Well-Founded Semantics for Deductive Object-Oriented Database Languages

)24 o

Well-Founded Semantics for Deductive
Object-Oriented Database Languages

Wolfgang May
Bertram Ludascher

Georg Lausen

Institut fur Informatik
Universitat Freiburg

Germany

December 11, 1997

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

e Well-Founded Semantics

e Alternating-Fixpoint Characterization
e Deductive Object Oriented Languages
e Functional Methods 7

e Inheritance 7

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

The Well-Founded Semantics

e A. Van Gelder, K. Ross, and J. Schlipf:
Unfounded Sets and Well-Founded Semantics for
General Logic Programs. In Proc. ACM Symposium on
Principles of Database Systems (PODS), pages
221-230, 1988.

e Generally accepted as a sceptical “well-behaved”

semantics for logic programs with negation.

e Assigns a unique, three-valued model to every program.
undefined is assigned to atoms which depend negatively
on themselves and for which no independent

“well-founded” derivation exists.

e several logic programming languages (e.g. XSB-Prolog)
and relational database systems now support WFS.

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Well-Founded Semantics in DOOD languages?

e dood systems currently limited to inflationary or
stratified semantics.

(Why) do we need WFS ?
e Stratification:

e relational: notion of stratification is based on explicit
dependencies between relation symbols.

e OO: dependencies are conceptually more involved: value
inheritance, a dynamic class hierarchy, and higher-order
features like variables at method or class positions.
= In general non-stratified programs.

e stratified negation is less expressive than well-founded
negation, certain concepts cannot be expressed in
stratified semantics due to cyclic negative dependencies:
deep equality, argumentation frameworks.

e Example: Win-Move Game.
A set of positions and a set of moves between them, two
players moving alternately; a player who cannot move
loses.

win(X) <—move(X,Y), = win(Y).
O O0—O0—0

DOOD'97 11.12.97 4

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Object-Oriented Model

1s-a atoms: o:c
relational encoding: isa(o,c)

subclass atoms: c::d
relational encoding: subcl(o,c)

Method applications to objects:

o[m—v] (scalar)

o[m—»v]| (multivalued)

analogous with arguments: o[m®@(xy,...,x,)—V].
inheritable:

o[me-v|

o[me->>v]

relational encoding:
method_appl_sc(o,m,v), method_appl_mvd(o,m,v)

path expressions: o.m = 0o’ s.t. olm—0’]
Variables: Capital letters;

Inheritance

Transitivity of subclass hierarchy

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Stratified Semantics

e Relational: based on the dependency graph

e p depends positively /negatively on ¢ if there is a rule
with p occurring in the head and ¢ occurring
positively /negatively in the body.

e P is stratified if it does not contain a cyclic negative
dependency.

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Stratified Semantics in DOOD languages?

Dependency graph in dood languages:

distinguished positions:

o[m —v] o:C c::d

x depends positively (negatively) on a symbol y if there is a
rule r s.t. x occurs at the distinguished position of the head

of r and y occurs in a positive (negative) literal in the body.
Practical solution if

e no inheritance or

e static class hierarchy and membership,

e no variables at method name or class positions.

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Inherently non-stratifiable Constructs

e Non-monotonic inheritance:
c[me>v] an inheritable scalar method of the class c.

O[m—v] <« c[mesv], O:c,
not 3 W: (O[m—W] A W # v).
application of an inheritable method to an object

depends negatively on itself = not stratifiable.

e Variables at method or class positions:
o[M—v] , o:C

potentially replaced by an arbitrary symbol
= very “dense” dependency graph.

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Alternating-Fixpoint Characterization

Given a Herbrand interpretation J and a logic program P,
T3, mapping interpretations to interpretations is defined as
T3X):={H | (H <+ By,...,Bp,,~C1,...,~Cy,) € grd(P)
and B, eI forallt=1,...,n
and C; ¢ Jforallj=1,...,m }

e T3 is monotone (in I).
e TI'p(J):=1fp(T3) is antimonotone (in J)
(J1 € J2~Tp(J2) CTp(J1))

e TI'%4 (:=Tpolp)is monotone.

e (0, T4 T%,...1is a monotonically growing sequence of
underestimates of the true atoms, converging against
fp(I'p),

e TI'L T3, ... is a monotonically decreasing sequence of

overestimates, converging against gfp(T'%).

Theorem 1 For every ground atom A,

y

true if A € 1fp(T'%),
W(P)(A) = { false if A¢ gfp(l'}),

| undef if A€ gfp(Th)\1p(T%).

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Computing WFS via States.

Compute 0, T'h,T%, ... by a logic program:

e an additional argument position for IDB-relations:

(X1, Xp) ~ 1T(8S, 21, ., Ty)

e set sto S+1 for all positive literals (including the head

literal),
e set sto S for literals.
T3(N) == {H | (H < By,...,B,,) € grd(P)

and B; €Il forallt=1,....n
and forallj=1,...,m }

e state variable S is restricted by state(S).

Example:

win(X) <—move(X,Y), = win(Y).

win(S+1, X) < move(X,Y), = win(S, Y), state(S).
state(0).
state(S+1) < state(S).

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Computing WFS via States.

Compute 0, T'h,T'%, ... by a logic program:

e an additional argument position for IDB-relations:

(X1, .. Xp) ~> (8,21, ., Tp)

e set sto S+1 for all positive literals (including the head

literal),
e set sto S for literals.
T3(X) :={H | (H ¢ Bi,...,Bn,) € grd(P)

and B, eI forallt=1,....n
and forallj=1,...,m }

e negative dependencies only to the predecessor state and
to EDB relations,

= no cyclic negative dependencies between state-ground

atoms,
= state-stratified / effectively stratified.

e WE'S can be computed also by systems which do not
originally provide a WFS:

e By successively instantiating S with 0,1, 2, ..., precisely
the AFP computation is obtained.

e Given a finite database, the computation finally
becomes stationary or 2-periodic.

DOOD'97 11.12.97 11

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Representation of States

Relational Model:

Reification: r(xy,...,2,) ~> r(8,T1,...,Ty).

Object-Oriented Model:
Dynamic objects: For an abstract object o, a state s is a

method, giving the instance of o corresponding to state s.

S0 (.
01) =\ U1
@ S1

S0 o.s[m — v]

09 of 5
S1 ~\ 13

Dynamic classes: For an abstract class ¢, a state s is a
method, giving the instance ¢, of the class ¢ in this state.

()
C1 -
S0 {017 02}
_ J
C s1 g < 0.S.C.S
S92 Co :
{01,03}
_ J

e “dynamic objects” and “dynamic classes”: states
appear as methods, thus state variables appear as

variables at method positions.

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Alternating-Fixpoint Characterization

e associating states to atoms:
o[m — v|[s] :=0.s[m — v] ,
o:c[s] = 0.5!C.S
c::d[[s] := c.si:d.s

e AFP Transformation: For every rule h < b,

e EDB literals (occurring only in the body) remain
unchanged,

e every positive IDB literal ¢ is replaced by ¢[S+1],

e every negative IDB literal —=¢ (which can occur only in
the body) is replaced by —¢[S], and

e the body is extended with the literal S+1:state.

Additionally, there are rules O:state and S+1:state < S:state.

e negative dependencies only to the predecessor state and

to EDB atoms without state associations,

e the state sequence provides a local stratification (state
stratification) ~» unique perfect model,

e by successively instantiating S with 0, 1, 2, ..., the
AFP computation is obtained.

DOOD'97 11.12.97

13

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Alternating-Fixpoint Characterization

e The program must now be evaluated accordingly, i.e.,

one state after another.

e check if a deductive fixpoint is reached and then start

the next deductive fixpoint,

e check if the state sequence becomes stationary or

2-periodic,
e yields a finite structure Ap.

W.l.o.g., the last state which has been computed has an
even index so. For every s s.t. Ap = (s : state), let

A .= {a| Ap E=as], a an IDB atom} U
{a | Ap = a, a an EDB atom}

(“snapshot” at state s)

Theorem 2 The well-founded model W p is given as
(true & AE}S)O] =a
Wp(a) =< undef < AE}S)O] — —q and AE}S;OI] = a

| false <& AE}S;OI] = —q .

DOOD'97 11.12.97 14

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Functional Methods

e overestimates (odd s): there can be vy # vy s.t.
Ap E [m—uv][s] and Ap E [m—wvs][s]

e functionality requirement violated in overestimates.

e W(om—uv|) = undef for several v’s

e functionality requirement violated for undefined atoms.
Example: John is either married to Jane or to Mary:

P :={ john[spouse—mary| < not john[spouse—jane].
john[spouse—>jane| <— not john[spouse—mary].

O[married—true] <— O[spouse—X] . }

john[spouse—mary][S+1] not john[spouse—jane][S], S+1:state,
john[spouse—jane][S+1] < not john[spouse—mary]|[S], S+1:state,
O[married—true][S+1] + O[spouse—X][S+1], S+1:state.

O:state.

S+1 : state «+ S : state.

AP =0,
AE})] = {john[spouse— {jane,mary}], john[married—true|} and
AE;Q,] = (), periodic for sg = 2.

W (john[spouse—jane]) = W john[spouse—mary]) =

W (john[married—true]) = undef .

DOOD'97 11.12.97 15

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Inheritance

Semantics of inheritable methods:
O[M—=V] + C[Me>V], O:C,
not 3 W: (O[M—W] A W # V).
D[Me->V] < C[Me>V], D::C,
not 3 W: (D[M—W] A W # V).
(only to direct subclasses)
— uses implicit negation
— hard-code inheritance in Papp:

O[M—V][S+1] + C[Me>V][S+1], (O:C)[S+1],
~3 W: (O[M—=W][S] A W £ V),
-3 D: (O:D)[S+1] A (D::C)[S+1].
Analogous for classes:
C'[Me>V][S+1] + C[Me>V][S+1], (C'::C)[S+1],
~3W: (C'[Me>W][S] A W £ V),
-3 D: (C':D)[S+1] A (D::O)[S+1].

— and disable built-in inheritance (uses implicit negation).

Analogous for multivalued methods:
The whole set of values is inherited iff otherwise it would

be undefined.

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Inheritance for Multivalued Methods

The whole set of values is inherited iff otherwise it would
be undefined:

O[M—3V][S+1] ¢ C[MeV][S+1], (0:C)[S+1],
((=3 W: O[M—»W][S]) V

Y W: O[M—»W][S] ¢ C[M e»W][S-1]),

-3 D: (O:D)[S+1] A (D::C)[S+1].

DOOD'97 11.12.97

17

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Features:

e Negation
e Inheritance

although not provided by the original system

Requirements

e State-Stratified Evaluation

e Fixpoint/2-Periodicity Detection

DOOD'97 11.12.97

18

Well-Founded Semantics for Deductive Object-Oriented Database Languages

F-Logic

e Syntax: See Slide 5.

e Semantics (also implemented in the FLORID Prototype):

— Inflationary semantics,

— user-defined stratification (fixed number of predefined

strata),

— Trigger mechanism: Insert atoms into the database
after reaching a deductive fixpoint (used for

nonmonotonic inheritance).

deductive

fixpoint

inserted fact

DOOD'97 11.12.97

19

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Programming Explicit States in F-Logic

O:state.

O:even.

state[readye->true].

state[runninge->false].

S:state <— T[running—true], T.ready[], S =T + 1.
S:even < S:state, S =T + 1, T:odd.

S:odd < S:state, S =T + 1, T:even.

O[running—true].

S[running—true] < S:odd.

S[running—true] < not (atom)[T], T:even,
(atom)[S], S =T + 2.

S:final <= S[running—false].

DOOD'97 11.12.97 20

Well-Founded Semantics for Deductive Object-Oriented Database Languages

The State Sequence

\

(atom)[s] + ...

s[running—true] < ...

/

state[runninge-false] state[re%dyﬂtrue]

insert s:[running—false] insert s:[réady—true]

/

S:state < T[running—true],
T.ready[], S=T + 1.

N

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

F-Logic

e Uniform Domain: Every element of the domain can
occur as an object, a class, or a method (also
polymorphous; scalar, multivalued, inheritable/
non-inheritable, with different numbers of arguments).

e create different method objects for scalar and
multivalued and non-inheritable /inheritable method

applications:
— m.sc := m’ s.t. m[sc —m’], scalar non-inheritable,

— m.mvd := m’ s.t. m[mvd —m’], scalar

non-inheritable,

— m.sci :== m"” s.t. m[sc —m’] and m’[inh —m"]; scalar
inheritable,
— m.mvi := m"” s.t. m[mvd —m’] and m'[inh —-m"];

multivalued inheritable.

e Then apply these method objects to objects:
o[(m.sci)—»v]

DOOD'97 11.12.97

22

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Program Transformation

Replace method applications accordingly:

e replace all occurrences of scalar method applications
m— by m.sc —:

O[M@(X1.. .. X,) =V] = O[M.sc@(X1,... Xn) —V] ,

e replace all occurrences of multivalued method

applications m—» by m.mvd —»:

O[M@(X1.. .., X,) —=+V] = O[M.mvd@(X,... X,) —»V] ,

e replace all occurrences of inheritable scalar method
applications m e by m.sci —:

O[M@(X1.,. .., X,,)83V] = O[M.sci®(X1,. .., Xn)—V] .

e replace all occurrences of inheritable multivalued

method applications m e by m.mvi —:

O[M@(X1,. .. X,)eV] 5 O[M.mvi@(X1,. .. Xp)—V] .

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Program Transformation

Add rules which implement well-founded inheritance:
O[M.sc—V][S+1] + C[M.sci—+V][S+1], (O:C)[S+1],
~3 W: (O[M.sc—W][S] A W # V),
-3 D: (O0:Q)[S+1] A (D:C)[S+1].
C'[M.sci—V][S+1] + C[M.sci—V][S+1], (C'::C)[S+1],
-3 W: (C'[M.sci—W][S] A W # V),
-3 D: (O0:C)[S+1] A (D:C)[S+1].

O[M.mvd—»V][S+1] + C[M.mviex»V][S+1], (O:C)[S+1],
((—=3 W: O[M.mvd—W][S]) V

VvV W: O[M.mvd—»W][S] < C[M.mvi e»W][S-1]),

-3 D: (O:D)[S+1] A (D::C)[S+1].
C'[M.mvi—»V][S+1] < C[M.mviex=V][S+1], (C'::C)[S+1],
((—3 W: C[M.mvi—W][S]) V

vV W: C'[M.mvi—W][S] < C[M.mvi e»W][S-1]),

-3 D: (C:D)[S+1] A (D::C)[S+1].

DOOD'97 11.12.97

24

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Example: Win-move game

game.S[win ->> X] :- move(X,Y), not game.T[win->>Y], S =T + 1, T.readyl].
game [win->>X] :- game.S[win->>X], S:final.

game [undef->>X] :- game.T[win->>X], not game.S[win->>X], S:final,
T:state, S =T + 1.

game[lost->>X] :- X:dom, not game.T[win->>X], S:final, T:state, S =T + 1.

/» State sequence (dropped)
% facts

a:dom. b:dom. c:dom. d:dom.

move(a,b). move(b,a). move(b,c). move(c,d).
7- sys.evall].

?7- game[V ->> X].

DOOD'97 11.12.97 25

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Example: Well-founded Inheritance

Nixon Diamond

republican[policy *-> hawk].
quaker[policy *-> pacifist].

nixon:quaker.

nixon:republican.
7- sys.evalll.

?- nixon[policy -> PJ].

DOOD'97 11.12.97

26

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Example: Nixon Diamond

(republican.S) [(policy.sci) ->> hawk] :- S:state.
(quaker.S) [(policy.sci) ->> pacifist] :- S:state.
(nixon.S) : (quaker.S) :- S:state.
(nixon.S) : (republican.S) :- S:state.

% block only potential inheritance
(0.95) [blocked@(M.sc) ->> V] :-

0.S[(M.sc) ->> V], 0.S[(M.sc) ->> W], not V = W, S:state.

(0.T)L(M.sc) ->> V] :-
(C.T)[(M.sci) ->> V], (0.T):(C.T),
not (0.S)[blocked@(M.sc) ->> V], S:state, T =S + 1.

% state sequence (dropped)

?- S:final.

?7- (nixon.S) [(policy.sc) ->> P], S:state.

DOOD'97 11.12.97

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Example: Nixon Diamond

Result:

{P | (nixon.0)[(policy.sc)—P]} =
{P | (nixon.2)[(policy.sc)—+P]} = 0)

{P | (nixon.1)[(policy.sc)—+P]} = {hawk,pacifist}
W (nixon[(policy.sc)—>hawk]) = undefined
W (nixon[(policy.sc)—»pacifist]) = undefined
Re-Transformation to original signature:

W (nixon[policy.sc—hawk]) =
W (nixon|[policy.sc—paci fist]) = undefined

DOOD'97 11.12.97 28

Well-Founded Semantics for Deductive Object-Oriented Database Languages

Contributions

e Well-Founded Semantics for DOOD Languages
e Negation

e Well-Founded Inheritance

DOOD'97 11.12.97

29

