Referential Actions as Logical Rules

Bertram Ludascher Wolfgang May Georg Lausen

Institut fur Informatik, Universitat Freiburg, Germany

Overview

e Introduction: Referential Integrity Constraints (ric's) and Referential Actions (rac’s)
e Ambiguities (Examples)

e Abstract Semantics (Maximal Admissible Sets)

e Translation to Logic Programs and Declarative Semantics

e Conclusion

Referential Integrity Constraints (ric’s)

of the child relation R references a (candidate) key

Syntax:
Foreign key
Semantics:
VX (Rco(X)
Example:
Emp.
Emp

ENo

Sal

Rc. Rp.

IV (Rp(Y) A X[F]

Projects.

Y

[

of the parent relation Rp.

D)

Projects

From Referential Integrity Constraints (ric’s) to Referential Actions (rac’s)

d6|_Rp(X)
mod_Rp()_(/)_(’)

\| Rp(X)]

propagate block
| Ro(Y) I
Syntax: Rc. Rp./ on {ins | del | mod} {parent | child} {propagate | restrict | wait}
rac ~ SQL Rp Rc

ins | del | mod | ins | del | mod

propagate | CASCADE ok | e ° — | ok | —

restrict RESTRICT | ok | o ° o | 0ok °

wait NO ACTION | ok | e ° o | ok °

e rac’s only specify local behavior, but global semantics is not clear = ambiguities, conflicts.

Ambiguities: Diamond

L _Ra |
Rp.1—-R4.1 1 Ro.1—>Rxp.1
on del prop‘a? a c.. le propagate
Rp | e Rc
1 2 | --- 1
a b a
Rp.(1,2)—Rp.(1,2) 41,3 S R.(1,2
on del propagate | %D | P (on d)el bloccjk()
1 | 2
a b c
U = {>del_Ra(a,...)} (= given user requests)
(1) R_A ~ Ko~ Bp Logic programming analogue:
reject del_R4(a, . ..)
(2) Ra~ Rp~ Rp exec 4— —iblock.
= accept del_R4(a,...) block < —exec.

Ambiguities: Mutual Exclusion

BB L _Rc |
1 1
a a
c b

RD.1—>RB.1

RD.l—)Rc.l
on mod propagate

on mod propagate

N/
| |

Rp

1
a

Logic programming analogue:

{Dmod_RB(a/b, .. '), [>I'I'IOC|_Fi(j(a,/c7 .)}

exec; < —iblock;.
mod_Rp(a/b,...),mod_Rp(a/c,...)

execy 4— =—iblocks.
blocky <— execs.
blocky <— exec;.

¢

Ambiguities: Self-Attack

b¢ ¢

| R4 |
1 2 .

Rp.1—>R4y.1 a a Ro.1—R 4.2
on mod propagate . on mod propagate
L R | L Rc |
1 1 ..

a a
RD.l—)RB.l | RD | RD.]_—>R0.1
on mod propagate

1

on mod propagate

a

{>bmod_Ra(a/b,a/c,...)}
mod_Rgp(a/b,...),mod_R¢c(a/c,...)
mod_Rp(a/b,...),mod_Rp(a/c,...)

Logic programming analogue:

exec <— =—iblock.

block <— exec.

The General Setting

Given:
e a set of rac's RA (used to maintain some ric's RI)
e a set of user requests U, e.g. {>del_R;(a,b),>ins_R2(b,a,c), ...

e the current database instance D

Questions:
e Which U C U, can be executed safely, and
e what updates A are induced by U and RA?

More formally: Find all maximal U C Uy such that
e the induced updates A(U) preserve RI in D' := D 4+ A(U), and
o A(U) reflects the intended meaning of RA.

Abstract Semantics

An admissible set of updates A must be “well-behaved” wrt. U., RA, and D.

Definition (Admissible Delta): A set of updates A is

e founded if every upd € A is “justified” by some >upd’ € Uy and propagations using RA
e complete if all induced propagations are in A

e feasible if on ... { restrict | wait } actions are obeyed

e coherent if A contains no contradicting updates (like e.g. ins_R(Z) and del_R(Z))

e key-preserving if in D' := D =+ A all key dependencies are satisfied

e admissible if A is founded, complete, feasible, coherent, and key-preserving.

Definition (Intended Semantics): Fix U., RA, and D.
e Let U C Ur. The set A(U) of induced updates is the least complete set A D U.
e U C Uy is admissible if A(U) is admissible.

e The intended semantics are the maximal admissible U C Up.

From RA to Prs (Small Extract)

Idea: Formalize rac's RA as a logic program Pr4 (preserves locality principle).
The declarative semantics of Pr4 yields a “reasonable” global semantics.

|User Requests and Final Updatesl =

pot_del_R(X) < Ddel_R(X).
del_R(X) <« D>del_R(X),— blk_del_R(X).

Rc.F' — Rp. /<X on del propagate| : <

del_Rc(X) < del_Rp(Y), Rc(X), X[F] =Y[K]
pot_del_Rc(X) <— potdel_Rp(Y), Ro(X), X[F] =
blk_del_Rp(Y) < pot_del_Rp(Y), blk_del_Rc(X), X

|Rc. — Rp./< on del bIockI =

blk_del_Rp(Y) < potdel_Rp(Y), is_ref'd_Rp./x _by_Re.F(Y[K]) . % restrict
blk_del_Rp(Y) <« pot_del_Rp(Y), rem_ref'd_Rp./< _by_Rc.F(Y[K]) . % wait

Declarative Semantics of Pra vs. Types of Ambiguities

Diamond: exec < -—block.
block <— =—exec.

Mutex: exec; < —block;.
execy 4— =—1blocks.
blocky <+ execs.

blockys <— exec;.

Self-Attack: exec <— = block.
block <+— exec.

e Conflicts of type self-attack prevent existence of stable models = partial stable models PS.
e The well-founded model VW assigns undefined to all controversial requests (most sceptic PS).

e Maximal stable models work for mutex and self-attack but not for diamond
= preference: exec = block = M-stable models AS.

Results: Abstract Semantics = LP-Semantics 10

Theorem (Correctness & Completeness).

e For every P-stable model PS of Pra U D U Uy
- Ag";ue Is admissible,
- At =A@l

— %gue Is admissible.

(Special case: PS = W)
e For every maximal admissible U C Uy, there is an M-stable model MS s.t. U =
A(U) = ATEE

Uﬂ‘ge and

Utrue C Ut'r'u,e.

Application-specific preference: PS; <, PS: & PS, PSy

Theorem (Maximality).

e The maximal admissible sets U C Uy are given by the M-stable models of Pr4 U D U U which
are maximal wrt. <,,.

Conclusion 11

Summary.

® rac's can be used to maintain ric’s

e global effect of rac’s is unclear
= definition of an abstract, intended semantics (= several “equally justified” outcomes)
= constructive semantics results from specifying a set RA of rac’'s as a logic program Pgr4 with

declarative semantics

—> general solution to the meaning of rac'’s

Possible Applications.
e general framework: as an analysis & explanation tool

e restricted framework (using simplifying assumptions on interplay of rac’s):
executable logical specification = basis for a procedural implementation

Appendix: P-Stable Models 12

Definition (P-, M-Stable Models):

Let [= (Itrue, Ifa,lse> be a 3-valued interpretation. The reduction P/I of a ground instantiated
logic program P is obtained by replacing every negative literal in P by its truth-value wrt. I. Thus,
P/ 1 is positive and has a unique minimal (wrt. the truth-order false <; undef <; true) 3-valued

model Mp;.

I is a P-stable model, if Mp,; = I. A P-stable model I is M-stable (maximal stable) if there is no
P-stable model J # I such that JtTu€ O ftrue 5,4 jfalse 5 rfalse

Appendix: Example for Complex Interactions

13

R:(ﬁ) V:(ﬁ,...) S:(ﬁ)

N\

T:(1,2,3,4,...)

U:(1,2,...)

Depending on the database state D, changes on R and S
(i) must not be merged, or
(ii) have to be merged on T'.

Given mod_R(a/a’,b/b") and mod_S(c/c’',d/d"). Then
(i) D contains R(a,b),S(c,d), T(a,b,c,d),U(b,c),V(a,d),V(a',d),V(a,d)

(ii) similar to (i) but V (a, d), V (da’, d').

