Referential Actions as Logical Rules

Bertram Ludéascher
Institut fiir Informatik
Universitdt Freiburg
Germany

ludaesch@informatik.uni-freiburg.de

Abstract

Referential actions are specialized triggers used to automati-
cally maintain referential integrity. While their local behav-
ior can be grasped easily, it is far from clear what the com-
bined effect of a set of referential actions, i.e., their global
semantics should be. For example, different execution or-
ders may lead to ambiguities in determining the final set
of updates to be applied. To resolve these problems, we
propose an abstract logical framework for rule-based main-
tenance of referential integrity: First, we identify desirable
abstract properties like admissibility of updates which lead
to a non-constructive global semantics of referential actions.
We obtain a constructive definition by formalizing a set of
referential actions RA as logical rules, and show that the
declarative semantics of the resulting logic program Pga
captures the intended abstract semantics: The well-founded
model of Pr4 yields a unique set of updates, which is a safe,
sceptical approximation of the set of all maximal admissi-
ble updates; the third truth-value undefined is assigned to
all controversial updates. Finally, we show how to obtain a
characterization of all maximal admissible subsets of a given
set of updates using certain maximal stable models.

1 Introduction

We study the following problem: Given a relational database
D, a set of user-defined update requests Uy, and a set of
referential actions RA, find those sets of updates A which
(i) preserve referential integrity in the new database D', (ii)
are maximal wrt. Uy, and (iii) reflect the intended meaning
of RA.

The problem is important both from a practical and
theoretical point of view: Referential integrity constraints
(ric’s) are a central concept of the relational database model
and frequently used in real world applications. Referential
actions (rac’s) are specialized triggers used to automatically
maintain referential integrity [Dat81]. While the local be-
havior of rac’s is quite intuitive and easy to understand,

*Supported by grant no. GRK 184/1-97 of the Deutsche
Forschungsgemeinschaft.

©ACM PODS ’97, Tucson, Arizona

Wolfgang May*
Institut fiir Informatik
Universitat Freiburg
Germany

may@informatik.uni-freiburg.de

Georg Lausen
Institut fiir Informatik
Universitét Freiburg
Germany

lausen@informatik.uni-freiburg.de

it is far from clear what their global semantics should be.
In particular, different execution orders of rac’s may lead
to different outcomes, i.e. to ambiguities in determining the
above A and D',

Due to their practical importance, rac’s have been in-
cluded in the SQL2 standard and SQL3 proposal [ISO92,
ISO94]. However, the standards describe the meaning of
rac’s in a lengthy and procedural way, making it difficult to
understand or predict their global behavior. The problem
of ambiguous global semantics is “solved” by fixing a rather
ad-hoc run-time execution model [Hor92, CPM96]. In a dif-
ferent approach, [Mar94] presents safeness conditions which
aim at avoiding ambiguities at the schema level. However,
as shown in [Rei96], it is in general undecidable whether a
database schema with rac’s is ambiguous. Summarizing, the
problem is complex and, from a theoretical point of view,
has not been solved in a satisfactory way.

In contrast to previous work, we present an abstract log-
ical framework for rule-based maintenance of referential in-
tegrity: After introducing a generic language for rac’s, we
identify general abstract properties which a set of updates
A wrt. a given set of rac’s RA may possess (Section 3).
These abstract properties give rise to a natural but non-
constructive global semantics. To obtain a constructive def-
inition, we associate with every set of rac’s RA a logic pro-
gram Pra (Section 4), and show that the declarative se-
mantics of Pra captures the abstract semantics (Section 5).
This solves the above-mentioned problem in a rigorous and
comprehensive way.

Our logical formalization has the following benefits:

e the local behavior of an individual rac ra € RA is pre-
cisely specified, and can be understood by solely looking
at the corresponding rules P, C Pgra,

e the interaction between different update requests is pre-
cisely defined by certain other rules,

e the global behavior is precisely specified and understand-
able from the declarative semantics:

— the well-founded model W of Pr4 yields a unique set
of updates A, which is a safe, sceptical approximation
of the set of all mazimal admissible A’s (safe means
that applying A does not lead to violation of ric’s,
sceptical means that all controversial updates have
the truth-value undefined in W),

— the maximal admissible A’s can be obtained as cer-
tain stable models of Pra4.

2 Preliminaries and Notation

A relation schema consists of a relation name R and a vector
of attributes (Ai,...,A,). W.lo.g. we identify attribute
names A; of a relation R with the integers between 1 and
n. By A = (i1,...,ir) we denote a vector of k < n distinct
attributes (usually A will be some key).

Tuples of a relation R are denoted by first-order logic
atoms R(X) where R is an n-ary relation symbol, and X =
Xi,..., X, is a vector of variables or constants from the
underlying domain. If we want to emphasize that such a
vector is ground, i.e., comprises only constants, we write
instead of X. The projection of tuples X to an attribute
vector A is denoted by X[A], ife.g. X = (a,b,¢), A = (1,3),
then X[4] = (a,c¢).

Let R be a relation schema with attributes A. A minimal
subset K of A whose values uniquely identify each tuple in
R is called a candidate key. In general, the database schema
specifies which attribute vectors are keys. A candidate key
R.K has to satisfy the following first-order sentence @pey

(the key dependency for R.K) for every database instance
D:

VXL Ko (R(X) AR(G) AR = K] ()

A referential integrity constraint (ric) is an expression of
the form . .
R¢.F'— Rp.K |

where F is a foreign key of the child relation Rc, referencing
a candidate key K of the parent relation Rp. Clearly, the

arities of F' and K have to coincide. Note that Ro and Rp
may be the same relation.

A ric Ro.F - Rp K is satisfied by a given database D,
if for every tuple z in the child R¢c with foreign key values
f[ﬁ], there exists a tuple § in Rp with matching key value,
i.e., Z[F] = y[K]. Thus, for a database instance D, a ric is
satisfied if D = ¢ric, where @, is the first-order sentence

VX (Ro(X) = 3V (Re(V)AX[F]=Y[K])). (¢ric)

A ric is wviolated by D if it is not satisfied by D.
Update requests (updates) to a relation R are represented

by auxiliary relations ins_R(X), del_R(X), and mod_R(M, X).

Here, M is alist [a1/v1,...,an/vn] of pairs prescribing that
attribute a; of R(X) should be set to the value v;. As
a more abstract notation, [a1/v1,...,an/vn] is written as
(a1y...,ar)/(v1,...,v,). For brevity, we sometimes write
mod_R(a/d,b,c/e) instead of mod_R([1/d,3/e],a,b,c).

Using our list notation, two modifications can be merged
by simply appending both lists, provided the resulting list
assigns at most one value to every attribute.

The restriction of a modification M to a key K is denoted
by M[I?], the result of applying a modification M to a tuple
X is denoted by M (X). E.g. if M =[1/d,3/e], X = (a,b,¢),
then M([(2,3)] = [3/e], and M(X) = (d,b,e). _

Finally, given a modification mod_Rp(M, X) of a tuple
in Rp, M' = F/(M(X)[K]) denotes a modification which
replaces the values of the attributes F (of some other re-
lation R¢) with the values of the tuple which results from

applying M to X and then projecting on K.

| | Rp | R |

ins | del | mod | ins | del | mod
propagate | ok | e ° — | ok | —
restrict ok | e ° e | ok
wait ok | e ° e | ok

ok =ric remains satisfied
e —=ric may be violated, rac applicable
— =ric may be violated, rac not applicable

Table 1: Operations and Possible Repairs

3 Referential Actions

Rule-based approaches to referential integrity maintenance
are attractive since they describe how ric’s should be en-
forced using “local repairs”: Given a ric Ro.ﬁ — RP.I?
and an update operation on Rp or Rc, a rac defines an
operation to be applied to Rc resp. Rp. We call this the
locality principle.

The updates insert, delete, and modify can be applied to
Rp or Rc, leading to six basic cases. It is easy to see from
the logical implication in (yr;c) above that insert Rp and
delete R¢ cannot introduce a violation, while the other four
operations can. For these, there are in general three possible
actions (cf. Table 1):

e propagate: propagate (cascade) the update from the par-
ent to the child,

e restrict: (i) reject an update on the parent if there exists
a child referencing the parent in the current database
state, or (ii) reject an update on the child if the ref-
erenced parent does not exist in the current database
state,

e wait: similar to restrict, but look at the database state
after (hypothetically) applying all updates.

As can be seen from Table 1, not all combinations are
meaningful: e.g. it is perfectly reasonable to propagate (cas-
cade) a modification from the parent to the referencing child,
but not vice versa.

Syntax. Each rac consists of the ric which should be main-
tained, the triggering update on either the parent Rp or the
child R¢, and the “local repair”. We use the following no-
tation, which should be self-explanatory:

Rc.F — Rp.K on {del | ins | mod} {parent | child}
{propagate | restrict | wait}

Referential Actions in SQL. In SQL, rac’s for a referential

integrity constraint Ro.ﬁ — RP.Kt are specified with the
definition of the child table:

{CREATE | ALTER} TABLE Rc

FOREIGN KEY F REFERENCES Rp K

[ON UPDATE {CASCADE | RESTRICT | SET NULL |
SET DEFAULT | NO ACTION}]

[ON DELETE {CASCADE | RESTRICT | SET NULL |
SET DEFAULT | NO ACTION}]

The correspondence of SQL rac’s to the above-mentioned
strategies is roughly as follows:

CASCADE = propagate, NO ACTION ~ wait, and RESTRICT
= restrict. The operations insert into Rc and update Rc on
the child are evaluated in the current database state, and
immediately backed out if they would result in a violation.

Thus, for modifications on child tuples, the SQL behavior
is less flexible than our presented formalization. The actions
SET DEFAULT and SET NULL of SQL are also covered by our
approach, since these operations can be modeled as special
cases of modifications.

3.1 Ambiguities

Since rac’s only specify local behavior, there are several
types of ambiguities leading to potentially different final
states. Given a database D, and a set of user requests U,
a set of rac’s RA is called ambiguous wrt. D and Uy, if
there are different final states D’ (depending on the exe-
cution order of referential actions). A database schema S
with rac’s RA is ambiguous, if RA is ambiguous wrt. some
database D over S, and some Uy. As shown in [Rei96] it
is in general undecidable, whether a database schema with
referential actions is ambiguous.

The SQL standards [ISO92, ISO94] solve the problem
of ambiguity of rac’s by fixing a certain run-time execu-
tion model and a marking algorithm as described in [Hor92,
CPM96]. In case a set of updates causes referential prob-
lems, the transaction is simply aborted without giving fur-
ther information, e.g. which tuples or updates caused the
problems. Often, although not all requested updates can
be accomplished, it is still possible to execute some of them
while postponing the others. Thus, the information which
tuple or update really caused problems is valuable for prepar-
ing a revised request which realizes the intended changes and
is accepted by the system. In Section 5, we show that these
ambiguities have a very natural and elegant representation
in our framework: “controversial” updates are undefined in
the well-founded model; the set of all maximal solutions is
characterized by certain stable models.

Example 1 (Diamond) Consider the database with rac’s
as depicted in Figure 1. Solid arcs represent ric’s and point
from Rc to Rp, rac’s are denoted by dashed (propagate)
or double (restrict) arcs. Let Uy = {del_Ri(a)} be a user
request to delete the tuple Ri(a). Depending on the order of
execution of rac’s, one of two different final states may be
reached:

1. If execution follows the path Ri—Rs—R4, the tuple Rs(a,c)
cannot be deleted: Since Ra(a,b,c) references Rz(a,c),
the rac for Ry restricts the deletion of Rs(a,c). This in
turn also blocks the deletion of Ri(a). Consequently, the
user request del_Ri(a) is rejected, and the database state
remains unchanged, i.e. D' = D.

2. If execution follows the path Ri—R>—Ra, the tuple R2(a,b)
and —as a consequence— Ra(a,b,c) are requested for
deletion. Hence, the rac for R4.(1,3) — R3.(1,2) can
assume that Ra(a,b,c) is deleted, thus no referencing tu-
ple exists in Ry. Therefore, all deletions can be ezecuted,
resulting in a new database state D' # D.

We argue that the second execution order is preferable
to the first, since it accomplishes the desired user request
without violating referential integrity. Here, the ambiguity
arises since the restrict rac considers the current database
state, which makes the outcome dependent on the order of
execution.

Ro.1—Ry.1 R R3.1—Ry.1
on del parent propagate on del parent propagate
-7 a RN IS
~ ~
" 7| - N
a

~
R4
Ri.(1,2)»Ro.(1,2) [L |2 |3 R4.(1,3)—>Ra.(1,2)
on del parent propagate [g b - on del parent restrict

Figure 1: Database with Referential Actions

This type of ambiguity can be eliminated by specifying
that restrictions are always evaluated wrt. to the original
database state instead of the current one. However, the sit-
uation is more complex for rac’s of type wait which have to
look at the final database state. As it turns out, in the pres-
ence of modifications, there are in general several “equally
justified” final states, each of which has to be considered:

Example 2 (Mutex) Consider modifications mod_R(a/b)
and mod_R(a/c). They are mutually exclusive, since they
cannot be executed simultaneously. In our logical formaliza-
tion, both will be undefined in the well-founded model. More-
over, there will be two stable models, each of which makes
one modify request true, and the other false.

The final type of ambiguity may arise due to “self-contra-
dictory” requests:

Example 3 (Self-Attack) Imagine a database with rac’s
such that mod_Ri(a/b,a/c) triggers both mod_Ra(a/b) and
mod_R3(a/c). Then, mod_R:(a/b) triggers mod_R4(a/b),
and mod_Rs(a/c) triggers mod_R4(a/c). Since ezecuting the
original request mod_R1(a/b,a/c) causes a conflict at Ra, it
cannot be executed. On the other hand, no other request is
in conflict with it, so there is no independent justification
not to execute it. Thus, the original request “attacks” itself.
In our formalization, there is no total stable model.

3.2 Abstract Semantics

Let RA be a set of rac’s, D a database instance, and Uy a
set of update requests given by the user. For an arbitrary
set A of updates, we define several abstract properties A
may have wrt. RA, D and Uy. These allow to define the
intended meaning of a set of rac’s in an abstract (and non-
constructive) way. D' = D £+ A denotes the database ob-
tained by applying A to D. We confine ourselves to a semi-
formal definition; technical details can be found in [LML96].

Definition 1 (Abstract Properties) A single update is
called founded (in n steps) wrt. given RA, D, Uy, and A,
if it can be justified by the user requests and propagations:

o A deletion del_R(Z) is founded in n steps, if there is
del_R(z) € Uy or there is a deletion del_R;(Z;) € A
which is founded in < n steps, and a rac R.F’; — RZI?Z
on del parent propagate s.t. Z[F] = z;[K;].

o A modification mod_R(M,Z) is founded in n steps, if
there are modifications My,..., My s.t. M =J,_, , M;
(not necessarily disjoint) and for every i, mod_R(M;, %) €
Us, or mod-R(M;,T) results from propagating a modifi-
cation, i.e. there is a modification mod_R;(M;,%;) € A
which is founded in < n steps, and a rac R.F’; — RII?Z
on mod parent propagate such that &;[K;] # M/ (z:)[Ki],
FF] = #[Ki), end M; = F,/(M](%:)|K))).

e An insertion ins_R(x) is founded if ins_R(Z) € Uy.

Given RA, D, and Uy, a set A of updates is called

e founded wrt. RA, D, and Uy, if every update del_R(%),
mod-R(M,), or ins_R(Z) € A is founded wrt. RA, D,
Uy, and A.

e complete wrt. RA and D if it is closed wrt. propagations,
i.e., it satisfies the following conditions:

— if del_Rp () € A, Re(z) € D, Ro.F — Rp.K on del
parent propagate € RA, and i:[ﬁ] = gj[[?] then del_R¢ () €
A

— if mod-Rp(M,y) € A, Rc(z) € D, Rc.F — Rp.K
on mod parent propagate € RA, j[K] # M(3)[K], and
Z[F] = y[K] then there is a M' s.t. mod_Rc(M',z) € A
and M' 2 F/(M(p)[E)).

e feasible if every rac of the form Ro.F — Rp.K on ...
{restrict | wait} is “obeyed” by A, i.e.

—if Rc.F — Rp.K on del parent restrict is in RA and
for a tuple Rp(y) there is a referencing child Rc(Z) € D,
then Rp(§) is not deleted by A;

—if Rc.F — Rp.K on del parent wait is in RA and
del_Rp(Z) € A, then all children Rc(jj) referencing Rp(Z)
are deleted or “modified-away” by some updates in A;
— if Ro.F — Rp.K on ins child restrict is in RA and
ins.Rc(x) € A, then a referencable parent Rp(y) exists
in D and is neither deleted nor modified-away by A;

— if Re.F — Rp.K on ins child wait is in RA and
ins_.Rc(Z) € A, then a referencable parent Rp(§) ezists
in the new database state D’.

(similar for mod_R(M,Z))

e coherent if no contradicting updates are issued on the
same tuple, i.e. if upd = del_R(Z) € A, then ins_R(Z) ¢
A, and there is no M s.t. mod-R(M,z) € A; similar
for other updates upd. Note that if A is coherent, D' =
D + A is well-defined.

e key-preserving if in D' = DEA all key dependencies are
satisfied.

e admissible if A is founded, complete, feasible, coherent,
and key-preserving.

These abstract properties are used to formalize our intended
semantics:

Definition 2 (Maximal Admissible Sets, Intended Se-
mantics) Let RA, D, and U be given.

e The set of induced updates A(U) of a set of user re-
quests U C Uy 1is the least set A which contains U and
is complete.

o A set of user requests U C Uy 14s admissible if A(U) is
admissible, and maximal admissible if there is no other
admissible U', s.t. U QU C Up.

e The intended semantics are the mazimal admissible sub-
sets of Uy .

Figure 2: Database Schema with Overlapping Keys

This semantics reflects the intended behavior of the database
system, i.e., it does neither “invent” nor “forget” updates
and guarantees referential integrity:

Theorem 1 (Adequacy)

1. If U C Uy, then for every RA and D, A(U) is founded
and complete.

2. If a coherent A is complete and feasible, then D' = D %+
A(U) satisfies all ric’s in RA.

PROOF:

1. A(U) is defined as the least complete set. It follows that
A(U) is founded.

2. Since A is complete, all updates propagated by RA are
contained in A. Feasibility of A guarantees that no
upd € A is restricted, and all rac’s which are maintained
by on ... wait are satisfied in D’. n

The abstract semantics specifies the notions of maximal ad-
missible sets U and induced updates A(U), but provides
no direct method how to compute them: Given a set of n
user requests, there are 2" subsets which may be admissible.
Moreover, even if it is known that U is admissible, comput-
ing A(U) is not straightforward: In contrast to deletions
which can be propagated in a “naive” way [LMRY6], in the
presence of modifications, simultaneous updates have to be
taken into account. This can lead to an exponential number
of rules describing how modifications have to be propagated
(see (CH) in Appendix A and Theorem 2 which describes
how A(U) can be computed).

Finally, considering the effect of rac’s in isolation as sug-
gested by the locality principle (Section 3) is not sufficient
if the admissible subsets of Uy are unknown:

Example 4 Consider the database schema depicted in Fig-
ure 2. Among others there are rac’s of type on mod par-
ent propagate for the ric’s T.(1,2) — R.(1,2), T.(3,4) —
S5.(1,2), U.(1,2) - T.(2,3), and a rac T.(1,4) = V.(1,2) on
mod child restrict.

a) Assume D contains R(a,b), S(c,d), T(a,b,c,d,...),
U(b,c,...), and V(a,d,...), V(d',d,...), V(a,d,...). For
given mod-R(a/a’,b/b") and mod_S(c/c',d/d"), the rac’s trig-
ger modT(a/a',b/V ,c,d,...) and mod_T(a,b,c/c,d/d',...).
Since these updates to T are coherent, they can be merged,
resulting in mod T (a/a’, b/t ,c/c',d/d,...), which then trig-
gers mod UV ,c/c,...).

On the other hand, the rac T.(1,4) — V.(1,2) on mod
child restrict restricts this modification since there is no tu-
ple V(a',d',...). So each of the updates is admissible, but
they are mot admissible together, even though they do not
contradict each other directly.

b) Assume now, that the situation is the same as in
(a), except that V = {(a,d,...),(a’,d’,...)}. Then, neither
mod_R(a/a’,b/b'") nor mod_S(c/c',d/d") is admissible in iso-
lation: the triggered updates mod-T(a/a’,b/V ,c,d,...) resp.
mod-T (a,b,c/c',d/d',...) are both blocked since V contains
neither (a',d,...) nor (a,d’,...). On the other hand, simul-
taneous ezecution of both updates is allowed: the triggered
updates are merged to mod-T(a/a',b/V ,c/c',d/d,...) which
is allowed. This shows that the merge of modifications is an
important concept for dealing with simultaneous updates.

Note that in both cases, it is completely irrelevant, which
modifications are raised on the dotted parts of the tuples.

Example 4 illustrates some of the problems which may arise
due to overlapping foreign keys and candidate keys, and
gives a first impression of the inherent complexity of rule-
based referential integrity maintenance. We suspect that
these problems are the reason that commercial database sys-
tems do not (yet) provide means to propagate modifications.

We argue that the propagation of updates should be
handled key-oriented and cannot be seen tuple-oriented or
attribute-oriented, since keys play the central role in the
concept of referential integrity. Our claim is supported by
the observations made in Example 4a):

An attribute-oriented approach would be too fine: Both
modT(a/a’,b/b ,c,d,...) and mod_T(a,b,c/c',d/d',...) are
allowed in isolation, but their combination is forbidden due
to the fact that the foreign key T.(1,4) has to match the
parent key V.(1,2).

On the other hand, a tuple-oriented view is too coarse
since then, the two updates mod_T'(a/a’,b/b',c,d,...) and
mod_T(a,b,c/c',d/d',...) would be merged into a single mod-
ification of T'(a,b, c,d,...), neglecting the fact that they can
also be carried out independently.

Furthermore, a key-oriented approach allows to model
the connection between modifications of parent keys and the
corresponding foreign keys in a very natural way, which is
not the case for an attribute-oriented or a tuple-oriented ap-
proach. In our framework, keys are regarded as the atomic
units to be considered for modifications. Not surprisingly,
parent keys, foreign keys, propagated modifications, refer-
ences, and overlapping keys play an important role in our
logical formalization.

4 Logical Formalization

The meaning of a set RA of rac’s is formalized as a logic
program Pgra, consisting of the sets P., which specify the
local behavior of every rac ra, and a set of rules specifying
the meaning of interacting update requests.

Here, we only show some rules embodying the main ideas,
i.e., the handling of deletions and some aspects of modifi-
cations. The remaining rules for handling references, mod-
ifications of child tuples, insertions, interferences between
updates, coherence, and key-preservation are listed in the
Appendix. _

Recall that an update request upd can be any of ins_R(X),
del_R(X), mod_R(M, X). Uy is given as a set of facts of the
form >upd. For each update type upd, pot_upd holds all po-
tential updates, i.e. those which are founded by RA and Uy.
blk_upd C pot_upd holds all blocked updates, i.e. those which
cannot be executed due to some interfering constraints.

User Requests. The handling of user requests incorporates
the selection of admissible update sets: every user request

raises an update to the database if it is not blocked:

pot_del_R(X) + >del_R(X). B

del R(X) >del R(X), =blk del R(X). (FXT1)
Analogous rules are used for ins_R(X) and mod_R(M, X).
Additionally, modifications are decomposed into their effects

on keys. For every candidate or foreign key R.A:!

pot_mod_>~R.A(M, X) +

>mod R(M', X), X[A] # M'(X)[A], M = M'[4] .
mod_>~>R.A(M, X)

>mod_R(M', X), X[A] # M'(X)[A], M = M'[4] ,

- blk_mod_R(M’, X) .
(EXT,)

Deletions. Recall that we only need to consider rac’s of the

form Ro.ﬁ — RP.I? on del parent ... (see Table 1). Logical
rules are generated for these rac’s as follows (cf. Table 2):

e on del parent propagate: Deletions of parent tuples are
propagated downwards to every child tuple by rule (DPy).
Additionally, blockings are propagated upwards: if the
deletion of a child tuple is blocked, the deletion of the
parent tuple is also blocked (DP»).

e on del parent restrict: The deletion of a parent tuple is
blocked, if there is a referencing child tuple (DR). Here,
is_ref'd_Rp.K _by_Rc.F(v) holds, if in D, the key value
RP.I?(T)) appears as foreign key value of F in some tuple
Rc(y)-

e on del parent wait: The deletion of a parent tuple is
blocked, if there is a corresponding child tuple which
is neither requested for deletion nor modified away (i.e.,
modified s.t. it references another parent) (DW).
rem_ref'd_Rp.K _by_Rc.F(v) specifies that there is a ref-
erence to the key value Rp.K(7) by some tuple Rc /()
s.t. Z[F] does not change between D and D'.

Modifications of Parent Tuples. The handling of modifi-
cations follows the same principle as presented for deletions,
but since modifications are handled key-oriented, the details
are more involved (cf. Table 3).

In case of a partially modified parent key, the referencing
foreign key in the child is regarded as atomic, i.e., no other
update may change parts of it. Thus, with a modification
the whole key value is propagated, even if not all parts of it
change. On the other hand, modifications on a tuple trigger
a rac only if the key referred to in the rac is actually changed.
Imagine a modification mod_Rp(Mp,7) and a rac Ro.F —
Rp.K on mod parent propagate s.t. the key value Rp.K of
Rp(y) changes, denoted by chg_Rp.K(Mp,3). Then, for
every referencing child R¢(Z), this modification is raised for
the corresponding foreign key, i.e. Mo = F/(Mp(5)[K]).
This is stored in mod_Rp.K~»Rc.F (Mg, T).

e on mod parent propagate: Changes of parent keys are
propagated downwards to foreign keys (M PP;). If the
resulting modification of the foreign key of some child
is blocked, the change of the parent key is also blocked
(MPP»).

1As a mnemonic aid, we encode some hints on the meaning of
auxiliary relations into relation names. Therefore, relation names
may contain unusual characters like “~”, “>” etc.

del_Ro(X) del_Rp(Y), Reo(X), X[F]=YI[K].) (DPy)
pot_del_Ro(X) < pot_del Rp(Y), Ro(X), X[F] =YI[K]. '
blk_del_Rp(Y) « pot.del Rp(Y), blkdel_Rc(X), X[F] = Y[K] (DP)
blk_del_Rp (V) « pot_del_Rp(Y), is_ref’'d_Rp.K _ by_Rec. ﬁ([K]). (DR)
blk_del_Rp (Y) < pot_del_Rp(Y), rem_ref'd_Rp.K by Ro.F(Y[E]) . (DW)

Table 2: Local Rules for Deletions

e on mod parent restrict: The change of the parent key

Rp.K is blocked, if there is a referencing child in the
original database D (M PR).

e on mod parent wait: The change of the parent key Rp.K
is blocked, if there is a referencing child which is neither
requested for deletion nor modified away (M PW).

5 Declarative Semantics and Formal Results

In this section, we show how the well-founded model and
certain stable models of Pra are related to the abstract se-
mantics presented in Section 3.2. Note that Pra contains
non-stratified negation due to possible negative cyclic de-
pendencies between updates (see e.g. the rules (ABC) in
Table 7). In contrast, computing the set A(U) of updates
induced by a given set of updates U can be accomplished
using a negation-free set of rules:

Let Ppo: be the subset of EXT\UEXT,UDP,UMPP U
CH consisting of all rules where the head is of the form
pot_... . Ppo+ models the propagation of changes (but not
the propagation of blockings). Note that Py is positive
and has a unique minimal model Mp,,. Since EXT,,
guarantee that all user requests are considered, and DP;,
MPP;, and CH guarantee completeness wrt. deletions and
modifications, we have the following result:

Theorem 2 For every database D, and every set Uy of ex-
ternal updates:

A(Us) = {upd | Mp,.,(DUUs) k= pot_upd} .

The examples in Section 3.1 illustrate different types of am-
biguities which can occur for a set of rac’s RA. These am-
biguities become apparent by the declarative semantics of
Pra:

Given the logical formalization Pra of a set of rac’s
RA, a database D, and a set of user requests Uy, the well-
founded model W(Pra, D, U) assigns truth-values true and
false to all uncontroversial update requests, i.e., which are
true or false under any “well-behaved”? semantics of Pra.
The atoms which are undefined in W are controversial due
to some kind of ambiguity (cf. Section 3.1):

Diamond: Consider Example 1 and the “diamond” in Fig-
ure 1. Assume the rac R4.(1,3)—Rs.(1,2) on del parent
restrict is replaced by R4.(1,3)—Rs.(1,2) on del parent
wait. Then the rules of Pra define that the deletion
of Ri(a) is blocked (via Rs—R3—R1) if Ra(a,b,c) cannot
be deleted. R4(a,b,c) can be deleted (via Ri—R2—R4) if
the deletion of Ri(a) is not blocked. Hence there is a
negative cycle of the form

block < — exec. ezec < — block.
thus, either setting all requests in the diamond to true
or to false will result in a stable model.

2Dix [Dix95] formally defines this notion using certain abstract
properties of semantics.

Mutex: For two mutually exclusive operations (cf. Exam-
ple 2), if one of them is rejected, the other can be ex-
ecuted: Here, some requests which are undefined in W
can be set to false, resulting in other undefined requests
to be set to true such that eventually, a stable model is
obtained. This situation is analogous to the program:

block, < execs. blocks < execy.
ezecy < - block; . ezeca < — blocks.

Self-Attack: For a self-attacking request (cf. Example 3),
there is no other support for rejecting it than its “inter-
nal contradiction”. Therefore, neither assigning true nor
false to such a request will yield a stable model. This
situation corresponds to

ezec < — block. block + ezec.
where no total stable model exists.

Every 3-valued model M(Pga, D,Uy) defines sets of up-
dates Ax¢ and user requests Uy C Uy which are true (&),
false (f) or undefined (u) in M. Let upd be any of ins_R(Z),
del_R(Z), mod_R(M, 7). Then:

Ay = {upd | M(upd) =t} , and Uy := AW NU, .

Afw U/{A, and A, U}, are defined analogously.

The well-founded model W(Pgra, D, Uy) provides a safe
and sceptical semantics which is computable in polynomial
time. Here, sceptical means that all controversial updates
are assigned the truth-value undefined.

By safe, we mean that updates which are true in WV can
be executed without violating referential integrity. More
precisely, the set A(Uf,) of updates induced by Uf, is ad-
missible and equal to A¥,; submitting Uy, results in the new
database D' = D 4+ A,

Theorem 3 (Correctness: Well-Founded Semantics)

Let W be the well-founded model of Pra UD U U, . Then:
i) A, is admissible,

i) Ay = A(Uyy),

iii) UL, is admissible.

PrROOF: (Sketch)

i) Foundedness, completeness, and feasibility are proven
using the rules of all rac’s ra € RA; coherence and key-
preservation is guaranteed by the rules specifying the
interaction of updates.

ii) Af, C A(UY,) follows from foundedness, A¥y, D A(UY,)
from completeness.

iii) follows from (i), (ii), and Definition 2. n

The relation between the well-founded model and maximal
admissible sets will be investigated in Theorem 6.

The different types of undefined update requests upd €
Uyy can be characterized according to the different types of
controversial atoms:

mod_Rp.K~»Rc.F(Mc, X)

 chg-Rp.K(Mp,Y), Re(X), X[F]=YI[K], Mc = F
pot-mod_Rp.K~+Rc.F(Mg, X) « potchg Rp.K(Mp,Y), Ro(X), X[F]=Y o
blkchg_Rp.K (Mp,Y) ¢ pot_chgRp.K(Mp,Y), blk-mod_Rp.K~+Rc.F(Mc, X),
X[F] =Y[K], Mo = F/(Mp(Y)[K]) .
blk_chg_Rp. K(MP,Y) + pot_chg_Rp. K(MP,Y), is_ref'd_Rp. K _ by Re.F(
blk_chg_Rp.K(Mp,Y) + pot_chg_Rp.K(Mp,Y), rem_ref'd_Rp.K _by_Rc.

(MPP,)
VIR)) . (MPR)
F(V[R]) (MPW)

Table 3: Local Rules for Modifications

e upd € U for every maximal admissible U C U, (“dia-
mond”), or

e there are maximal admissible sets U, U’ C Uy s.t. upd €
U and upd ¢ U’ (“mutex”), or

e upd ¢ U for any admissible U C Uy (“self-attack”).

For further investigation of these cases, we use stable mod-
els which provide a more detailed logical semantics for nor-
mal logic programs. Since self-attacking updates exclude
the possiblity of total stable models, we have to consider
P-stable (partial stable) models:

Definition 3 (P-, M-Stable Models) [ELS96] LetI =
(I'*, I7) be a 3-valued interpretation. The reduction P/I of a
ground instantiated logic program P is obtained by replacing
every negative literal in P by its truth-value wrt. I. Thus,
P/I is positive and has a unique minimal (wrt. the truth-
order f <; uw <; t) 3-valued model Mp;.

I is a P-stable model, if Mp,; =1. A P-stable model I
is M-stable (maximal stable) if there is no P-stable model
J # T such that Jt D Tt and J¥ D I7.

In contrast to the well-founded model which is the “most
sceptical” P-stable model, M-stable models are “more brave”
and handle mutually exclusive requests as expected; in par-
ticular, all maximal admissible solutions are represented by
the set of P-stable models. This fact, and the generalization
of Theorem 3 is expressed by

Theorem 4 (Correctness and Completeness: Stable
Semantics)

e For every P-stable model PS of PRaUDUU :
i) ALg is admissible,
ii) Abs = A(Ubs),
iii) Ubg is admissible.
e For every mazimal admissible U C Uy, there is an M-
stable model MS s.t. U =Ulk,s and A(U) = Al,s

PrROOF: (Sketch) The first part is proven analogously as in
the proof of Theorem 3. The second part follows from the
definition of M-stable. =

Theorem 4 implies the following logical characterization
of admissible subsets of user requests:

Corollary 5 A set Us of user requests is admissible iff
there is a P-stable model PS of PraUDUUy s.t. Uy = Ubg.
Then A(Uy) = ALg, and submitting Uy results in the new
database D' = D + ALg.

The following theorem states that the well-founded model
represents the “least common denominator” of all maximal
solutions:

Theorem 6 Every mazimal admissible U C Uy extends
Ut,, and updates classified as false by W(Pra,D,Us) are
not contained in any admissible set:

i) If U is mazimal admissible, then Uf, C U.
i) Uf, CU \U.

PROOF: (Sketch)

i) By Theorem 4, there is an M-stable model for every max-
imal admissible set. Since every M-stable model extends
the well-founded model, every upd € U}, is true in every
M-stable model.

ii) Given an update upd € U{:V, for every P-stable model

PS of Pra UDUU,, upd € Ugs since every P-stable
model extends the well-founded model. Together with
Theorem 4 this implies that upd is not contained in any
(maximal) admissible set. n

M-stable models of Pra almost capture the notion of “op-

timal” (maximal admissible) solutions. The only exception

is that in case of a “diamond” {block <+ —ezec, exec +

= block} there are two M-stable models:

Example 5 Recall Ezample 1. For Us = {>del_R:(a)},

both

M, = {blk_del_R:(a), blk_del_...(...), pot_del_...(...),
rem_ref'd_R;.1_by_R>.1(a),
rem_ref'd_R:.1_by_R3.1(a),
rem_ref'd_R3.(1,2)_by_R4.(1,2)(a,b),
rem_ref'd_R3.(1,2)_by_R4.(1,3)(a,c),...}, and

My = {del_R:(a), deI_RQ(a,b)7 del_R3(a,c), del_R4(a b,c),
pot_del_...(...),...

(where only the true atoms of My and M are sketched) are

total and M-stable.

However, executing an update should be preferred to
blocking it in order to capture the notion of maximal ad-
missibility. Therefore, we define an ordering <, on P-stable
models which reflects this “application-specific” preference.

PS1 <a PS2 & Ups, C Ups,.

Finally, our main result can be stated. The maximal stable
models wrt. <, represent exactly the maximal admissible
sets:

Theorem 7 (Maximality) The set of all mazimal admis-
sible sets U C Uy, and the set of all Ulg s.t. AS is an
M-stable model of Pra U D U Uy which is mazimal wrt. <,
coincide.

6 Conclusion

By formalizing referential actions as logical rules and ex-
ploiting the power of declarative semantics, we have solved
the problem given in the introduction in a rigorous and com-
prehensive way. In [LMR96] we presented preliminary steps
towards a logical semantics of referential actions in SQL.
However, the complex case of modifications was not con-
sidered, and no abstract, SQL-independent semantics was
given.

Production rules have recently been reconsidered, since
they seem well-suited as a language for active rules. There-
fore, referential actions — which are specialized active rules —
can also be formalized by production rules, e.g. in the style of
[AV91, PV95]. However, by axiomatizing referential actions
as a logic program P and employing a declarative semantics,
the resulting set of updates can be “justified” and explained
in a more intuitive way using the rules of P. This is due to
the fact that declarative semantics like the well-founded or
stable semantics treat negative cyclic dependencies (which
occur from inherent interdependencies between requests and
blockings) in a more adequate way than production rule se-
mantics (see e.g. [Vial).

In contrast to the somewhat ad-hoc execution model of
referential actions in SQL [ISO94, Hor92, CPM96], which
simply aborts a transaction if a violation is detected, our
semantics also provides valuable information in that case,
i.e., if the given set of user requests is not executable: The
additional information about maximal admissible sets can
be used to explain the user why her updates are not admis-
sible, and allows to revise the desired update in such a way
that it is accepted by the system.

Acknowledgments. The first author would like to thank
JOACHIM REINERT for fruitful discussions, especially on the
peculiarities of triggers in SQL.

References

[AV91] S. Abiteboul and V. Vianu. Datalog Extensions for
Database Queries and Updates. Journal of Com-
puter and System Sciences, 43(1):62-124, 1991.

[CPM96] R. Cochrane, H. Pirahesh, and N. Mattos. In-
tegrating Triggers and Declarative Constraints in
SQL Database Sytems. In Proc. Intl. Conference
on Very Large Data Bases, pages 567-578, Mum-
bai (Bombay), India, 1996.

[Dat81] C. J. Date. Referential Integrity. In Proc. Intl.
Conference on Very Large Data Bases, pages 2-12,
Cannes, France, March 1981. IEEE Computer So-
ciety Press.

[Dix95] J. Dix. Semantics of Logic Programs: Their Intu-
itions and Formal Properties. In A. Fuhrmann and
H. Rott, editors, Logic, Action and Information. de
Gruyter, 1995.

[ELS96] T. Eiter, N. Leone, and D. Sacca. The Expressive
Power of Partial Models for Disjunctive Deductive
Databases. In D. Pedreschi and C. Zaniolo, editors,
Proc. Intl. Workshop on Logic in Databases (LID),
number 1154 in LNCS, pages 197-222, San Miniato,
Italy, 1996. Springer.

[Hor92] B. M. Horowitz. A Run-Time Execution Model for
Referential Integrity Maintenance. In Proc. Intl.

Conference on Data Engineering, pages 548-556,
1992.

[ISO92] ISO/IEC JTC1/SC21. Information Technology -
Database Languages — SQL2, July 1992. ANSI,
1430 Broadway, New York, NY 10018.

[ISO94] ISO/IEC JTC1/SC21/WG3. ISO/ANSI working
draft Database Languages — SQL3, August 1994.
J. Melton (Ed.), ANSI, 1430 Broadway, New York,
NY 10018.

[LML96] B. Lud&scher, W. May, and G. Lausen. Trig-
gers, Games, and Stable Models. Techni-
cal report, Institut fiir Informatik, Univer-
sitat Freiburg, 1996. http://www.informatik.uni-
freiburg.de/~ludaesch/Paper/tgsm.ps.gz.

[LMR96] B. Ludéscher, W. May, and J. Reinert. To-
wards a Logical Semantics for Referential Ac-
tions in SQL. In Proc. 6th Intl. Work-
shop on Foundations of Models and Languages
for Data and Objects: Integrity in Databases,
Dagstuhl, Germany, 1996. http://wwwiti.cs.uni-
magdeburg.de/ conrad/IDB96/Proceedings.html.

[Mar94] V. M. Markowitz. Safe Referential Integrity and
Null Constraint Structures in Relational Databases.
Information Systems, 19(4):359-378, 1994.

[PV95] P. Picouet and V. Vianu. Semantics and Ex-
pressiveness Issues in Active Databases. In Proc.
ACM Symposium on Principles of Database Sys-
tems, 1995.

[Rei96] J. Reinert. Ambiguity for Referential Integrity is
Undecidable. In G. Kuper and M. Wallace, edi-
tors, Constraint Databases and Applications, num-
ber 1034 in LNCS, pages 132-147. Springer, 1996.

[Via] V. Vianu. Rule-Based Languages. Annals of Math-
ematics and Artificial Intelligence. to appear.

A The Remainder of the Logical Formalization

We present the remaining rules needed to formalize a set of
rac’s RA as the logic program Pr4.

Auxiliary Relations. There are several auxiliary relations
which have to be maintained. They contain the following
information about referenced and referencable candidate key
values:

° is_ref’able_R.I?(i‘): the key value RI?(E) is referencable.

e rem_ref’able_R.K(Z): the key value R.K(Z) remains ref-
erencable.

e new_ref’able_R.K(Z): the key value R.K (Z) becomes ref-
erencable by some update.

e is_ref'd_Rp.K _by_Rc.F(%): in the current database, the
key value R.K(7) appears as foreign key value of F' in
some tuple R (7).

° rem_ref'd_Rp.K-by_Ro.ﬁ(ﬁ): there is a reference to the
key value RE (v) as foreign key value of F in some tuple
R¢ (Z) s.t. f[ﬁ] does not change.

o new_ref'd_Rp. K. by_Rc¢:. F(): areference to the key value
R.K (v) as foreign key F in some tuple R¢(Z) is intro-
duced by some update.

The rules for maintaining these additional relations are shown
in Table 4.

User Requests. The following rules have to be added to
the rules (EXT}) from Section 4:

pot.ins_R(X) + Dins_R(X) . B

ins_R(X) « Dins_R(X), - blkins_R(X) .
pot-mod_ R(X) + >mod_R(M, X). B
mod_R(M) + >mod_R(M, X), - blk_mod_R(M, X).

(EXTy)
For dealing with several user-requested modifications to the

same tuple, for every foreign or candidate key ff, the follow-
ing rules have to be added to EXT5:

pot-mod_ > ~»R.A(M, X)«pot_mod_1> ~R.A(M;, X),
pot_mod_> ~»R.A(M;, X),
M = M, U M> is consistent.

~mod_t> ~R.A(M,, X),
mod_ > ~R.A(M>, X),

M = M, U M> is consistent.
(EXT»)

mod_ 1> ~»R.A(M, X)

Modifications on Child Tuples. A modification of a foreign
key value Rc¢. F of a child tuple can be problematic due to a
ric Ro.F' — R'p.K’ only if the it is influenced by a propaga-
tion along another ric Rc. Fo Rp K (i.e. Ro Fo Rp. K
on mod parent propagate and Re¢.F and Ro.F overlap) or
by an external modification.

Thus, for a ric Re.F' — R'».K' on mod child restrict,
in those cases it is checked whether there is a referencable
tuple in the current database. If there is no such tuple,
then the modification is blocked, otherwise any modification
of the attributes Rp.K or deletion of this tuple is blocked
((MCR1) and (MCR5) in Table 5).

For Ro.F' — R/p.K' on mod child wait, the situation

is analogous, but now the database after execution of A is
checked (cf. (MCW)) and (MCW3)).

By considering only changes which are propagated along
another ric, the negative cycle of “propagation allowed if
result’s reference exists”, “result’s reference exists if parent
is modified”, and “parent is modified if propagation is al-
lowed” does not matter (i.e. on modify parent propagate has
priority over on modify child restrict).

Insertions. Since insertions on parent tuples are not criti-
cal, only insertions of child tuples have to be handled. This
is done analogously to (MCR) and (MCW) by (ICR) and
(ICW) (see Table 6).

Interaction. The changes of candidate and foreign key val-
ues are determined depending on the elementary modify
requests. Modifications can be founded either on external
requests or by propagating modifications from parent rela-
tions. For a given database schema, (CH) (see Table 7)
defines a set of rules for computing all possibilities how a
key can change.

Additionally, the interferences between blockings of changes
of overlapping keys must be considered: A change on the
intersection of two overlapping keys is allowed, if each key
can change agreeing with the value on the intersection. Fur-
thermore, a change of a key is forbidden, if its effect on
the intersection with another key is not allowed (ABC) (see
Table 7).

If a propagated modification would change a foreign key
in a forbidden way, the propagation of the modification is
forbidden (which by (M PP) further blocks the change of
the respective parent key) (BMC5) (see Table 7).

As blockings propagate upwards by rac’s of the form RF —

Rp.K on mod parent propagate, they finally cause a blocking
on their founding external requests (EXT5) (also see Table
7).

Coherence and Key-Preservation. The following rule pre-
vents requests which are directly incoherent:

blk_ins_R(X) + pot_ins_R(X), del_R(X) .
blk_del_R(X) + potdel_R(X), ins_R(X) . (©)
blk_-mod_R(M,X) +« D>mod_R(M,X), del_R(X) .
blk_del_R(X) +— pot_del_R(X), >mod_R(M,X) .

For every ric Ro.ﬁ — Rp.I?:

blk_del_R(X) « pot_del_R(X), mod_Rp.K~R.F(M,X) .
blk_mod_Rp.K~R.F(M,X) « (C)
pot_mod_Rp.K~R.F(M, X), del_R(X) .

Since propagated modifications are handled key-oriented as
foreign-key-modifications, it is sufficient to handle contra-
dicting modlﬁcatlons at thlS granularity: For every palr of
rac’s Rp, . K1 — R.F} on mod parent propagate and Rp2 K, >
R.F, on mod parent propagate s.t. R.Fy and R.F overlap,
overlapping but contradictory modifications are forbidden:

blk_mod_Rp, .K1~R.Fi (M, X) +
pot-mod_Rp,. I_(tl«/»R Fy(My, X), (©)
mod Rp2 QWR FQ(MQ,X),
My U M> inconsistent .

The uniqueness of a candidate key R.K is guaranteed by the
rules (K) (see Table 8).

For every candidate key K mentioned in some ric Ro.ﬁ — Rp.I?:

remains_R(X) +— R(X), ~del_.R(X), =3IM : mod_R(M, X) .
is_ref'able_Rp.K (V) Rp(X),V = X[K] .
rem_ref'able_Rp.K (V) (X),V = X[K], ~del.Rp(X),~3M : chg_Rp.K(M,X) (RA)

TT T

(
new_ref’able_Rp.K (V)
new_ref'able_Rp.K (V)

For every ric Ro.ﬁ — Rp.ff:

is_refd_Rp.K by Ro.F(V) « Ro(X), V =X[F]

rem_ref’d_Rp.I:(:_by_Ro.lE’:(I_/) < remains_R¢(X), V= X[F] . R
rem_ref'd_Rp.K by Ro.F(V) « Re(X), V = X[F], ~del_Rc(X), =3M : chg_Rc.F(M, X) . (RD)
new_ref’d_Rp.Ig_by_Rch':(V) + ins_Rc(X), V= {Z[ﬁ] . .

new_ref'd_Rp.K_by_Rc.F(V) ¢« Rc(X), chg_Re.F(M,X), M(X)[F] =V

Table 4: Rules for Maintaining Auxiliary Relations

For every ric Ro.F' = R}:.I?' and rac Ro.F — Rp.K on mod child restrict s.t. Ro.F #* Ro.F' or Rp.K #* R}:.K’" and Ro.F
and R¢.F" overlap:

blk_chg_Ro.F(M,X) <« potchg Rc.F(M,X), mod_Rp.K'~Rc.F'(M',X), M[FNF']=M[FnF,

~is.ref'able_Rp. K (M (X)[F]) .
.) ! R) - (MCRy)
blk chg_Rp.K(Mp,Y) « potchg Rp.K(Mp,Y), chg_.Ro.F(Mc,X), mod_Rp.K'~>Rc.F'(M', X),
M[F N F')=M'[FnF, M(X)[ﬁ]:f/[z?]

For every rac R¢.F — Rp.K on mod child restrict:

blk_chg_Rc.F(M,X) < potchg_Rc.F(M,X), mod_>~Ro.F(M',X), M' C M, —is_ref’able_Rp.K(M(X)[F]) .
blk-chg_Rp.K (Mp,Y) + potchg -Rp.K (Mp,Y), chg-Ro.F(M,X), mod->~Rc.F(M',X), M' C M, M(X)[F] =Y[K] .
blk_del_Rp(Y) « pot_del_Rp(Y), Ro(X), chg_Ro.F(Mc,X), M(X)[F] =Y[K] .
(MCR>)
For every ric Ro.F' — R}:.K’" and rac Ro.F — Rp.K on mod child wait s.t. Ro.F # Ro.F' or Rp.K # RI}).I_{-, and Ro.F
and Ro.F' overlap:

blk_chg Rc.F(M,X) « potchg Ro.F(M,X), mod_Rp.K'~»Re.F'(M', X), M[F 0 F'| = M'[FnF, (MOW1)
—rem_ref'able_Rp.K (M (X)[F']), - new_ref'able_ R}.K (M (X)[F']) .
For every rac Rc.F = Rp.K on mod child wait:
blk_chg_Rc.F(M,X) <« potchg Ro.F(M,X), mod_>~Rc.F(M',X), M' C M, (MCW?2)
—rem_ref'able_Rp. K (M (X)[F']), ~new_ref'able_Rp.K (M (X)[F']) .
Table 5: Rules for Handling Modifications
For every rac Rc¢.F — Rp.K on ins child restrict:
blk_ins_Rc (X) « pot.ins-Rc(C), —is-ref'able_Rp.K (X[F]) . (ICR)
blk.chg_Rp.K (M,Y) <+ pot_chg Rp.K(M,Y), ins_Rc(X) , X[F] = Y[K] .
blk_del_Rp(Y") + pot_del_Rp(Y), ins_.R¢(X), X[F] :1‘/[].
For every rac Rc.F — Rp.K on ins child wait:
blk_ins_Rc (X) + pot_ins_Rc(X), —rem_ref'able_Rp.K (X[F]), —new_ref'able_Rp.K (X[F]). (Icw)

Table 6: Rules for Handling Insertions

10

For a given foreign resp. candidate key R./f, let
My :={(R.K,R.F) | R.F - R.K on mod parent propagate € RA and F overlaps A} U {(>, R.A)}

be the set of referential dependencies along which modifications can be propagated which influence the value of A. Note that
the cardinality n of M ; only depends on the given database schema, but not on the size of the database. Moreover, we may

assume that the elements of M ; are numbered by ¢ = 1,...,n such that (Ri.ﬁi, RF’;) denotes the i-th element of My.
For every set of indices I C {1,...,n} there are rules

-

pot_chg_R.A(M, X) « (/\iapot_mod_Ri.I?iWR.ﬁi(Mi,)_() M;(X)[A] #

-

X[A]) » M =U,e, Mi .
1), (CH)
AMi(R)[A] £ R[A)), M = U, M

-

chg_R.A(M, X) - (/\iel mod_R;. Ki~R.F. (M, X), M;:(X)]
(Avetmps =3M; s mod_Ri K RFS (M,

X[
X)A

To illustrate this definition, the rules obtained when instantiating the schema for n = 2 (i.e., only one foreign key F overlaps
A) are given:

pot_chg R.A(M,X) +« =0. %I=10

pot_chg R.A(M,X) + pot mod_Ri.Ki~R.F(M:, X), Mi(X)[A] # X[A], M=M . %I={1}

pot_chg R.A(M,X) +« pot.mod_> ~>R. A(Mz, X), My(X)[A] # X[A], M = M> . % I ={2}

potchg R.A(M,X) « pot-mod_Ri.Ki~~R.F(My,X), Mi(X)[4] # X[4], % I={1,2}
[

pot_mod_ > ~»R.A(M,, X), My(X)[A] # X[A], M = M, UM, .

For every foreign key F and foreign or candidate key Ast. Fand A overlap:

allow_chg_R.FNA (M, X) + chg_R.F(M;,X), —blk_chg_R. F(Ml,X), M = M[F U A4],
chg_RF(Mz,X) ~ blk_chg R.F(M>,X), M = Mz[F U A] . (ABC)
blk_chg_R.F (M, X) + pot_chg_R.F(M,X), —allow_chg_R.FNA(M',X), M' = M[F U A]
For every rac R¢.F — Rp.K on mod parent propagate:
blk-mod_Rp.K~Rc.F (M, X) + pot_mod_Rp.K~»Rc.F(M,X),blkchg_Rc.F(M, X) . (BMO)

For every rac R¢.F — Rp.K on mod parent propagate:

blk-mod_Rc (M, X) + >mod_Rc (M, X), blk.mod_>~Rc.F(M', X), M' = M[F] .

_ i Dri-m (EXTs)
mod_Rc(M,X) + mod_Rp.K~Rc.F(M,X) .
Table 7: Rules for Dealing with Interfering Modifications
For every candidate key R.K:
blk_ins_R(X) +— potins_R(X), rem_ref'able_R.K (X[K]) .
blk_chg R.K(M,X) < chg.R.K(M,X), rem_ref'able_R.K (M (X)[K]) .
blk_ins_R(X) « pot_ins_R(X), ins_R(Y), X[K]=YI[K]. (K)
blk_ins_R(X) < pot.ins_R(X), chg R.K(M,Y),X[K] = M(Y)[K] .
blk chg R.K(M,Y) <+ potchg R.K(M,Y), ins. R(X), X[K]=M{Y)K].
blk_chg_R.K(M,X) < potchg-R.K(M,X), chg-R.K(M',Y), M(X)[K]=M'(Y)[K]

Table 8: Rules for Preserving Key Dependencies

11

