6th Intl. Conference on Database Theory (ICDT)
Delphi, Greece, January 8-10, 1997
LNCS 1186, Springer

Total and Partial Well-Founded Datalog
Coincide

Jorg Flum! Max Kubierschky! Bertram Ludéscher”

I Mathematische Fakultit, Universitit Freiburg,
Eckerstr. 1, 79104 Freiburg, Germany
{flum,maku}@ruf .uni-freiburg.de

T Institut fiir Informatik, Universitit Freiburg,

Am Flughafen 17, 79110 Freiburg, Germany

ludaesch@informatik.uni-freiburg.de

Abstract. We show that the expressive power of well-founded Data-
log does not decrease when restricted to total programs (it is known to
decrease from II1 to A} on infinite Herbrand structures) thereby affirma-
tively answering an open question posed by Abiteboul, Hull, and Vianu
[AHV95]. In particular, we show that for every well-founded Datalog
program there exists an equivalent total program whose only recursive
rule is of the form

win(X) < move(X,Y), ~win(Y)

where move is definable by a quantifier-free first-order formula. This
yields a nice new normal form for well-founded Datalog and implies that
it is sufficient to consider draw-free games in order to evaluate arbitrary
Datalog programs under the well-founded semantics.

1 Introduction

The well-founded semantics (WFS) [VGRS88, VG93] has become popular as
an intuitive and “well-behaved”! semantics for the language of logic programs
containing negative cyclic dependencies, like the famous program Pygme:

win(X) < move(X,Y), nwin(Y).

A position X in a game is won, if there is a move to some position Y which
is not won (since then the opponent has to move). WFS assigns a partial
(3-valued) model WFS(P, D) to every logic program P and database D. The
third truth-value undefined is assigned if the truth of an atom A depends neg-
atively on itself and there is no other “well-founded” derivation for A lead-
ing to true. Consider for example a move graph for Pj,,. consisting of the
edges move(a, b), move(b, a), move(b, c) and move(c,d). Under the well-founded

! Dix [Dix95] formally defines this notion using certain abstract properties, and shows
that WFS is the weakest well-behaved extension of the generally accepted stratified
semantics [ABW88].



semantics, win(d) is false, since there are no moves from d. Consequently, win(c)
is true, since it is possible to move from ¢ to d. On the other hand, win(a) and
win(b) are undefined since a is won iff b is not won, and b is won iff a is not won.
This corresponds nicely to the fact, that the positions a and b in the game are
drawn: the player moving from b has no winning strategy (moving to ¢ would
leave the opponent in a won position), but she can enforce a game of infinite
length by moving from b to a and thus avoid losing.

Another aspect of languages which has always played an important role in
database theory is expressive power, i.e., the class of queries definable in a lan-
guage. The query associated with a logic program P and database D is defined in
terms of the true atoms of WFS(P, D) (hence undefined and false atoms belong
to the complement of the query). Van Gelder showed that Datalog evaluated
under WFS is equivalent to (least) fixpoint logic [VG89, VG93].

A natural question arising is: What is the expressive power of programs which
never yield the truth value undefined, i.e. which are total for all databases D?
For logic programs over infinite Herbrand structures, the restriction to total
programs results in loss of expressive power from II} to A} [Sch95]. For Dat-
alog programs, the question has been posed by Abiteboul et.al. [AHV95] and
remained open so far. We give the somewhat surprising? answer that on finite
structures, i.e. for well-founded Datalog, there is no loss of expressive power.>

As it turns out, games play a crucial role in our solution: using a normal form
for fixpoint logic, we first show that every Datalog program can be viewed as
a game between two players. Thus, the ubiquitous win-move example is raised
retroactively to an elegant normal form for well-founded Datalog. The drawn
positions of the game are exactly the undefined atoms of the well-founded model.
The second result is that for every game one can find an equivalent game which is
draw-free, i.e. all positions in the game are either won or lost. This implies, that
total well-founded Datalog and well-founded Datalog have the same expressive
power.

The paper is structured as follows. In Section 2 the required concepts and
terminology are briefly introduced. They are based on [AHV95], [VG93, AB94]
(for WFS) and [EF95] (for fixpoint logic). In Section 3 we first introduce games
and then show our main result, the reduction of games to draw-free games.

? Indeed, in [VG93] van Gelder writes: “This suggests that the alternating fizpoint
on normal programs captures the negation of positive ezistential closures (such as
transitive closure), but not the negation of positive universal closures (such as well-
foundedness).” The generalization of WFS to general logic programs, i.e., with first-
order rule bodies avoids — at least for some examples — undefined atoms in the
well-founded model (cf. [Che95]).

In [Kub95], the second author has obtained a normal form theorem for LFP. Rewrit-
ing programs as logic formulas, the first author realized that Kubierschky’s result
can be used to solve the problem by Abiteboul et. al. The present exposition is due
to the third author.

w



2 Preliminaries

A database schema (or relational schema) o is a finite set of relation symbols

r1,...,Tr with associated arities a(r;) > 0. Let dom be a fixed and countable
underlying domain. A database instance (database) over o is a finite structure
D = (U,rP,...,rP) with finite universe U C dom and relations 7 C U*(:).

Let inst(o) denote the set of all database instances over o. A k-ary query q
over o is a computable function on inst(c) such that (i) ¢(D) is a k-ary relation
on U, and (ii) ¢ is preserved under isomorphisms, i.e. for every isomorphism 7 of
D, q(m(D)) = n(q(D)). Thus, a query defines a k-ary global relation on inst(c).

A query language L is a set of expressions together with a semantics which
maps every expression ¢ € £ to a query (over some o). The expressive power of
a query language £ is the class of all queries definable in L. p € £; is equivalent
to ¢ € Lo if they express the same query. We say that £, is at most as expressive
as L, denoted by L1 < Lo, if for every expression in £; there is an equivalent
expression in Lo. Both languages have the same expressive power, written as
L1 = Lo, if L1 < Ly and L2 < L£1. £ may denote both the language and the
class of queries definable in it.

Notation. Following logic programming notation, we write domain variables
in upper case like X, X', Y. Constants like z,y,a and relation symbols like
win, move are denoted in lower case.

T denotes a vector of n terms 71, ..., T}, (variables or constants).

T denotes n-ary repetition of 7', i.e. a vector T,7,...,T.
We write ¢(X) to emphasize that all free variables of ¢ are among X; if we write
only ¢, nothing is said about the free variables of .

Well-Founded Datalog. A Datalog™ program P is a finite set of rules of the
form

H(—Bl,...,Bn,_lcl,...,_lCm

where the head H is an atom, all B;, C; are atoms or equalities T; = 15 where
T,,T5 are terms. A rule where n =m = 0 is called a fact.

The signature op of P is partitioned into a set idb(P) of relation symbols of
P occurring in some head of P and edb(P) of relation symbols occurring only in
the bodies of rules.

Fix a program P and a database D over edb(P). A ground instance of a
rule is obtained by substituting constants from D for all variables; ground(P, D)
denotes the set of all such ground instances of rules of P, and Bp,p denotes the
set of all ground instances of atomic formulas of P.

Let Y C Bpp. For X C Bpp let

TH(X):={H | (H+ By,...,B,,~C,...,~Cy,) € ground(P, D)
with (B; € Dor B;€ X) forall1<i<mn
and C; ¢ YV forall 1 <j <m}



Then TY is a monotone operator. Let I'p(Y) := Ifp(T}) be its least fixpoint.
The operator I'p is antimonotone (observe how Y is used in T%), ie, Y] CY,
implies I'p(Y2) C Tp(Y7). It follows that I'% (:= I'pol'p) is a monotone operator;
thus it has a least and a greatest fixpoint 1fp(I'%) and gfp(I'%). These are used
to define the truth value of a ground atom A under the well-founded semantics
WFS(P, D) for a given program P and database D:

true if A € lfp(T'%)
WEFS(P,D)(A) := < false if A ¢ gfp('%) (%)
undef if A € gfp(T'%) \ Ifp(T'%)

Definition 2.1 (W-Datalog, W-Datalog,)
A program P is called total (or 2-valued) if for all databases D there is no ground
atom A with WFS(P, D)(A) = undef.

Let W-Datalog denote the set of Datalog™ programs evaluated under the
well-founded semantics, W-Datalog, is the set of total W-Datalog programs. o

Using the true atoms of the well-founded semantics, P defines for every relation
r € idb(P) a query gp,, over edb(P):

gpr: D — {Z| WFS(P,D)(r(Z)) = true} (%)
We may assume w.l.o.g. that P contains one distinguished relation symbol

answer € idb(P). This uniquely associates a query with every Datalog program
P.

Least Fixpoint Logic. Let FO be the set of first-order formulas. By closing
FO under least fixpoints of positive formulas we obtain least fizpoint logic LFP.
The set of LFP-formulas is given by the following rules:*

K e ® _
~p’ pAY T 3Xe ' [LFPgx) @]V

where (+) is the proviso that the inductive relational variable R occurs only
positively (i.e., under an even number of negations) in ¢, and X,V are a(R)-ary
tuples of variables.® The semantics of LFP-formulas is given by a relation D |= ¢
as usual. In particular, for ¢ (U, V) = [LFP g x) ¢(R, X,U)]V and @,v in D:

D = y(u,v) & € RY

where R := 0, Ri™' := {Z | D = o(R%,Z,4)} and RY := J;c RE-
Every LFP-formula (X)) defines a query gy as follows:

@ : D= A{Z | D E (7))

Using (x) and (%x) one can easily show W-Datalog < LFP.

— if ¢ is an atom ; if (+)
¥

4 In fixpoint formulas, relational variables are denoted in upper case.
% ¥,V and — are viewed as abbreviations. For notational convenience, we only consider
variables V instead of terms T in the last rule.



3 A Normal Form for Well-Founded Datalog

Abiteboul et. al. raised the question whether one can find for each W-Datalog
program an equivalent total program [AHV95, pp. 397,401,403]. In other words, is
W-Datalog < W-Datalog,? (W-Datalog, < W-Datalog holds trivially.) When re-
stricted to ordered databases, this is obviously the case, since S-Datalog (stratified
Datalog) is equivalent to LFP (and thus captures PTIME) on ordered databases,
and WFS is 2-valued for S-Datalog (see e.g. [AHV95]).

As we will show, the question can also be answered affirmatively in the ab-
sence of order. First, using results of van Gelder [VG89] and Grohe [Gro94],
we show that every W-Datalog program can be transformed into a normal form
which corresponds to a certain game. The main result is that one can reduce such
games to draw-free games, which is equivalent to the fact that the corresponding
W-Datalog program is total.

3.1 Games

A game is a finite structure G = (V, move®) with signature o = {move} and
universe V. V are the positions (or vertices), move® C V x V the set of possible
moves.

The game is played with a pebble by two players I and II in rounds. Each
round consists of two moves. Initially, I starts the game from some position xg.
A player can move from z to y iff (z,y) € move®. A player loses in z, if she
cannot move; she wins in x, if she can move to a position in which the opponent
loses. A position € V' is won (for I) if I can always win the game starting at
x, no matter how II moves. Conversely, x € V' is lost (for I) if IT can always win
the game, no matter how I moves. A position z is drawn if x is neither lost nor
won. Observe that the presence of cycles in move® is necessary but not sufficient
for the existence of drawn positions in G.

If x is won, the length of z, denoted |z|, is the number of rounds which are
necessary for I to win, provided both players play optimal (i.e., each player tries
to win as quickly or to lose as slowly as possible). If z is lost or drawn, let
|z| = co. A game is called draw-free if no position in V' is drawn.

Games have a very elegant and intuitive representation in W-Datalog in the
form of the famous win-move example. Indeed this example has always been
used to demonstrate that WFS handles negation in a nice and intuitive way.

Definition 3.1 (W-Datalog”) Let W-Datalog” be the class of W-Datalog pro-
grams P which have a single recursive rule of the form

win(X) < move(X, X"), mwin(X")
where X and X' have the same arity > 1, and a rule of the form

answer(U) < win(T)



where U are variables occurring in 7. All other rules of P are nonrecursive,
contain neither win nor answer, and are semipositive, i.e., negation is allowed
only in front of edb relations.®

Let W—Datalogg; be the set of total programs in W—DatalogG. o

The simplest program in W—DatalogG is Pg:

win(X) + move(X, X'), mwin(X").
answer < win(xg).

One easily verifies that Pg represents games, i.e., for every game G' = (V, move®),
xg is won/lost/drawn in G iff WFS(Pg, G)(answer) = true/false /undef .

We use the following theorems to show that an arbitrary W-Datalog program
can be transformed into a W—DatalogG program:

Theorem 3.2 (W-Datalog = LFP, [VG89])
For every W-Datalog program there is an equivalent LFP-formula and vice versa.

Theorem 3.3 (Bounded Skolem Normal Form, [Gro94]) .
Every LFP-formula with free variables U is equivalent to a formula ¢(U) of the
form

IVILFPyy(x) o(X,0)V IVVZ(p(X,Y,Z,0) » W(Z))]V

where g, @ are quantifier-free first-order formulas not containing W .

Theorem 3.2 and Theorem 3.3 imply that for every W-Datalog program P,
there is an equivalent LFP-formula ¢ in bounded Skolem normal form. In the
sequel, we show how to obtain an equivalent program Py € W—DatalogG by
viewing ¢ as a game.

Diagrams. As an auxiliary notation for games, we make use of diagrams as the
one depicted in Fig. 1 (we do not need a formal definition). With every diagram
d and structure D we associate a game Gy, p = (V, move“®r) as follows:

Let X = Xi,...,X, be the unprimed variables of the diagram d, and let
Sq = {s1,...,5m} be the (white and black) “squares” of d. Then the positions
of G4, p are

V ={(s,7) | s € Sq,7 € D"} .

The possibles moves between positions are given by the edges in d:
((5,7),(s',2")) € move¥+r iff there is an edge s 24 ¢ in d, and (i), (ii) hold:

(i) for all X; such that X; is not 3-quantified in ©, we have z; = z; .
(ii) if © contains a quantifier-free formula (X, X'), then D |= ¢(Z,7') .

5 A rule r is nonrecursive if no literal in the body of r is depending — directly or
indirectly via other rules — on the atom in the head of r, see e.g. [AHV95].



move(so,}&:’,):/,lz, a,)_(',l__/',U') <—X’:_)_(,_U'f[7. o o B
move(so, X, Y, U, b, X', V',0") ¢ Rpo(X,0), X' = X, V' =V,0' =T
move(a, X,Y,U, s0, X", Y'U") + R,(X,Y,X"\U),Y' =Y, U =U.

Fig. 1. Reduction from Bounded Skolem Normal Form to a Game

G4 p can be viewed as a game played with a sequence of pebbles (S, X1,...,X,)
whose actual value (s,z1,...,zy) is a position in G4 p: the pebble S is on some
square s in d, the pebbles X; are on elements z; of D. The players of G4, p move
alternately between white and black squares (player I) or vice versa (player II).

The pebbles can be moved from (s,Z) to (s', ') only if there is an edge s O
in d, and if additionally the old positions & of the X-pebbles and their new
positions Z' satisfy the conditions (i) and (ii) above. In particular, all pebbles
X have to remain on their positions during a move unless X/ is 3-quantified in
0.

Every diagram d with unprimed variables X can be directly translated into
the definition of the move relation move(S, X, S’, X') of the game G4 p such
that for the resulting W-Datalog® program P; we have WFS(P;, D)(win(s, z)) =
true/false /undef iff (s, Z) is won/lost/drawn in G4, p. This translation is straight-
forward and should be clear from Fig. 1. Now we are in position to prove

Theorem 3.4 (W-Datalog < W-Datalog®)
For every W-Datalog program P there is an equivalent program Pg € W—DatalogG.

Proof. Let P be a W-Datalog program. By Theorems 3.2 and 3.3 there is an
equivalent LFP-formula ¢(U) in bounded Skolem normal form. We view 1 (U)
as the game depicted by the diagram in Fig. 1. As explained before, the program
Py in Fig. 1 can be directly obtained from the diagram and represents this game.

Since ¢o and ¢ in the diagram are quantifier-free FO-formulas, the rules
defining the equivalent idb relations R,,(X,U), Ry(X,Y,Z,U) of Py can be
chosen semipositive and nonrecursive.

The idea behind the game is as follows: Player I wants to prove that some



X are in the least fixpoint W2° of Theorem 3.3. Player II wants to prove the
contrary. U are fixed parameters and passed around unchanged.

If (X, U) holds, I can move from sy to b and win, since there are no moves
from b. The other possibility for I to win is the move to a. I can win by moving
to a if she chooses some Y such that for all Z for which ¢(X,Y,Z,U) holds,
W (Z) also holds. In terms of the game, this means that Z has to be established
as a won position for I in the next round. This is achieved by substituting X'
for Z in p(X,Y, Z,U) as in Fig. 1, which “feeds back” the new X in place of Z
in the fixpoint process. By induction one can verify that (for all ):

win(so, T, y,u) € I‘%;’:; sTewl |
which is the case iff I wins the game in sg in k£ rounds. Therefore,
win(so, Z,y,u) € p(Tp,) & & € W
which implies
answer (@) € lfp(l‘%;” & for somev: v e WS°
& DEy@)

where D is the structure which is implicit in the definition of Wk and Ip,. =

Remark. We have chosen as Theorem 3.3 the normal form of [Gro94] since
it allows a particularly short translation into a game. Theorem 3.4 can also be
proven from the following more familiar normal form theorem:

Theorem 3.5 ([Imm86]) B
Every LFP-formula is equivalent to a formula of the form [LFPR(X)QO]T where
@ is a FO-formula.

Sketch of a proof of Theorem 3.4 using Theorem 3.5: By induction on FO-
formulas define a diagram d, such that G4, p reflects the evaluation of ¢ in
D. In order to convert dy, to a diagram d,, for ¢ = [LFPR(X)cp]T, substitute all
arrows with label containing R into appropriate loops back to the start of d, (use

that ¢ is positive in R). Convert dy into a W—DatalogG program as described
above.

3.2 Reduction from Games to Draw-Free Games

It remains to show that for each game, there is an equivalent draw-free game.
We present an informal proof emphasizing the idea of the construction.”

Theorem 3.6 (W-Datalog” < W-Datalog)
For every W—Data/ogG program there is an equivalent program in W—Data/og2G,

" The presented reduction is due to [Kub95] which also contains the details of a proof
of a normal form for LFP implying Theorem 3.6.



Proof. The main problem consists in avoiding drawn positions. In the absence
of an order on the domain it seems particularly difficult to limit the length of
the game in order to eliminate drawn positions, e.g. we cannot use a counter for
that purpose.

The basic idea is to limit the length of a game by comparing it to a game of
maximal length. Two games are compared by playing them independently but
synchronously. Thus, we construct a new game 2G which simulates these two
games on the original structure G. To do so, we need two pebbles — one for each
game in G. Call these the clock pebble Y (on position 7 in G) and the wverify
pebble X (on position Z in G).2 The game played with the clock pebble is used
to limit the length of the game played with the verify pebble. The latter plays
the role of the pebble in the original game G.

Initially, player I claims that the verify pebble is on a won position, i.e.
|Z] < co. I places the clock pebble on § and claims that |§| is the maximal
length of a won position in the game. If this is true, I and II can compare |Z|
and |g| and thus verify the original claim of I. The difficulty remains that both
players have to agree upon the choice of . To solve this, one has to design 2G
in such a way, that II can be disproved if she “cheats” by choosing a ¢ which is
not maximal.

The new game 2G is constructed as follows (cf. Fig. 3): We use two macros
1round(X) and 1round(Y) to denote a round of moves of the pebbles on z and ¥
in G, respectively (Fig. 2). Note that in the simulated game G, I moves first in
1round(X) while IT moves first in 1 round(Y).

X' move(X,X")

1 round(X) I = X' move(X,X') 1round(Y) I = Y’ move(Y,Y")
Z1...24 Z1...%24
Y move(Y,Y")

2O OmOmOn
aOmOmOaOy

Fig. 2. Macro Definitions

Like above, the diagram in Fig. 3 defines a set of semipositive nonrecursive

rules for the new relation move(S, X,Y, S', X' Y'). Thus, if the move relation

8 As noted before, X = X1,..., X, is a sequence of pebbles on positions z; analogously
for V.



Q @H—XL( : >—>| 1 round(X)

©

Iy’ di...ds
® VX
(o)
& XV . Xy =YX
1 round(X) 1round(Y)
hl...h4{ il...i4J
()
® j/

1 round(X)

i
m1 . m4|
_________ 4
Player I | Player IT |

so = a||Z| < oo, “the length of T a—b |-3Z : |Z] < oo, “there is no Z
is finite, ie T is won” in G which is won”

b—c (3T :|Z| =1, “I show you| |a— f|3g : |y < oo,|y| maximal,
anew & which is won in 1 |Z| > |g|, “y is finite, of maxi-
round” mal length and shorter than z”

f =k |z <|g|, “g is not shorter| |k — I ||Z] > |7|, “you can’t win on Z
than z” in time”

f—=g gl < 00,3 : |2 = |g|+| |9— Ml|lZ] > |g] + 1, “Z is more than
1, “y is finite, but not 1 round longer than gy: I give
of maximal length: I show you a lead of 1 round Z and you
you a new T which is 1 lose”
round longer” g — i1 ||Z| < |gl, “your chosen Z is not

Jj—k ||Z| <|gl|, “y is not shorter longer than my #: let us swap
than z” the pebbles on & and y and give

li = )| < |y|, “I can win in me a lead of 1 round in §': then

time”

you lose on ¥ against the clock”

Fig. 3. Draw-Free Game 2G and Implicit Claims of I and II.



of the original G (used in the macros of Fig. 2) is n-ary, the new move relation

of 2G is 2(n + 1)-ary. For a given answer relation answer(U) < win(X) in Pg,
the new answer relation of Py is defined as

answer (U) + win(sg, X,Y).

It is easy to see that I wins in 1round(X) if || = 1, and II wins 1round(Y) if
7= 1.

Assume for the moment that the dashed edge my4 — so in Fig. 3 is absent.
The loop Iy — my4 — [y compares the lengths of Z and §: I wins this comparison
if |z| < oo and |z| < |y|, while I wins if |y| < oo and |y| < |Z|.

To get a better understanding of the construction of 2G, we explain the
diagram in Fig. 3 as a dialog between I and II, where each move corresponds
to a claim of the moving player. Observe that each claim of a player contradicts
the previous claim of the opponent, and that each false claim can indeed be
disproved using the corresponding moves in the diagram.

Using the diagram and the implicit claims of the players, it should be clear
that I wins (so,Z,¥) in 2G (for arbitrary g) if I wins Z in G, and II wins (s, Z, §)
in 2G if  is lost or drawn (for I) in G. Thus the new game 2G is determinate
for positions (so, Z, 7).

However 2G may still contain positions which are drawn: Consider e.g. (I1, %, y)
where £ and ¢ are drawn in G. Then II gets no chance of refuting the claim that
T is won in G, hence (I1,Z,7) is also drawn in 2@G. In order to allow I to defeat
such false claims, the dashed edge is needed. By moving along my4 — sg, IT can
win and refute I by choosing the maximal 7 in the move a — f.

The final obstacle is that one has to verify that if Z is won in G, then IT
cannot delay the game infinitely using the edge m4 — so. Indeed |Z| decreases
each time the game reaches my:

(a) if IT chooses in a some § with |g| > |Z|, then I has to move along f — k
thereby enforcing that at least 1round(X) is played.

(b) if I chooses |j| < |Z|, then I chooses a new & with |Z| = |y|+ 1. Independent
of the choice of II (¢ — hy or g — i1 ), the new Z will be at least one smaller,
when my is reached.

Summarizing, this shows that (for arbitrary §)

e I wins (so,Z,¥) in 2G iff Z is won in G, and
e II wins (a,Z,¥) in 2G iff Z is lost or drawn in G.
e No positions (s, Z, ) in 2G are drawn.

Putting everything together, we have

Theorem 3.4 a Theorem 3.6 G
W-Datalog < W-Datalog W-Datalogs" < W-Datalog
which proves

Corollary 3.7 (W-Datalog = W-Datalog,)
For every well-founded Datalog program, there is an equivalent total program.



Acknowledgements. The third author would like to thank JURGEN DIX,
WOLFGANG MAY and CHRISTIAN SCHLEPPHORST for many fruitful discussions,
and his co-authors for illuminating insights into the realm of finite model theory
and games.

References

[AB94]

[ABWSS]

[AHV95]

[Che95]

[Dix95]

[EF95]

[Gro94]

[Imm86]

[Kub95]

[Sch95]

[VG8Y]

[VGO3]

K. R. Apt and R. N. Bol. Logic Programming and Negation: A Survey.
Journal of Logic Programming, 19/20:9-71, 1994.

K. R. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative
Knowledge. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 89 — 148. Morgan Kaufmann, 1988.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

W. Chen. Query Evaluation in Deductive Databases with Alternating Fix-
point Semantics. ACM Transactions on Database Systems, 20(3):239-287,
1995.

J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Proper-
ties. In A. Fuhrmann and H. Rott, editors, Logic, Action and Information.
de Gruyter, 1995.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Math-
ematical Logic. Springer, 1995.

M. Grohe. The Structure of Fized-Point Logics. PhD the-
sis, Universitat Freiburg, 1994. http://logimac.mathematik.uni-
freiburg.de/preprints/groh12-94-{1,2,3}.ps.

N. Immerman. Relational Queries Computable in Polynomial Time. Infor-
mation and Control, 68:86-104, 1986.

M. Kubierschky. Remisfreie Spiele, Fixpunktlogiken und Normalformen.
Master’s thesis, Universitit Freiburg, 1995. http://logimac.mathematik.uni-
freiburg.de/preprints/kub95.ps.

J. S. Schlipf. Complexity and Undecidability Results in Logic Programming.
Annals of Mathematics and Artificial Intelligence, 15(III-IV), 1995.

A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation.
In Proc. ACM Symposium on Principles of Database Systems, pages 1-10,
1989.

A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation.
Journal of Computer and System Sciences, 47(1):185-221, 1993.

[VGRS88] A. Van Gelder, K. Ross, and J. Schlipf. Unfounded Sets and Well-Founded

Sematics for General Logic Programs. In Proc. ACM Symposium on Prin-
ciples of Database Systems, pages 221-230, 1988.



