Referential Actions as Logical Rules

Bertram Ludäscher Wolfgang May Georg Lausen Institut für Informatik, Universität Freiburg, Germany

Overview

- Introduction: Referential Integrity Constraints (*ric*'s) and Referential Actions (*rac*'s)
- Ambiguities (Examples)
- Abstract Semantics (Maximal Admissible Sets)
- Translation to Logic Programs and Declarative Semantics
- Conclusion

Syntax:

$$R_C.\vec{F} \to R_P.\vec{K}$$

Foreign key \vec{F} of the child relation R_C references a (candidate) key \vec{K} of the parent relation R_P . Semantics:

$$\forall \bar{X}(R_C(\bar{X}) \to \exists \bar{Y}(R_P(\bar{Y}) \land \bar{X}[\vec{F}] = \bar{Y}[\vec{K}]))$$

Example:

$$Emp.(Dept, Proj) \rightarrow Projects.(DNo, PNo)$$

1

Syntax: $R_C \cdot \vec{F} \rightarrow R_P \cdot \vec{K}$ on {ins | del | mod} {parent | child} {propagate | restrict | wait}

rac	pprox SQL	R_P		R_C			
		ins	del	mod	ins	del	mod
propagate	CASCADE	ok	•	•		ok	
restrict	RESTRICT	ok	•	•	•	ok	•
wait	NO ACTION	ok	•	•	•	ok	•

• rac's only specify **local behavior**, but **global semantics** is not clear \implies ambiguities, conflicts.

Logic programming analogue:

$$U_{\triangleright} = \{ \triangleright \mathsf{mod}_{R_B}(a/b, \cdots), \triangleright \mathsf{mod}_{R_C}(a/c, \cdots) \}$$

$$\longrightarrow \mathsf{mod}_{R_D}(a/b, \ldots), \mathsf{mod}_{R_D}(a/c, \ldots)$$

$$\Rightarrow \mathsf{ambiguity!}$$

$$exec_1 \leftarrow \neg block_1.$$

$$exec_2 \leftarrow \neg block_2.$$

$$block_1 \leftarrow exec_2.$$

$$block_2 \leftarrow exec_1.$$

Given:

- a set of rac's RA (used to maintain some ric's RI)
- a set of user requests U_{\triangleright} , e.g. $\{ \triangleright del_R_1(a, b), \triangleright ins_R_2(b, a, c), \ldots \}$
- the current database instance ${\cal D}$

Questions:

- Which $U \subseteq U_{
 hinstyle}$ can be executed safely, and
- what updates Δ are induced by U and RA?

More formally: Find all **maximal** $U \subseteq U_{\triangleright}$ such that

- the induced updates $\Delta(U)$ preserve RI in $D' := D \pm \Delta(U)$, and
- $\Delta(U)$ reflects the intended meaning of RA.

An admissible set of updates Δ must be "well-behaved" wrt. U_{\triangleright} , RA, and D_{\cdot}

Definition (Admissible Delta): A set of updates Δ is

- founded if every $upd \in \Delta$ is "justified" by some $\triangleright upd' \in U_{\triangleright}$ and propagations using RA
- complete if all induced propagations are in Δ
- **feasible** if on ... { restrict | wait } actions are obeyed
- coherent if Δ contains no contradicting updates (like e.g. ins_ $R(\bar{x})$ and del_ $R(\bar{x})$)
- key-preserving if in $D':=D\pm\Delta$ all key dependencies are satisfied
- admissible if Δ is founded, complete, feasible, coherent, and key-preserving.

Definition (Intended Semantics): Fix U_{\triangleright} , RA, and D.

- Let $U \subseteq U_{\triangleright}$. The set $\Delta(U)$ of **induced updates** is the least complete set $\Delta \supseteq U$.
- $U \subseteq U_{\triangleright}$ is admissible if $\Delta(U)$ is admissible.
- The intended semantics are the maximal admissible $U \subseteq U_{\triangleright}$.

From RA to P_{RA} (Small Extract)

Idea: Formalize rac's RA as a logic program P_{RA} (preserves locality principle). The declarative semantics of P_{RA} yields a "reasonable" global semantics.

User Requests and Final Updates $:\iff$

 $\begin{array}{rcl} \mathsf{pot_del_}R(\bar{X}) & \leftarrow & \triangleright \mathsf{del_}R(\bar{X}).\\ \mathbf{del_}R(\bar{X}) & \leftarrow & \triangleright \mathsf{del_}R(\bar{X}), \neg \, \mathsf{blk_del_}R(\bar{X}). \end{array}$

 $R_C.\vec{F} \to R_P.\vec{K}$ on **del propagate** : \iff

$$\begin{aligned} \operatorname{del}_{R_{C}}(\bar{X}) &\leftarrow \operatorname{del}_{R_{P}}(\bar{Y}), \ R_{C}(\bar{X}), \ \bar{X}[\vec{F}] = \bar{Y}[\vec{K}]. \\ \operatorname{pot_del}_{R_{C}}(\bar{X}) &\leftarrow \operatorname{pot_del}_{R_{P}}(\bar{Y}), \ R_{C}(\bar{X}), \ \bar{X}[\vec{F}] = \bar{Y}[\vec{K}]. \\ \operatorname{blk_del}_{R_{P}}(\bar{Y}) &\leftarrow \operatorname{pot_del}_{R_{P}}(\bar{Y}), \ \operatorname{blk_del}_{R_{C}}(\bar{X}), \ \bar{X}[\vec{F}] = \bar{Y}[\vec{K}]. \end{aligned}$$

 $R_C.\vec{F} \to R_P.\vec{K}$ on **del block** : \iff

 $\begin{aligned} \mathsf{blk_del_} R_P(\bar{Y}) &\leftarrow \mathsf{pot_del_} R_P(\bar{Y}), \ \mathsf{is_ref'd_} R_P.\vec{K_} \mathsf{by_} R_C.\vec{F}(\bar{Y}[\vec{K}]) &. \ \% \ \textit{restrict} \\ \mathsf{blk_del_} R_P(\bar{Y}) &\leftarrow \mathsf{pot_del_} R_P(\bar{Y}), \ \mathsf{rem_ref'd_} R_P.\vec{K_} \mathsf{by_} R_C.\vec{F}(\bar{Y}[\vec{K}]) &. \ \% \ \textit{wait} \end{aligned}$

Diamond: $exec \leftarrow \neg block$. $block \leftarrow \neg exec$.

Wutex:	$exec_1 \leftarrow \neg block_1.$
	$exec_2 \leftarrow \neg block_2.$
	$block_1 \leftarrow exec_2.$
	$block_2 \leftarrow exec_1.$

Self-Attack: $exec \leftarrow \neg block$. $block \leftarrow exec$.

- Conflicts of type self-attack prevent existence of stable models \Rightarrow partial stable models \mathcal{PS} .
- The well-founded model \mathcal{W} assigns *undefined* to all controversial requests (most sceptic \mathcal{PS}).
- Maximal stable models work for mutex and self-attack but not for diamond \Rightarrow preference: exec \succ block \Rightarrow M-stable models \mathcal{AS} .

Theorem (Correctness & Completeness).

- For every P-stable model *PS* of *P_{RA}* ∪ *D* ∪ *U_▷*:
 Δ^{true}_{*PS*} is admissible,
 Δ^{true}_{*PS*} = Δ(*U^{true}_{<i>PS*}),
 U^{true}_{<i>PS} is admissible.
 (Special case: *PS* = *W*)
- For every maximal admissible $U \subseteq U_{\triangleright}$, there is an M-stable model \mathcal{MS} s.t. $U = U_{\mathcal{MS}}^{true}$ and $\Delta(U) = \Delta_{\mathcal{MS}}^{true}$.

Application-specific preference: $\mathcal{PS}_1 <_a \mathcal{PS}_2 :\Leftrightarrow U_{\mathcal{PS}_1}^{true} \subset U_{\mathcal{PS}_2}^{true}$.

Theorem (Maximality).

• The maximal admissible sets $U \subseteq U_{\triangleright}$ are given by the M-stable models of $P_{RA} \cup D \cup U_{\triangleright}$ which are maximal wrt. $<_a$.

Conclusion

Summary.

- rac's can be used to maintain ric's
- global effect of *rac*'s is unclear
- \Rightarrow definition of an abstract, intended semantics ($\hat{=}$ several "equally justified" outcomes)
- \Rightarrow constructive semantics results from specifying a set RA of rac's as a logic program P_{RA} with declarative semantics
- \Rightarrow general solution to the meaning of *rac*'s

Possible Applications.

- general framework: as an analysis & explanation tool
- restricted framework (using simplifying assumptions on interplay of rac's): executable logical specification \Rightarrow basis for a procedural implementation

Definition (P-, M-Stable Models):

Let $I = \langle I^{true}, I^{false} \rangle$ be a 3-valued interpretation. The reduction P/I of a ground instantiated logic program P is obtained by replacing every negative literal in P by its truth-value wrt. I. Thus, P/I is positive and has a unique minimal (wrt. the truth-order $false <_t undef <_t true$) 3-valued model $\mathcal{M}_{P/I}$.

I is a *P*-stable model, if $\mathcal{M}_{P/I} = I$. A P-stable model *I* is *M*-stable (maximal stable) if there is no P-stable model $J \neq I$ such that $J^{true} \supseteq I^{true}$ and $J^{false} \supseteq I^{false}$.

Depending on the database state $D\,{}_{\!\!\!\!\!}$, changes on R and S

(i) must not be merged, or

(ii) have to be merged on T.

Given $\operatorname{mod}_R(a/a', b/b')$ and $\operatorname{mod}_S(c/c', d/d')$. Then

(i) D contains R(a, b), S(c, d), T(a, b, c, d), U(b, c), V(a, d), V(a', d), V(a, d')

(ii) similar to (i) but V(a, d), V(a', d').