
source Locator (URL). HTML documents may contain hyperlinks to other doc-
uments, that is, URLs with labels. Therefore it seems quite natural to have an
abstract view of the Web as a labeled directed graph where the nodes repre-
sent documents and the labeled edges are provided by the hyperlinks (cf. e.g.
[MMO97]). Due to its size and often low transfer rates, it is practically impossible

3 The rule expresses that if the father X.father of X is older than 60, then
X.father.father’s spouse is X’s (old) grandmother.

* Multi-valued path expressions are not allowed in rule heads as this would lead to
semantical problems.



to have access to the Web as a whole. As [MMM96] states, a notion of locality
and a selection of interesting parts of the Web is necessary for practical reasons.
Therefore, we propose a different, more practically oriented Web model, where
only a small part has been transferred to an abstract form and the rest can be
accessed by black box functions if needed. Thus, in our model it is not necessary
to decide whether the whole Web should be considered as finite, but undeter-
mined as in [MMMO96] and [MM97], or as infinite as in [AV97]. Figure 1 shows
the exploration cycle between the classes url (for URLs) and webdoc (for Web
documents).

access

| "http://www.informatik..." I

analyse
URLs (class url) Documents (class webdoc)

Fig. 1. Exploring the Web by iteration of access and analyse

The access function loads the document associated with an URL u from the
Web (this is standard browser functionality), and analyse extracts its structure
and maps it into database facts. In particular, analyse may yield a set of new,
previously unexplored URLs. A bottom line for the structure to recognize is
given by the following signature:®

webdoc[self =-url; author =string; modif =string;
type =string; hrefs@(string) ==url; error ==>string].

Class webdoc is the base class of all kinds of documents that appear in the Web
and provides the properties all documents have in common. In the schema above,
self denotes the URL, author the owner, modif the time of last modification,
and type the type of the document. If the Web access fails, error returns the
reason of the failure (e.g. server does not ewists, page not found, connection
timed out). Method hrefs, parametrized with the link labels, returns the links
in the document.® The result type of hrefs is the class url. Furthermore, we can

5 This does not mean that all attributes are mandatory. If for example an error occurs,
every other attribute will be void.

6 A more detailed modeling could also include the offset of the link as a parameter,
cf. [MM97].



declare subclasses of Web documents:
htmldoc::webdoc[title =string; text =string].

specifies that HTML documents are Web documents with the additional at-
tributes title and text containing the title and the ASCII representation of the
document. Clearly this schema does not reflect the full structural information
covered by HTML documents but exemplifies the possibilities. It may be refined
to greater detail for practical use. Deriving further subclasses of webdoc can be
done to handle special features of other document types available on the Web,
e.g. BibTeX files, tables etc.

4 Exploring the Web with F-Logic

The problem when integrating the exploration cycle into the F-logic framework
lies in the necessity to load a beforehand unknown number of Web documents and
add their data to the model. Loading has to be completely data-driven; the user
must have the possibility to explore new documents depending on information
and links found in already known documents. Hence we have to create new oids
for those documents and feed in the result of the analyse function. To solve
this problem, we exploit the object creation feature of path expressions, thus
integrating the Web access without any syntactic patches. All we have to do is
to extend the semantics for the reserved method get (used to explore the Web)
on the class of URLs:

url::string[get =webdoc].

If the method get is defined for an instance u of class url, we force u.get to be an
instance of webdoc and have the respective methods defined. Thus, when this
method definition is derived during the evaluation of a program, we have to call
the function

explore(u) := analyse o access(u)

and add the delivered facts to the partial model. This extended semantics is
formally exposed in the next section.

The following three facts define the Web address of our institute’s homepage,
and fetch its contents:

ourHomepage = "http://WWW.Informatik.Uni-Freiburg.DE/" .
ourHomepage : url.
ourHomepage.get|[].

Here, the equality predicate is used to define a short name for the given URL.
When we ask about the name of the resulting document, we obtain the path
expression as an answer:

?— X][self — ourHomepage].
X = "http://WWW.Informatik.Uni-Freiburg.DE/" .get



The following examples demonstrate how the contents and structure of interest-
ing parts of the Web can be explored using this access mechanism. We assume
a set of built-in string manipulation predicates, like substr(a,b), which is true if
a is a substring of b. Clearly, more elaborated functions e.g. to match regular
expressions can be provided.

Example 1 First show the author and the time of last modification of our
institute’s homepage. Then show all links that are labeled with “database”.

?— ourHomepage.get[author —X; modif —Y].
?— ourHomepage.get[hrefs@(L)—+X], substr(" database” L). o

For the following examples, assume that a publishing company has collected the
base URLs of all computer science departements. These URLs form the instances
of the subclass csurl of url.

Example 2 Find all HTML pages belonging to the computer science departe-
ments.

csurl::url.

X.get:cspage <— X:csurl.

Y .get.cspage <— X:cspage[type —"html”; hrefs@(L) —»Y],
substr(Z:csurl,X.self). o

This example makes use of a recursive rule to locally traverse the graph structure
of the Web. To ensure that only documents of the given cs departements are
visited, the last subgoal restricts the followed links to those starting with a csurl.
Without any restriction, all documents reachable from cs homepages would be
loaded, possibly a major part of the whole Web. If no other precautions are
taken (such as limiting the depth of the graph traversal), the user is responsible
to specify which parts of the Web are interesting for her.

As mentioned before, this “relevant” part of the Web may be integrated into
an F-logic database thereby allowing to integrate Web queries with the local
database.

Assume that the publishing company stores the names of their customers
as instances of class customer in the database. After getting all interesting Web
pages in Example 2, they want to know which Web page authors are not cus-
tomers of their products yet.

Example 3 Annotate the cs pages whose authors are customers. Query those
pages whose authors are not customers.

Y[customerpage —true] <— Y:cspage[author —(X:customer).name].
7— Y:cspage, not Y[customerpage—rtrue]. o

The last two examples demonstrate how explored parts of the Web can be reorga-
nized and reused. Typically this form of restructuring is either done by grouping
documents into classes as in Example 2, or by adding new properties to them as
in Example 3.



In the next example, contents and structure of the part of the Web which
was explored in Example 2 are queried:

Example 4 Find all pairs of cs pages on different servers where the string
“database” occurs in the title and which reference each other directly.

related(X,Y) <
X:cspage[title—T1; hrefs@(L1)—»Y .get[title—T2; hrefs@(L2)—»X.self]],
substr(" database” , T1), substr(” database”, T2), not sameServer(X,Y).

Note, that Y.get only matches those documents that are already explored. New
documents are accessed only when “.get” appears in rule heads. o

5 Semantics of Web Access

The semantics of extending F-logic by path expressions was given in [FLU94] in
terms of a semantic structure

I= (U,EU,IN,I_,,I_,_)),

where U is the universe of oids, €, the class membership relation, Iy a func-
tion mapping a set N of external names onto oids and I_,, I_, interprete single-
and multi-valued methods. For this exposition, we want to use Herbrand in-
terpretations instead, since this makes the formal treatment of minimal models
and deduction operators easier. Herbrand interpretations can be mapped to I-
structures as described in [KLW95], Section 9. Here, we disregard inheritance,
typing and negation. They can be addressed as in [KLW95].

5.1 Herbrand Models

Given a (finite) set of object constructors F (i.e. functors of arbitrary arity),
the set of all ground id-terms is denoted by U(F). In presence of path expres-
sions, U(F) is not sufficient as Herbrand universe, because single-valued path
expressions may create new objects and therefore new logical oids. Thus, we
need to include all path expressions relevant for object creation in our universe.
For example if thisdoc:webdoc[author —"john"] is true, the path expression this-
doc.author has to be added to the Herbrand universe. In other words, we have to
close U(F) wrt. single-valued path constructors; the resulting closure is denoted
by U(F).”

Definition 1 (Herbrand Universe, Herbrand Base) The (extended) Her-
brand universe U(F) is the smallest set such that:

o U(F) CU(F),

o if to € U(F), then (o) € U(F),

" Definitions that have been extended by path expressions in comparison to [KLW95]
are overlined.



o if m,tg € U(F), then to.m € U(F),
e if m,tg,...,t, € U(F), then to.mQ(ty,...,t,) € U(F).

This is a subset of the set of all references (i.e. of the union of all paths and
molecules). Elements of U(F) are called pure references. Note that the second
condition is necessary to distinguish between path expressions with different
execution order. By default, path expressions are evaluated from left to right.
So, a.b.c means to apply the method b to the object a and then to call ¢ on
the result. In contrast, a.(b.c) first calls ¢ on b and then sends the outcome as a
method to a.

The (extended) Herbrand base HB(F,P) to F and a (finite) set of predicates
P (containing =) is now defined as the set of all ground atoms (references and
predicate atoms) built from elements of U (F). o

Herbrand interpretations are subsets of the Herbrand base, i.e., those which
define all true atoms. As HB(F,P) contains all references, they have a truth
value as well. A true pure reference u € U(F) is called an active name. Since we
are not interested in arbitrary subsets of the Herbrand base, we only consider
interpretations which satisfy certain natural closure properties:

Definition 2 (Herbrand Interpretation) A subset H C HB(F,P) of the
Herbrand base is a Herbrand interpretation if it satisfies the following axioms:

e The closure axioms of F-logic (see [KLW95], Section 7), restricted to active
names, especially
— reflexivity, transitivity and acyclicity of subclass relationship,
— subclass inclusion,
reflexivity, transitivity and symmetry of =,
equal objects have the same properties,
— functionality constraint for scalar methods.
e The path expression semantics:
— if top.m € H then to[m—to.m] € H,
— if to[m—t,] € H then to.m=t, € H,
- ifto.m@(tl, . ,tn) € H then to[m@(tl, R ,tn)—)to.m@(tl, - ,tn)] €H,
— if to[m@(tl, . ,tn)—)tr] € H then to.m@(tl, . ,tn)itr € H.
e The active name aziom:
— if t € H and t contains an element u € U(F), then u € H. o

The last axiom allows a simple declaration of the set of active names in a Her-
brand interpretation, namely Uy := U(F)NH. As we are especially interested in
finite interpretations, we note that Uy is finite iff H is finite, because there are
only a finite number of ways to build ground atoms. Note also, that in a finite
interpretation, no method may be totally defined because for a total method
meth all the path expressions meth, meth.meth, meth.meth.meth etc. have to be
active.




Definition 3 The truth value of formulae is defined as usual:

for an atom t € HB(F,P), H |=tiff t € H,

for a negative literal, H =t iff t ¢ H,

forarule body, HEl A...Al, it H|=1; forall 1 <i<n,
for a rule h < b containing variables X = {X1,..., X, },

H = h+ biff H ho < bo for all substitutions o : X +— U(F).83 o

The semantics of a (negation-free) F-logic program P can now be defined as the
minimal Herbrand interpretation H for which H |= F, called the model of P.°

In order to connect this model semantics of F-logic programs with the ab-
stract Web model explained above (see Section 3), we need the notion of a Web
interface.

Definition 4 (Web Interface) Let URL be the set of all URLs and R a set
of reserved names (0-ary functors). A Web Interface W is a tupel (R, explore),
where explore : URL — PB(HBURLUR, D)) is a function mapping URLSs to sets
of facts describing the contents of the document fetched in terms of the reserved
names (PB(X) denotes the powerset of X). o

For the minimal schema informally introduced in Section 3, the set of reserved
names R would be {url,get,webdoc,link,label,author,modif,type,error,hrefs,html}.

Definition 5 (Herbrand Web Interpretation) A Herbrand Web interpre-
tation wrt. a Web interface W is a Herbrand interpretation H C HB(F U R, P)
that additionally fulfills the Web access axiom:

Yu € U(F),if u : url,u.get € H then explore(u) C H.

that is, if the element u.get representing the document belonging to the URL u
is active in an interpretation, then all the information extracted by the analysis
function explore is also part of the interpretation. A Herbrand Web interpreta-
tion H with H |= P is called Herbrand Web model of P. o

Theorem 1 Every negation-free program P has a unique minimal Herbrand
Web model wrt. W. o

PrROOF Web models of P are models of P. Thus, the intersection M of all
Herbrand Web models is a model of P. As the Web access aziom holds in every
Web model, it holds in the intersection as well. So M is a Web model of P.
This establishes the uniqueness of the minimal Web model. The existence of
Web models follows from the bottom-up construction below. Note, that minimal
models may be infinite (cf. the rule (2.1)). n

The Web model of a program P is the minimal Herbrand Web interpretation
wrt. W.

8 Rules with complex molecules and multi-valued path expressions can be brought into
this form, possibly by introducing new variables.

® The problem of choosing a model in the presence of negation or inheritance conflicts
is dealt with in [KLW95].

10



5.2 Bottom-up Evaluation

If P is a pure Datalog program, the minimal model semantics has a quite nat-
ural procedural evaluation strategy (note that Datalog is a subset of F-logic).
Beginning with the empty interpretation, the rules of the program are applied
and the derived facts are added to the interpretation, until no new facts can be
derived anymore. Formally, this means iterating the well-known operator 7T on
sets of facts:

Tp(H):={ho|h+beP o:X > U(F), hEbo}
1=
Tir = Tp(Th)

Then, as Tp is monotone, the fixpoint T2° is the minimal model. For arbitrary F-
logic programs P, Tp(H) is in general not a Herbrand interpretation. To ensure
this, we may extend the program by the closure axioms from Definition 2.1° We
denote the extended Program by P*. So, the F-logic derivation operator is

TE(H) := Tp.(H).

Note, that due to the presence of functors and path constructors, the fixpoint
may be infinite. To evaluate a Web model in a bottom-up way, we additionally
have to ensure the Web access axiom from Definition 5. Therefore, we declare
the Web derivation process by

TYW(H) :=TEFH)U U{ewplore(u) | w:url,u.get € TH(H)}UH

Theorem 2 The fixpoint T}.fv’oo is the minimal Herbrand Web model for a
negation-free program P. o

PRrROOF As P is negation-free and T}.fv’oo D Tg’oo, it is a model of P. We show
the Web access axiom: If u.get,u : url € T}.fv’oo, there exists a minimal i such
that u.get,u : url € T}.fv’i. Due to the definition of T%', explore(u) C T;V’Hl C
T}.fv ', Minimality is shown as usual. n

Implementation. As the FLORID prototype does not work on Herbrand inter-
pretations but on semantic structures with a universe of oids, integrating Web
access to the evaluation component simply amounts to a special treatment of
the method get and the class url when adding new facts to the interpretation:
Whenever the method get becomes defined for an object u, we have to check
whether u is member of the class url; and whenever a new instance is added to
the class url, we check whether the method get is defined for it. In both cases

10 The set of axioms is infinite, but the number of axioms relevant for P is finite (there
is an upper bound on the arity of predicates and method applications in P). For
efficiency reasons, in the FLORID prototype, the closure properties are “hard-wired”
into the Object Manager [FHKS97a].

11



the function explore is called for u and the resulting facts are added to the in-
terpretation. As the web pages are only loaded when a new fact of this type
is inserted, the web is incrementally accessed. In other words, no document is
fetched more than once. Note that the Web interfacing part does not interfere
with program optimization techniques.

As in the case of other Web languages, currently only text data of documents
are utilized. However, our framework is capable to integrate (text) data drawn
from other parts of documents as well, if the user enriches the analyse function
with the necessary analyse tools.

6 Conclusion

In this paper, we have proposed a Web query language on top of F-logic, thus
gaining a declarative semantics and a bottom-up evaluation algorithm. We have
shown how relevant parts of the Web can be integrated into the local database,
thereby allowing to restructure data and combine it with local information. The
resulting evaluation algorithm has been integrated into the FLORID prototype.

We restricted our presentation to the basic requirements of HTML document
analysis, but other document types (e.g. BibTeX) can be handled analogously.
The real power of the ezplore cycle lies in the possibility to use more sophisticated
analyse functions without changing the semantic framework. This a topic of
future research.

As mentioned in the introduction, there is another thread of research activity
besides Web query languages, namely the problem of handling semi-structured
data which naturally appears in the Web context. One major part of this prob-
lem is to integrate heterogeneous data from different sources. Due to its meta
features, F-logic is well suited to such tasks and has been already used for it,
see e.g. [CRD94]. In future research, we will investigate the handling of semi-
structured data in F-logic, which would allow to join the above-mentioned two
streams of research into a common framework.

References

[Abi97] S. Abiteboul. Querying Semi-Structured Data. In Proc. Intl. Conference
on Database Theory, number 1186 in LNCS, pages 1-18. Springer, 1997.

[AQM™] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The
Lorel Query Language for Semistructured Data. The Journal of Digital
Libraries. to appear. ftp://db.stanford.edu//pub/papers/lorel96.ps.

[AVO7] S. Abiteboul and V. Vianu. Queries and Computation on the Web. In
Proc. Intl. Conference on Database Theory, number 1186 in LNCS, pages
262-275. Springer, 1997.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrandt, and D. Suciu. A query language
and optimization techniques for unstructured data. In Proc. ACM SIG-
MOD Intl. Conference on Management of Data, 1996.

[Cat94] R. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann,
1994.

12



[CRDY4]

[FHK*97]

Y. Chang, L. Raschid, and B. Dorr. Transforming queries from a relational
schema to an equivalent object schema: a prototype based on F-logic. In In-
ternational Symposium on Methodologies in Information Systems, (ISMIS-
94), October 1994.

J. Frohn, R. Himmeroder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst.
FLORID: A Prototype for F-Logic. In Proc. Intl. Conference on Data
Engineering, 1997.

[FHKS97a] J. Frohn, R. Himmerdder, P.-T. Kandzia, and C. Schlepphorst. FLORID,

Version 2.0, User Manual, 1997. Available from ftp://ftp.informatik.uni-
freiburg.de/pub/florid/manual.ps.gz.

[FHKS97b] J. Frohn, R. Himmerdder, P.-T. Kandzia, and C. Schlepphorst. How to

[FLU94]

[KLW95]

[KS95]

[LSS96]

[MMO7]

[MMM96]

[Suc97]

Write F-Logic Programs in FLORID, Version 2.0, 1997. Available from
ftp://ftp.informatik.uni-freiburg.de/pub/florid /tutorial.ps.gz.

J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expres-
sions and Rules. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc.
Intl. Conference on Very Large Data Bases, Santiago de Chile, 1994.

M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42(4):741-843, July
1995.

D. Konopnicki and O. Shmueli. W3QS: A Query System for the World-
Wide Web. In Proc. Intl. Conference on Very Large Data Bases, 1995.

L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A Declarative Lan-
guage for Querying and Restructuring the Web. In Proc. Sizth Interna-
tional Workshop on Research Issues in Data Engineering (RIDE’96), 1996.
A. Mendelzon and T. Milo. Formal Models of Web Queries. In Proc. ACM
Symposium on Principles of Database Systems, 1997.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide
Web. In Proc. of 5th International Conference on Parallel and Distributed
Information Systems (PDIS’96), 1996.

D. Suciu, editor.  Proc. of the Workshop on Management of Semi-
Structured Data (in conjunction with SIGMOD/PODS), Tucson, Arizona,
1997. http://www.research.att.com/ suciu/workshop-papers.html.

13



