
Referential Actions as Logical Rules

Bertram Lud�ascher

Institut f�ur Informatik

Universit�at Freiburg

Germany

ludaesch�informatik�uni�freiburg�de

Wolfgang May�

Institut f�ur Informatik

Universit�at Freiburg

Germany

may�informatik�uni�freiburg�de

Georg Lausen

Institut f�ur Informatik

Universit�at Freiburg

Germany

lausen�informatik�uni�freiburg�de

Abstract

Referential actions are specialized triggers used to automati�
cally maintain referential integrity� While their local behav�
ior can be grasped easily� it is far from clear what the com�
bined e�ect of a set of referential actions� i�e�� their global
semantics should be� For example� di�erent execution or�
ders may lead to ambiguities in determining the �nal set
of updates to be applied� To resolve these problems� we
propose an abstract logical framework for rule�based main�
tenance of referential integrity	 First� we identify desirable
abstract properties like admissibility of updates which lead
to a non�constructive global semantics of referential actions�
We obtain a constructive de�nition by formalizing a set of
referential actions RA as logical rules� and show that the
declarative semantics of the resulting logic program PRA
captures the intended abstract semantics	 The well�founded
model of PRA yields a unique set of updates� which is a safe�
sceptical approximation of the set of all maximal admissi�
ble updates
 the third truth�value unde�ned is assigned to
all controversial updates� Finally� we show how to obtain a
characterization of all maximal admissible subsets of a given
set of updates using certain maximal stable models�

� Introduction

We study the following problem	 Given a relational database
D� a set of user�de�ned update requests U�� and a set of
referential actions RA� �nd those sets of updates � which
�i
 preserve referential integrity in the new database D�� �ii

are maximal wrt� U�� and �iii
 re�ect the intended meaning
of RA�

The problem is important both from a practical and
theoretical point of view	 Referential integrity constraints
�ric�s
 are a central concept of the relational database model
and frequently used in real world applications� Referential
actions �rac�s
 are specialized triggers used to automatically
maintain referential integrity �Dat���� While the local be�
havior of rac�s is quite intuitive and easy to understand�

�Supported by grant no� GRK �������	 of the Deutsche
Forschungsgemeinschaft�

c�ACM PODS
�	� Tucson� Arizona

it is far from clear what their global semantics should be�
In particular� di�erent execution orders of rac�s may lead
to di�erent outcomes� i�e� to ambiguities in determining the
above � and D��

Due to their practical importance� rac�s have been in�
cluded in the SQL� standard and SQL� proposal �ISO���
ISO���� However� the standards describe the meaning of
rac�s in a lengthy and procedural way� making it di�cult to
understand or predict their global behavior� The problem
of ambiguous global semantics is �solved� by �xing a rather
ad�hoc run�time execution model �Hor��� CPM���� In a dif�
ferent approach� �Mar��� presents safeness conditions which
aim at avoiding ambiguities at the schema level� However�
as shown in �Rei���� it is in general undecidable whether a
database schema with rac�s is ambiguous� Summarizing� the
problem is complex and� from a theoretical point of view�
has not been solved in a satisfactory way�

In contrast to previous work� we present an abstract log�
ical framework for rule�based maintenance of referential in�
tegrity	 After introducing a generic language for rac�s� we
identify general abstract properties which a set of updates
� wrt� a given set of rac�s RA may possess �Section �
�
These abstract properties give rise to a natural but non�
constructive global semantics� To obtain a constructive def�
inition� we associate with every set of rac�s RA a logic pro�
gram PRA �Section �
� and show that the declarative se�
mantics of PRA captures the abstract semantics �Section �
�
This solves the above�mentioned problem in a rigorous and
comprehensive way�
Our logical formalization has the following bene�ts	

� the local behavior of an individual rac ra � RA is pre�
cisely speci�ed� and can be understood by solely looking
at the corresponding rules Pra � PRA�

� the interaction between di�erent update requests is pre�
cisely de�ned by certain other rules�

� the global behavior is precisely speci�ed and understand�
able from the declarative semantics	

� the well�founded modelW of PRA yields a unique set
of updates �� which is a safe� sceptical approximation
of the set of all maximal admissible ��s �safe means
that applying � does not lead to violation of ric�s�
sceptical means that all controversial updates have
the truth�value unde�ned in W
�

� the maximal admissible ��s can be obtained as cer�
tain stable models of PRA�

�

� Preliminaries and Notation

A relation schema consists of a relation name R and a vector
of attributes �A�� � � � � An
� W�l�o�g� we identify attribute
names Ai of a relation R with the integers between � and

n� By �A � �i�� � � � � ik
 we denote a vector of k � n distinct

attributes �usually �A will be some key
�
Tuples of a relation R are denoted by �rst�order logic

atoms R� �X
 where R is an n�ary relation symbol� and �X �
X�� � � � � Xn is a vector of variables or constants from the
underlying domain� If we want to emphasize that such a
vector is ground� i�e�� comprises only constants� we write �x
instead of �X� The projection of tuples �X to an attribute

vector �A is denoted by �X� �A�� if e�g� �X � �a� b� c
� �A � ��� �
�

then �X � �A� � �a� c
�

Let R be a relation schema with attributes �A� A minimal
subset �K of �A whose values uniquely identify each tuple in
R is called a candidate key� In general� the database schema
speci�es which attribute vectors are keys� A candidate key

R� �K has to satisfy the following �rst�order sentence �key
�the key dependency for R� �K
 for every database instance
D	

� �X�� �X� � R� �X�
 �R� �X�
 � �X�� �K� � �X�� �K�

� �X�� �A� � �X�� �A�
 �
��key

A referential integrity constraint �ric
 is an expression of
the form

RC � �F � RP � �K �

where �F is a foreign key of the child relation RC � referencing

a candidate key �K of the parent relation RP � Clearly� the

arities of �F and �K have to coincide� Note that RC and RP

may be the same relation�

A ric RC � �F � RP � �K is satis�ed by a given database D�
if for every tuple �x in the child RC with foreign key values

�x��F �� there exists a tuple �y in RP with matching key value�

i�e�� �x��F � � �y� �K�� Thus� for a database instance D� a ric is
satis�ed if D j� �ric� where �ric is the �rst�order sentence

� �X � RC� �X
 � � �Y �RP � �Y
 � �X��F � � �Y � �K�

 � ��ric

A ric is violated by D if it is not satis�ed by D�
Update requests �updates
 to a relation R are represented

by auxiliary relations ins R� �X
� del R� �X
� andmod R�M� �X
�
Here� M is a list �a��v�� � � � � an�vn� of pairs prescribing that
attribute ai of R� �X
 should be set to the value vi� As
a more abstract notation� �a��v�� � � � � an�vn� is written as
�a�� � � � � an
��v�� � � � � vn
� For brevity� we sometimes write
mod R�a�d� b� c�e
 instead of mod R����d� ��e�� a� b� c
�

Using our list notation� two modi�cations can be merged
by simply appending both lists� provided the resulting list
assigns at most one value to every attribute�

The restriction of a modi�cation M to a key �K is denoted

by M � �K�
 the result of applying a modi�cation M to a tuple
�X is denoted byM� �X
� E�g� ifM � ���d� ��e�� �X � �a� b� c
�
then M ���� �
� � ���e�� and M� �X
 � �d� b� e
�

Finally� given a modi�cation mod RP �M� �X
 of a tuple

in RP � M
� � �F��M� �X
� �K�
 denotes a modi�cation which

replaces the values of the attributes �F �of some other re�
lation RC
 with the values of the tuple which results from

applying M to �X and then projecting on �K�

RP RC

ins del mod ins del mod
propagate ok � � � ok �
restrict ok � � � ok �
wait ok � � � ok �

ok� ric remains satis�ed
� � ric may be violated� rac applicable
�� ric may be violated� rac not applicable

Table �	 Operations and Possible Repairs

� Referential Actions

Rule�based approaches to referential integrity maintenance
are attractive since they describe how ric�s should be en�

forced using �local repairs�	 Given a ric RC � �F � RP � �K
and an update operation on RP or RC � a rac de�nes an
operation to be applied to RC resp� RP � We call this the
locality principle�

The updates insert� delete� and modify can be applied to
RP or RC � leading to six basic cases� It is easy to see from
the logical implication in ��ric
 above that insert RP and
delete RC cannot introduce a violation� while the other four
operations can� For these� there are in general three possible
actions �cf� Table �
	

� propagate� propagate �cascade
 the update from the par�
ent to the child�

� restrict� �i
 reject an update on the parent if there exists
a child referencing the parent in the current database
state� or �ii
 reject an update on the child if the ref�
erenced parent does not exist in the current database
state�

� wait� similar to restrict� but look at the database state
after �hypothetically
 applying all updates�

As can be seen from Table �� not all combinations are
meaningful	 e�g� it is perfectly reasonable to propagate �cas�
cade
 a modi�cation from the parent to the referencing child�
but not vice versa�

Syntax� Each rac consists of the ric which should be main�
tained� the triggering update on either the parent RP or the
child RC � and the �local repair�� We use the following no�
tation� which should be self�explanatory	

RC � �F � RP � �K on fdel j ins j modg fparent j childg
fpropagate j restrict j waitg

Referential Actions in SQL� In SQL� rac�s for a referential

integrity constraint RC � �F � RP � �K are speci�ed with the
de�nition of the child table	

fCREATE j ALTERg TABLE RC

	 	 	

FOREIGN KEY �F REFERENCES RP
�K

�ON UPDATE fCASCADE j RESTRICT j SET NULL j
SET DEFAULT j NO ACTIONg�

�ON DELETE fCASCADE j RESTRICT j SET NULL j
SET DEFAULT j NO ACTIONg�

	 	 	

The correspondence of SQL rac�s to the above�mentioned
strategies is roughly as follows	

�

CASCADE
 propagate� NO ACTION
 wait� and RESTRICT

 restrict� The operations insert into RC and update RC on
the child are evaluated in the current database state� and
immediately backed out if they would result in a violation�

Thus� for modi�cations on child tuples� the SQL behavior
is less �exible than our presented formalization� The actions
SET DEFAULT and SET NULL of SQL are also covered by our
approach� since these operations can be modeled as special
cases of modi�cations�

��� Ambiguities

Since rac�s only specify local behavior� there are several
types of ambiguities leading to potentially di�erent �nal
states� Given a database D� and a set of user requests U��
a set of rac�s RA is called ambiguous wrt� D and U�� if
there are di�erent �nal states D� �depending on the exe�
cution order of referential actions
� A database schema S
with rac�s RA is ambiguous� if RA is ambiguous wrt� some
database D over S� and some U�� As shown in �Rei��� it
is in general undecidable� whether a database schema with
referential actions is ambiguous�

The SQL standards �ISO��� ISO��� solve the problem
of ambiguity of rac�s by �xing a certain run�time execu�
tion model and a marking algorithm as described in �Hor���
CPM���� In case a set of updates causes referential prob�
lems� the transaction is simply aborted without giving fur�
ther information� e�g� which tuples or updates caused the
problems� Often� although not all requested updates can
be accomplished� it is still possible to execute some of them
while postponing the others� Thus� the information which
tuple or update really caused problems is valuable for prepar�
ing a revised request which realizes the intended changes and
is accepted by the system� In Section �� we show that these
ambiguities have a very natural and elegant representation
in our framework	 �controversial� updates are unde�ned in
the well�founded model
 the set of all maximal solutions is
characterized by certain stable models�

Example � �Diamond� Consider the database with rac�s
as depicted in Figure �� Solid arcs represent ric�s and point
from RC to RP � rac�s are denoted by dashed �propagate	
or double �restrict	 arcs� Let U� � fdel R��a
g be a user
request to delete the tuple R��a
� Depending on the order of
execution of rac�s� one of two di
erent �nal states may be
reached�

�� If execution follows the path R��R��R�� the tuple R��a� c

cannot be deleted� Since R��a� b� c
 references R��a� c
�
the rac for R� restricts the deletion of R��a� c
� This in
turn also blocks the deletion of R��a
� Consequently� the
user request del R��a
 is rejected� and the database state
remains unchanged� i�e� D� � D�

� If execution follows the path R��R��R�� the tuple R��a� b

and �as a consequence� R��a� b� c
 are requested for
deletion� Hence� the rac for R����� �
 � R����� �
 can
assume that R��a� b� c
 is deleted� thus no referencing tu�
ple exists in R�� Therefore� all deletions can be executed�
resulting in a new database state D� �� D�

We argue that the second execution order is preferable
to the �rst� since it accomplishes the desired user request
without violating referential integrity� Here� the ambiguity
arises since the restrict rac considers the current database
state� which makes the outcome dependent on the order of
execution�

R�

� � � �

a � � �
� � � � � �

R�

� � � � �

a b � � �
� � � � � � � � �

R�

� � � � �

a c � � �
� � � � � � � � �

R�

� �
 � � �

a b c � � �

� � � � � � � � � � � �

R����R���
on del parent propagate

R����R���
on del parent propagate

R����� ���R����� ��
on del parent propagate

R�����
��R����� ��
on del parent restrict

Figure �	 Database with Referential Actions

This type of ambiguity can be eliminated by specifying
that restrictions are always evaluated wrt� to the original
database state instead of the current one� However� the sit�
uation is more complex for rac�s of type wait which have to
look at the �nal database state� As it turns out� in the pres�
ence of modi�cations� there are in general several �equally
justi�ed� �nal states� each of which has to be considered	

Example � �Mutex� Consider modi�cations mod R�a�b

and mod R�a�c
� They are mutually exclusive� since they
cannot be executed simultaneously� In our logical formaliza�
tion� both will be unde�ned in the well�founded model� More�
over� there will be two stable models� each of which makes
one modify request true� and the other false�

The �nal type of ambiguity may arise due to �self�contra�
dictory� requests	

Example � �Self�Attack� Imagine a database with rac�s
such that mod R��a�b� a�c
 triggers both mod R��a�b
 and
mod R��a�c
� Then� mod R��a�b
 triggers mod R��a�b
�
and mod R��a�c
 triggers mod R��a�c
� Since executing the
original request mod R��a�b� a�c
 causes a con�ict at R�� it
cannot be executed� On the other hand� no other request is
in con�ict with it� so there is no independent justi�cation
not to execute it� Thus� the original request �attacks� itself�
In our formalization� there is no total stable model�

��� Abstract Semantics

Let RA be a set of rac�s� D a database instance� and U� a
set of update requests given by the user� For an arbitrary
set � of updates� we de�ne several abstract properties �
may have wrt� RA� D and U�� These allow to de�ne the
intended meaning of a set of rac�s in an abstract �and non�
constructive
 way� D� � D � � denotes the database ob�
tained by applying � to D� We con�ne ourselves to a semi�
formal de�nition
 technical details can be found in �LML����

De�nition � �Abstract Properties� A single update is
called founded �in n steps
 wrt� given RA� D� U�� and ��
if it can be justi�ed by the user requests and propagations�

� A deletion del R��x
 is founded in n steps� if there is
del R��x
 � U� or there is a deletion del Ri��xi
 � �

which is founded in � n steps� and a rac R��Fi � Ri� �Ki

on del parent propagate s�t� �x��Fi� � �xi� �Ki��

�

� A modi�cation mod R�M� �x
 is founded in n steps� if
there are modi�cations M�� � � � �Mk s�t� M �

S
i����kMi

�not necessarily disjoint	 and for every i� mod R�Mi� �x
 �
U�� or mod R�Mi� �x
 results from propagating a modi��
cation� i�e� there is a modi�cation mod Ri�M

�
i � �xi
 � �

which is founded in � n steps� and a rac R��Fi � Ri� �Ki

on mod parent propagate such that �xi� �Ki� �� M �
i��xi
� �Ki��

�x��Fi� � �xi� �Ki�� and Mi � �Fi��M
�
i��xi
� �Ki�
�

� An insertion ins R��x
 is founded if ins R��x
 � U��

Given RA� D� and U�� a set � of updates is called

� founded wrt� RA� D� and U� if every update del R��x
�
mod R�M� �x
� or ins R��x
 � � is founded wrt� RA� D�
U�� and ��

� complete wrt� RA and D if it is closed wrt� propagations�
i�e�� it satis�es the following conditions�

� if del RP ��y
 � �� RC��x
 � D� RC � �F � RP � �K on del

parent propagate � RA� and �x��F � � �y� �K� then del RC��x
 �
��
� if mod RP �M� �y
 � �� RC��x
 � D� RC � �F � RP � �K

on mod parent propagate � RA� �y� �K� �� M��y
� �K�� and

�x��F � � �y� �K� then there is a M � s�t� mod RC�M
�� �x
 � �

and M �
 �F��M��y
� �K�
�

� feasible if every rac of the form RC � �F � RP � �K on � � �
frestrict j waitg is �obeyed� by �� i�e�

� if RC � �F � RP � �K on del parent restrict is in RA and
for a tuple RP ��y
 there is a referencing child RC��x
 � D�
then RP ��y
 is not deleted by ��

� if RC � �F � RP � �K on del parent wait is in RA and
del RP ��x
 � �� then all children RC��y
 referencing RP ��x

are deleted or �modi�ed�away� by some updates in ��

� if RC � �F � RP � �K on ins child restrict is in RA and
ins RC��x
 � �� then a referencable parent RP ��y
 exists
in D and is neither deleted nor modi�ed�away by ��

� if RC � �F � RP � �K on ins child wait is in RA and
ins RC��x
 � �� then a referencable parent RP ��y
 exists
in the new database state D��

�similar for mod R�M� �x
	

� coherent if no contradicting updates are issued on the
same tuple� i�e� if upd � del R��x
 � �� then ins R��x
 ��
�� and there is no M s�t� mod R�M� �x
 � �� similar
for other updates upd� Note that if � is coherent� D� �
D �� is well�de�ned�

� key�preserving if in D� � D�� all key dependencies are
satis�ed�

� admissible if � is founded� complete� feasible� coherent�
and key�preserving�

These abstract properties are used to formalize our intended
semantics	

De�nition � �Maximal Admissible Sets	 Intended Se�
mantics� Let RA� D� and U� be given�

� The set of induced updates ��U
 of a set of user re�
quests U � U� is the least set � which contains U and
is complete�

� A set of user requests U � U� is admissible if ��U
 is
admissible� and maximal admissible if there is no other
admissible U �� s�t� U � U � � U��

� The intended semantics are the maximal admissible sub�
sets of U��

R 	 ��� �
 V 	 ��� �� � � �
 S 	 ��� �

T 	 ��� �� �� �� � � �

U 	 ��� �� � � �

Figure �	 Database Schema with Overlapping Keys

This semantics re�ects the intended behavior of the database
system� i�e�� it does neither �invent� nor �forget� updates
and guarantees referential integrity	

Theorem � �Adequacy�

�� If U � U�� then for every RA and D� ��U
 is founded
and complete�

� If a coherent � is complete and feasible� then D� � D�
��U
 satis�es all ric�s in RA�

Proof�

�� ��U
 is de�ned as the least complete set� It follows that
��U
 is founded�

�� Since � is complete� all updates propagated by RA are
contained in �� Feasibility of � guarantees that no
upd � � is restricted� and all rac�s which are maintained
by on � � � wait are satis�ed in D�� �

The abstract semantics speci�es the notions of maximal ad�
missible sets U and induced updates ��U
� but provides
no direct method how to compute them	 Given a set of n
user requests� there are �n subsets which may be admissible�
Moreover� even if it is known that U is admissible� comput�
ing ��U
 is not straightforward	 In contrast to deletions
which can be propagated in a �naive� way �LMR���� in the
presence of modi�cations� simultaneous updates have to be
taken into account� This can lead to an exponential number
of rules describing how modi�cations have to be propagated
�see �CH
 in Appendix A and Theorem � which describes
how ��U
 can be computed
�

Finally� considering the e�ect of rac�s in isolation as sug�
gested by the locality principle �Section �
 is not su�cient
if the admissible subsets of U� are unknown	

Example
 Consider the database schema depicted in Fig�
ure
� Among others there are rac�s of type on mod par�
ent propagate for the ric�s T���� �
 � R���� �
� T���� �
 �
S���� �
� U���� �
� T���� �
� and a rac T���� �
� V���� �
 on
mod child restrict�

a� Assume D contains R�a� b
� S�c� d
� T �a� b� c� d� � � �
�
U�b� c� � � �
� and V �a� d� � � �
� V �a�� d� � � �
� V �a� d�� � � �
� For
given mod R�a�a�� b�b�
 and mod S�c�c�� d�d�
� the rac�s trig�
ger mod T �a�a�� b�b�� c� d� � � �
 and mod T �a� b� c�c�� d�d�� � � �
�
Since these updates to T are coherent� they can be merged�
resulting in mod T �a�a�� b�b�� c�c�� d�d�� � � �
� which then trig�
gers mod U�b�b�� c�c�� � � �
�

On the other hand� the rac T���� �
 � V���� �
 on mod
child restrict restricts this modi�cation since there is no tu�
ple V �a�� d�� � � �
� So each of the updates is admissible� but
they are not admissible together� even though they do not
contradict each other directly�

�

b� Assume now� that the situation is the same as in
�a	� except that V � f�a� d� � � �
� �a�� d�� � � �
g� Then� neither
mod R�a�a�� b�b�
 nor mod S�c�c�� d�d�
 is admissible in iso�
lation� the triggered updates mod T �a�a�� b�b�� c� d� � � �
 resp�
mod T �a� b� c�c�� d�d�� � � �
 are both blocked since V contains
neither �a�� d� � � �
 nor �a� d�� � � �
� On the other hand� simul�
taneous execution of both updates is allowed� the triggered
updates are merged to mod T �a�a�� b�b�� c�c�� d�d�� � � �
 which
is allowed� This shows that the merge of modi�cations is an
important concept for dealing with simultaneous updates�

Note that in both cases� it is completely irrelevant� which
modi�cations are raised on the dotted parts of the tuples�

Example � illustrates some of the problems which may arise
due to overlapping foreign keys and candidate keys� and
gives a �rst impression of the inherent complexity of rule�
based referential integrity maintenance� We suspect that
these problems are the reason that commercial database sys�
tems do not �yet
 provide means to propagate modi�cations�

We argue that the propagation of updates should be
handled key�oriented and cannot be seen tuple�oriented or
attribute�oriented� since keys play the central role in the
concept of referential integrity� Our claim is supported by
the observations made in Example �a
	

An attribute�oriented approach would be too �ne	 Both
mod T �a�a�� b�b�� c� d� � � �
 and mod T �a� b� c�c�� d�d�� � � �
 are
allowed in isolation� but their combination is forbidden due
to the fact that the foreign key T���� �
 has to match the
parent key V���� �
�

On the other hand� a tuple�oriented view is too coarse
since then� the two updates mod T �a�a�� b�b�� c� d� � � �
 and
mod T �a� b� c�c�� d�d�� � � �
 would be merged into a single mod�
i�cation of T �a� b� c� d� � � �
� neglecting the fact that they can
also be carried out independently�

Furthermore� a key�oriented approach allows to model
the connection between modi�cations of parent keys and the
corresponding foreign keys in a very natural way� which is
not the case for an attribute�oriented or a tuple�oriented ap�
proach� In our framework� keys are regarded as the atomic
units to be considered for modi�cations� Not surprisingly�
parent keys� foreign keys� propagated modi�cations� refer�
ences� and overlapping keys play an important role in our
logical formalization�

� Logical Formalization

The meaning of a set RA of rac�s is formalized as a logic
program PRA� consisting of the sets Pra which specify the
local behavior of every rac ra� and a set of rules specifying
the meaning of interacting update requests�

Here� we only show some rules embodying the main ideas�
i�e�� the handling of deletions and some aspects of modi��
cations� The remaining rules for handling references� mod�
i�cations of child tuples� insertions� interferences between
updates� coherence� and key�preservation are listed in the
Appendix�

Recall that an update request upd can be any of ins R� �X
�
del R� �X
� mod R�M� �X
� U� is given as a set of facts of the
form �upd� For each update type upd� pot upd holds all po�
tential updates� i�e� those which are founded by RA and U��
blk upd � pot upd holds all blocked updates� i�e� those which
cannot be executed due to some interfering constraints�

User Requests� The handling of user requests incorporates
the selection of admissible update sets	 every user request

raises an update to the database if it is not blocked	

pot del R� �X
� �del R� �X
�
del R� �X
� �del R� �X
�� blk del R� �X
�

�EXT�

Analogous rules are used for ins R� �X
 and mod R�M� �X
�
Additionally� modi�cations are decomposed into their e�ects

on keys� For every candidate or foreign key R� �A	�

pot mod ��R� �A�M� �X
�
�mod R�M �� �X
� �X� �A� ��M �� �X
� �A�� M �M �� �A� �

mod ��R� �A�M� �X
�
�mod R�M �� �X
� �X� �A� ��M �� �X
� �A�� M �M �� �A� �
� blk mod R�M �� �X
 �

�EXT�

Deletions� Recall that we only need to consider rac�s of the

form RC � �F � RP � �K on del parent � � � �see Table �
� Logical
rules are generated for these rac�s as follows �cf� Table �
	

� on del parent propagate	 Deletions of parent tuples are
propagated downwards to every child tuple by rule �DP�
�
Additionally� blockings are propagated upwards	 if the
deletion of a child tuple is blocked� the deletion of the
parent tuple is also blocked �DP�
�

� on del parent restrict	 The deletion of a parent tuple is
blocked� if there is a referencing child tuple �DR
� Here�

is ref�d RP � �K by RC � �F ��v
 holds� if in D� the key value

RP � �K��v
 appears as foreign key value of �F in some tuple
RC��y
�

� on del parent wait	 The deletion of a parent tuple is
blocked� if there is a corresponding child tuple which
is neither requested for deletion nor modi�ed away �i�e��
modi�ed s�t� it references another parent
 �DW
�

rem ref�d RP � �K by RC � �F ��v
 speci�es that there is a ref�

erence to the key value RP � �K��v
 by some tuple RC��x

s�t� �x��F � does not change between D and D��

Modi�cations of Parent Tuples� The handling of modi��
cations follows the same principle as presented for deletions�
but since modi�cations are handled key�oriented� the details
are more involved �cf� Table �
�

In case of a partially modi�ed parent key� the referencing
foreign key in the child is regarded as atomic� i�e�� no other
update may change parts of it� Thus� with a modi�cation
the whole key value is propagated� even if not all parts of it
change� On the other hand� modi�cations on a tuple trigger
a rac only if the key referred to in the rac is actually changed�

Imagine a modi�cation mod RP �MP � �y
 and a rac RC � �F �

RP � �K on mod parent propagate s�t� the key value RP � �K of

RP ��y
 changes� denoted by chg RP � �K�MP � �y
� Then� for
every referencing child RC��x
� this modi�cation is raised for

the corresponding foreign key� i�e� MC � �F��MP ��y
� �K�
�

This is stored in mod RP � �K�RC � �F �MC � �x
�

� on mod parent propagate	 Changes of parent keys are
propagated downwards to foreign keys �MPP�
� If the
resulting modi�cation of the foreign key of some child
is blocked� the change of the parent key is also blocked
�MPP�
�

�As a mnemonic aid� we encode some hints on the meaning of
auxiliary relations into relation names� Therefore� relation names
may contain unusual characters like ���� ���� etc�

�

del RC� �X
� del RP � �Y
� RC� �X
� �X��F � � �Y � �K��

pot del RC� �X
� pot del RP � �Y
� RC� �X
� �X��F � � �Y � �K��
�DP�

blk del RP � �Y
� pot del RP � �Y
� blk del RC� �X
� �X��F � � �Y � �K� � �DP�

blk del RP � �Y
� pot del RP � �Y
� is ref�d RP � �K by RC � �F � �Y � �K�
 � �DR

blk del RP � �Y
� pot del RP � �Y
� rem ref�d RP � �K by RC � �F � �Y � �K�
 � �DW

Table �	 Local Rules for Deletions

� on mod parent restrict	 The change of the parent key

RP � �K is blocked� if there is a referencing child in the
original database D �MPR
�

� on mod parent wait	 The change of the parent key RP � �K
is blocked� if there is a referencing child which is neither
requested for deletion nor modi�ed away �MPW
�

� Declarative Semantics and Formal Results

In this section� we show how the well�founded model and
certain stable models of PRA are related to the abstract se�
mantics presented in Section ���� Note that PRA contains
non�strati�ed negation due to possible negative cyclic de�
pendencies between updates �see e�g� the rules �ABC
 in
Table
� In contrast� computing the set ��U
 of updates
induced by a given set of updates U can be accomplished
using a negation�free set of rules	

Let Ppot be the subset of EXT��EXT��DP��MPP��
CH consisting of all rules where the head is of the form
pot � � � � Ppot models the propagation of changes �but not
the propagation of blockings
� Note that Ppot is positive
and has a unique minimal model MPpot � Since EXT���
guarantee that all user requests are considered� and DP��
MPP�� and CH guarantee completeness wrt� deletions and
modi�cations� we have the following result	

Theorem � For every database D� and every set U� of ex�
ternal updates�

��U�
 � fupd j MPpot�D � U�
 j� pot updg �

The examples in Section ��� illustrate di�erent types of am�
biguities which can occur for a set of rac�s RA� These am�
biguities become apparent by the declarative semantics of
PRA	

Given the logical formalization PRA of a set of rac�s
RA� a database D� and a set of user requests U�� the well�
founded modelW�PRA� D� U�
 assigns truth�values true and
false to all uncontroversial update requests� i�e�� which are
true or false under any �well�behaved�� semantics of PRA�
The atoms which are unde�ned in W are controversial due
to some kind of ambiguity �cf� Section ���
	

Diamond� Consider Example � and the �diamond� in Fig�
ure �� Assume the rac R����� �
�R����� �
 on del parent
restrict is replaced by R����� �
�R����� �
 on del parent
wait� Then the rules of PRA de�ne that the deletion
of R��a
 is blocked �via R�!R�!R�
 if R��a� b� c
 cannot
be deleted� R��a� b� c
 can be deleted �via R�!R�!R�
 if
the deletion of R��a
 is not blocked� Hence there is a
negative cycle of the form

block� � exec� exec� � block�
thus� either setting all requests in the diamond to true
or to false will result in a stable model�

�Dix �Dix��� formally de�nes this notion using certain abstract
properties of semantics�

Mutex� For two mutually exclusive operations �cf� Exam�
ple �
� if one of them is rejected� the other can be ex�
ecuted	 Here� some requests which are unde�ned in W
can be set to false� resulting in other unde�ned requests
to be set to true such that eventually� a stable model is
obtained� This situation is analogous to the program	

block� � exec�� block� � exec��
exec� � � block�� exec� � � block��

Self�Attack� For a self�attacking request �cf� Example �
�
there is no other support for rejecting it than its �inter�
nal contradiction�� Therefore� neither assigning true nor
false to such a request will yield a stable model� This
situation corresponds to

exec� � block� block� exec�

where no total stable model exists�

Every ��valued model M�PRA� D� U�
 de�nes sets of up�
dates �M and user requests UM � U� which are true �t
�
false �f
 or unde�ned �u
 inM� Let upd be any of ins R��x
�
del R��x
� mod R�M� �x
� Then	

�t
M 	� fupd j M�upd
 � tg � and Ut

M 	� �t
M � U� �

�f

M� Uf

M� and �u
M� Uu

M are de�ned analogously�
The well�founded model W�PRA� D� U�
 provides a safe

and sceptical semantics which is computable in polynomial
time� Here� sceptical means that all controversial updates
are assigned the truth�value unde�ned�

By safe� we mean that updates which are true in W can
be executed without violating referential integrity� More
precisely� the set ��Ut

W
 of updates induced by Ut
W is ad�

missible and equal to �t
W
 submitting Ut

W results in the new
database D� � D ��t

W 	

Theorem � �Correctness� Well�Founded Semantics�
Let W be the well�founded model of PRA �D � U�� Then�

i	 �t
W is admissible�

ii	 �t
W � ��Ut

W
�

iii	 Ut
W is admissible�

Proof� �Sketch

i
 Foundedness� completeness� and feasibility are proven
using the rules of all rac�s ra � RA
 coherence and key�
preservation is guaranteed by the rules specifying the
interaction of updates�

ii
 �t
W � ��Ut

W
 follows from foundedness� �t
W
 ��Ut

W

from completeness�

iii
 follows from �i
� �ii
� and De�nition �� �

The relation between the well�founded model and maximal
admissible sets will be investigated in Theorem ��

The di�erent types of unde�ned update requests upd �
Uu
W can be characterized according to the di�erent types of

controversial atoms	

�

mod RP � �K�RC � �F �MC � �X
 � chg RP � �K�MP � �Y
� RC� �X
� �X��F � � �Y � �K�� MC � �F��MP � �Y
� �K�
 �

pot mod RP � �K�RC � �F �MC � �X
� pot chg RP � �K�MP � �Y
� RC� �X
� �X ��F � � �Y � �K�� MC � �F��MP � �Y
� �K�
 �
�MPP�

blk chg RP � �K�MP � �Y
� pot chg RP � �K�MP � �Y
� blk mod RP � �K�RC � �F �MC � �X
�
�X��F � � �Y � �K�� MC � �F��MP � �Y
� �K�
 �

�MPP�

blk chg RP � �K�MP � �Y
� pot chg RP � �K�MP � �Y
� is ref�d RP � �K by RC � �F � �Y � �K�
 � �MPR

blk chg RP � �K�MP � �Y
� pot chg RP � �K�MP � �Y
� rem ref�d RP � �K by RC � �F � �Y � �K�
 � �MPW

Table �	 Local Rules for Modi�cations

� upd � U for every maximal admissible U � U� ��dia�
mond�
� or

� there are maximal admissible sets U�U � � U� s�t� upd �
U and upd �� U � ��mutex�
� or

� upd �� U for any admissible U � U� ��self�attack�
�

For further investigation of these cases� we use stable mod�
els which provide a more detailed logical semantics for nor�
mal logic programs� Since self�attacking updates exclude
the possiblity of total stable models� we have to consider
P�stable �partial stable
 models	

De�nition � �P�	 M�Stable Models� �ELS��� Let I �
hIt� If i be a ��valued interpretation� The reduction P�I of a
ground instantiated logic program P is obtained by replacing
every negative literal in P by its truth�value wrt� I� Thus�
P�I is positive and has a unique minimal �wrt� the truth�
order f �t u �t t	 ��valued model MP�I �

I is a P�stable model� if MP�I � I� A P�stable model I
is M�stable �maximal stable	 if there is no P�stable model
J �� I such that Jt
 It and Jf
 If �

In contrast to the well�founded model which is the �most
sceptical� P�stable model� M�stable models are �more brave�
and handle mutually exclusive requests as expected
 in par�
ticular� all maximal admissible solutions are represented by
the set of P�stable models� This fact� and the generalization
of Theorem � is expressed by

Theorem
 �Correctness and Completeness� Stable
Semantics�

� For every P�stable model PS of PRA �D � U��

i	 �t
PS is admissible�

ii	 �t
PS � ��Ut

PS
�

iii	 Ut
PS is admissible�

� For every maximal admissible U � U�� there is an M�
stable model MS s�t� U � Ut

MS and ��U
 � �t
MS �

Proof� �Sketch
 The �rst part is proven analogously as in
the proof of Theorem �� The second part follows from the
de�nition of M�stable� �

Theorem � implies the following logical characterization
of admissible subsets of user requests	

Corollary � A set U� of user requests is admissible i

there is a P�stable model PS of PRA�D�U� s�t� U� � Ut

PS�
Then ��U�
 � �t

PS� and submitting U� results in the new
database D� � D ��t

PS�

The following theorem states that the well�founded model
represents the �least common denominator� of all maximal
solutions	

Theorem
 Every maximal admissible U � U� extends
Ut
W � and updates classi�ed as false by W�PRA� D� U�
 are

not contained in any admissible set�

i	 If U is maximal admissible� then Ut
W � U �

ii	 Uf

W � U� n U �

Proof� �Sketch

i
 By Theorem �� there is an M�stable model for every max�
imal admissible set� Since every M�stable model extends
the well�founded model� every upd � Ut

W is true in every
M�stable model�

ii
 Given an update upd � Uf

W � for every P�stable model

PS of PRA � D � U�� upd � Uf

PS since every P�stable
model extends the well�founded model� Together with
Theorem � this implies that upd is not contained in any
�maximal
 admissible set� �

M�stable models of PRA almost capture the notion of �op�
timal� �maximal admissible
 solutions� The only exception
is that in case of a �diamond� fblock � � exec� exec �
� blockg there are two M�stable models	

Example � Recall Example �� For U� � f�del R��a
g�
both
M� � fblk del R��a
� blk del �������
� pot del �������
�

rem ref�d R��� by R����a
�
rem ref�d R��� by R����a
�
rem ref�d R����� �
 by R����� �
�a� b
�
rem ref�d R����� �
 by R����� �
�a� c
� � � �g� and

M� � fdel R��a
�del R��a� b
� del R��a� c
� del R��a� b� c
�
pot del � � � �� � �
� � � �g

�where only the true atoms ofM� andM� are sketched	 are
total and M�stable�

However� executing an update should be preferred to
blocking it in order to capture the notion of maximal ad�
missibility� Therefore� we de�ne an ordering �a on P�stable
models which re�ects this �application�speci�c� preference�

PS� �a PS� 	� Ut
PS� � Ut

PS� �

Finally� our main result can be stated� The maximal stable
models wrt� �a represent exactly the maximal admissible
sets	

Theorem � �Maximality� The set of all maximal admis�
sible sets U � U�� and the set of all Ut

AS s�t� AS is an
M�stable model of PRA �D � U� which is maximal wrt� �a

coincide�

	 Conclusion

By formalizing referential actions as logical rules and ex�
ploiting the power of declarative semantics� we have solved
the problem given in the introduction in a rigorous and com�
prehensive way� In �LMR��� we presented preliminary steps
towards a logical semantics of referential actions in SQL�
However� the complex case of modi�cations was not con�
sidered� and no abstract� SQL�independent semantics was
given�

Production rules have recently been reconsidered� since
they seem well�suited as a language for active rules� There�
fore� referential actions ! which are specialized active rules !
can also be formalized by production rules� e�g� in the style of
�AV��� PV���� However� by axiomatizing referential actions
as a logic program P and employing a declarative semantics�
the resulting set of updates can be �justi�ed� and explained
in a more intuitive way using the rules of P � This is due to
the fact that declarative semantics like the well�founded or
stable semantics treat negative cyclic dependencies �which
occur from inherent interdependencies between requests and
blockings
 in a more adequate way than production rule se�
mantics �see e�g� �Via�
�

In contrast to the somewhat ad�hoc execution model of
referential actions in SQL �ISO��� Hor��� CPM���� which
simply aborts a transaction if a violation is detected� our
semantics also provides valuable information in that case�
i�e�� if the given set of user requests is not executable	 The
additional information about maximal admissible sets can
be used to explain the user why her updates are not admis�
sible� and allows to revise the desired update in such a way
that it is accepted by the system�

Acknowledgments� The �rst author would like to thank
Joachim Reinert for fruitful discussions� especially on the
peculiarities of triggers in SQL�

References

�AV��� S� Abiteboul and V� Vianu� Datalog Extensions for
Database Queries and Updates� Journal of Com�
puter and System Sciences� ����
	��!���� �����

�CPM��� R� Cochrane� H� Pirahesh� and N� Mattos� In�
tegrating Triggers and Declarative Constraints in
SQL Database Sytems� In Proc� Intl� Conference
on Very Large Data Bases� pages �� !� �� Mum�
bai �Bombay
� India� �����

�Dat��� C� J� Date� Referential Integrity� In Proc� Intl�
Conference on Very Large Data Bases� pages �!���
Cannes� France� March ����� IEEE Computer So�
ciety Press�

�Dix��� J� Dix� Semantics of Logic Programs	 Their Intu�
itions and Formal Properties� In A� Fuhrmann and
H� Rott� editors� Logic� Action and Information� de
Gruyter� �����

�ELS��� T� Eiter� N� Leone� and D� Sacc"a� The Expressive
Power of Partial Models for Disjunctive Deductive
Databases� In D� Pedreschi and C� Zaniolo� editors�
Proc� Intl� Workshop on Logic in Databases �LID	�
number ���� in LNCS� pages �� !���� San Miniato�
Italy� ����� Springer�

�Hor��� B� M� Horowitz� A Run�Time Execution Model for
Referential Integrity Maintenance� In Proc� Intl�

Conference on Data Engineering� pages ���!����
�����

�ISO��� ISO#IEC JTC�#SC��� Information Technology �
Database Languages ! SQL�� July ����� ANSI�
���$ Broadway� New York� NY �$$���

�ISO��� ISO#IEC JTC�#SC��#WG�� ISO#ANSI working
draft Database Languages ! SQL�� August �����
J� Melton �Ed�
� ANSI� ���$ Broadway� New York�
NY �$$���

�LML��� B� Lud�ascher� W� May� and G� Lausen� Trig�
gers� Games� and Stable Models� Techni�
cal report� Institut f�ur Informatik� Univer�
sit�at Freiburg� ����� http	##www�informatik�uni�
freiburg�de#%ludaesch#Paper#tgsm�ps�gz�

�LMR��� B� Lud�ascher� W� May� and J� Reinert� To�
wards a Logical Semantics for Referential Ac�
tions in SQL� In Proc� �th Intl� Work�
shop on Foundations of Models and Languages
for Data and Objects� Integrity in Databases�
Dagstuhl� Germany� ����� http	##wwwiti�cs�uni�
magdeburg�de#%conrad#IDB��#Proceedings�html�

�Mar��� V� M� Markowitz� Safe Referential Integrity and
Null Constraint Structures in Relational Databases�
Information Systems� ����
	���!� �� �����

�PV��� P� Picouet and V� Vianu� Semantics and Ex�
pressiveness Issues in Active Databases� In Proc�
ACM Symposium on Principles of Database Sys�
tems� �����

�Rei��� J� Reinert� Ambiguity for Referential Integrity is
Undecidable� In G� Kuper and M� Wallace� edi�
tors� Constraint Databases and Applications� num�
ber �$�� in LNCS� pages ���!�� � Springer� �����

�Via� V� Vianu� Rule�Based Languages� Annals of Math�
ematics and Arti�cial Intelligence� to appear�

�

A The Remainder of the Logical Formalization

We present the remaining rules needed to formalize a set of
rac�s RA as the logic program PRA�

Auxiliary Relations� There are several auxiliary relations
which have to be maintained� They contain the following
information about referenced and referencable candidate key
values	

� is ref�able R� �K��x
	 the key value R� �K��x
 is referencable�

� rem ref�able R� �K��x
	 the key value R� �K��x
 remains ref�
erencable�

� new ref�able R� �K��x
	 the key value R� �K��x
 becomes ref�
erencable by some update�

� is ref�d RP � �K by RC � �F ��v
	 in the current database� the

key value R� �K��v
 appears as foreign key value of �F in
some tuple RC��y
�

� rem ref�d RP � �K by RC � �F ��v
	 there is a reference to the

key value R� �K��v
 as foreign key value of �F in some tuple

RC��x
 s�t� �x��F � does not change�

� new ref�d RP � �K by RC � �F ��v
	 a reference to the key value

R� �K��v
 as foreign key �F in some tuple RC��x
 is intro�
duced by some update�

The rules for maintaining these additional relations are shown
in Table ��

User Requests� The following rules have to be added to
the rules �EXT�
 from Section �	

pot ins R� �X
 � �ins R� �X
 �
ins R� �X
 � �ins R� �X
�� blk ins R� �X
 �

pot mod R�M� �X
� �mod R�M� �X
�
mod R�M� �X
 � �mod R�M� �X
�� blk mod R�M� �X
�

�EXT�

For dealing with several user�requested modi�cations to the

same tuple� for every foreign or candidate key �A� the follow�
ing rules have to be added to EXT�	

pot mod ��R� �A�M� �X
�pot mod ��R� �A�M�� �X
�

pot mod ��R� �A�M�� �X
�
M �M� �M� is consistent�

mod ��R� �A�M� �X
 �mod ��R� �A�M�� �X
�

mod ��R� �A�M�� �X
�
M �M� �M� is consistent�

�EXT�

Modi�cations on Child Tuples� A modi�cation of a foreign

key value RC � �F
� of a child tuple can be problematic due to a

ric RC � �F
� � R�P � �K

� only if the it is in�uenced by a propaga�

tion along another ric RC � �F � RP � �K �i�e�� RC � �F � RP � �K

on mod parent propagate and RC � �F and RC � �F
� overlap
 or

by an external modi�cation�

Thus� for a ric RC � �F
� � R�P � �K

� on mod child restrict�
in those cases it is checked whether there is a referencable
tuple in the current database� If there is no such tuple�
then the modi�cation is blocked� otherwise any modi�cation

of the attributes RP � �K or deletion of this tuple is blocked
��MCR�
 and �MCR�
 in Table �
�

For RC � �F
� � R�P � �K

� on mod child wait� the situation
is analogous� but now the database after execution of � is
checked �cf� �MCW�
 and �MCW�

�

By considering only changes which are propagated along
another ric� the negative cycle of �propagation allowed if
result�s reference exists�� �result�s reference exists if parent
is modi�ed�� and �parent is modi�ed if propagation is al�
lowed� does not matter �i�e� on modify parent propagate has
priority over on modify child restrict
�

Insertions� Since insertions on parent tuples are not criti�
cal� only insertions of child tuples have to be handled� This
is done analogously to �MCR
 and �MCW
 by �ICR
 and
�ICW
 �see Table �
�

Interaction� The changes of candidate and foreign key val�
ues are determined depending on the elementary modify
requests� Modi�cations can be founded either on external
requests or by propagating modi�cations from parent rela�
tions� For a given database schema� �CH
 �see Table

de�nes a set of rules for computing all possibilities how a
key can change�
Additionally� the interferences between blockings of changes
of overlapping keys must be considered	 A change on the
intersection of two overlapping keys is allowed� if each key
can change agreeing with the value on the intersection� Fur�
thermore� a change of a key is forbidden� if its e�ect on
the intersection with another key is not allowed �ABC
 �see
Table
�
If a propagated modi�cation would change a foreign key
in a forbidden way� the propagation of the modi�cation is
forbidden �which by �MPP�
 further blocks the change of
the respective parent key
 �BMC�
 �see Table
�

As blockings propagate upwards by rac�s of the form R��F �
RP � �K on mod parent propagate� they �nally cause a blocking
on their founding external requests �EXT�
 �also see Table

�

Coherence and Key
Preservation� The following rule pre�
vents requests which are directly incoherent	

blk ins R� �X
 � pot ins R� �X
� del R� �X
 �
blk del R� �X
 � pot del R� �X
� ins R� �X
 �
blk mod R�M� �X
 � �mod R�M� �X
� del R� �X
 �
blk del R� �X
 � pot del R� �X
� �mod R�M� �X
 �

�C

For every ric RC � �F � RP � �K	

blk del R� �X
� pot del R� �X
� mod RP �K�R��F �M� �X
 �

blk mod RP �K�R��F �M� �X
�

pot mod RP �K�R��F �M� �X
� del R� �X
 �

�C

Since propagated modi�cations are handled key�oriented as
foreign�key�modi�cations� it is su�cient to handle contra�
dicting modi�cations at this granularity	 For every pair of

rac�s RP� � �K� � R��F� on mod parent propagate andRP� � �K� �

R��F� on mod parent propagate s�t� R��F� and R��F� overlap�
overlapping but contradictory modi�cations are forbidden	

blk mod RP� � �K��R��F��M�� �X
�

pot mod RP� � �K��R��F��M�� �X
�

mod RP� � �K��R��F��M�� �X
�
M� �M� inconsistent �

�C

The uniqueness of a candidate key R� �K is guaranteed by the
rules �K
 �see Table �
�

�

For every candidate key �K mentioned in some ric RC � �F � RP � �K	

remains R� �X
 � R� �X
� � del R� �X
� ��M 	 mod R�M� �X
 �

is ref�able RP � �K� �V
 � RP � �X
� �V � �X� �K� �

rem ref�able RP � �K� �V
 � RP � �X
� �V � �X� �K� � � del RP � �X
���M 	 chg RP � �K�M� �X
 �

new ref�able RP � �K� �V
 � ins RP � �X
� �V � �X� �K� �

new ref�able RP � �K� �V
 � chg RP � �K�M� �X
� M� �X
� �K� � �V �

�RA

For every ric RC � �F � RP � �K	

is ref�d RP � �K by RC � �F � �V
 � RC� �X
� V � �X��F � �

rem ref�d RP � �K by RC � �F � �V
 � remains RC� �X
� V � �X ��F � �

rem ref�d RP � �K by RC � �F � �V
 � RC� �X
� V � �X��F �� � del RC� �X
� ��M 	 chg RC � �F �M� �X
 �

new ref�d RP � �K by RC � �F � �V
 � ins RC� �X
� �V � �X��F � �

new ref�d RP � �K by RC � �F � �V
 � RC� �X
� chg RC � �F �M� �X
� M� �X
��F � � �V �

�RD

Table �	 Rules for Maintaining Auxiliary Relations

For every ric RC � �F
� � R�P � �K

� and rac RC � �F � RP � �K on mod child restrict s�t� RC � �F �� RC � �F
� or RP � �K �� R�P � �K

� and RC � �F

and RC � �F
� overlap	

blk chg RC � �F �M� �X
 � pot chg RC � �F �M� �X
� mod R�P � �K
�
�RC � �F

��M �� �X
� M ��F � �F �� �M ���F � �F ���

� is ref�able RP � �K�M� �X
��F �
 �

blk chg RP � �K�MP � �Y
 � pot chg RP � �K�MP � �Y
� chg RC � �F �MC � �X
� mod R�P � �K
�
�RC � �F

��M �� �X
�

M ��F � �F �� �M ���F � �F ��� M� �X
��F � � �Y � �K� �

�MCR�

For every rac RC � �F � RP � �K on mod child restrict	

blk chg RC � �F �M� �X
 � pot chg RC � �F �M� �X
� mod ��RC � �F �M �� �X
� M � �M� � is ref�able RP � �K�M� �X
��F �
 �

blk chg RP � �K�MP � �Y
� pot chg RP � �K�MP � �Y
� chg RC � �F �M� �X
� mod ��RC � �F �M �� �X
� M � �M� M� �X
��F � � �Y � �K� �

blk del RP � �Y
 � pot del RP � �Y
� RC� �X
� chg RC � �F �MC � �X
� M� �X
��F � � �Y � �K� �
�MCR�

For every ric RC � �F
� � R�P � �K

� and rac RC � �F � RP � �K on mod child wait s�t� RC � �F �� RC � �F
� or RP � �K �� R�P � �K

� and RC � �F

and RC � �F
� overlap	

blk chg RC � �F �M� �X
 � pot chg RC � �F �M� �X
� mod R�P � �K
�
�RC � �F

��M �� �X
� M ��F � �F �� �M ���F � �F ���

� rem ref�able R�P � �K�M� �X
��F ��
� � new ref�able R�P � �K�M� �X
��F ��
 �
�MCW�

For every rac RC � �F � RP � �K on mod child wait	

blk chg RC � �F �M� �X
 � pot chg RC � �F �M� �X
� mod ��RC � �F �M �� �X
� M � �M�

� rem ref�able R�P � �K�M� �X
��F ��
� � new ref�able R�P � �K�M� �X
��F ��
 �
�MCW�

Table �	 Rules for Handling Modi�cations

For every rac RC � �F � RP � �K on ins child restrict	

blk ins RC� �X
 � pot ins RC� �C
� � is ref�able RP � �K� �X��F �
 �

blk chg RP � �K�M� �Y
 � pot chg RP � �K�M� �Y
� ins RC� �X
 � �X ��F � � �Y � �K� �

blk del RP � �Y
 � pot del RP � �Y
� ins RC� �X
� �X��F � � �Y � �K� �

�ICR

For every rac RC � �F � RP � �K on ins child wait	

blk ins RC� �X
� pot ins RC� �X
� � rem ref�able RP � �K� �X��F �
� � new ref�able RP � �K� �X��F �
 � �ICW

Table �	 Rules for Handling Insertions

�$

For a given foreign resp� candidate key R� �A� let

M �A 	� f�R�� �K�R� �F
 j R��F � R�� �K on mod parent propagate � RA and �F overlaps �Ag � f��� R� �A
g

be the set of referential dependencies along which modi�cations can be propagated which in�uence the value of �A� Note that
the cardinality n of M �A only depends on the given database schema� but not on the size of the database� Moreover� we may

assume that the elements of M �A are numbered by i � �� � � � � n such that �Ri� �Ki� R� �Fi
 denotes the i�th element of M �A�
For every set of indices I � f�� � � � � ng there are rules

pot chg R� �A�M� �X
 �
�V

i�I pot mod Ri� �Ki�R��Fi�Mi� �X
� Mi� �X
� �A� �� �X� �A�
�
� M �

S
i�I Mi �

chg R� �A�M� �X
 �
�V

i�I mod Ri� �Ki�R��Fi�Mi� �X
� Mi� �X
� �A� �� �X� �A�
�
��V

i�f������ngnI ��Mi 	 mod Ri� �Ki�R��Fi�Mi� �X
 �Mi� �X
� �A� �� �X� �A�
�
� M �

S
i�I Mi �

�CH

To illustrate this de�nition� the rules obtained when instantiating the schema for n � � �i�e�� only one foreign key �F overlaps
�A
 are given	

pot chg R� �A�M� �X
 � M � � � & I � �

pot chg R� �A�M� �X
 � pot mod R�� �K��R��F �M�� �X
� M�� �X
� �A� �� �X� �A�� M �M� � & I � f�g

pot chg R� �A�M� �X
 � pot mod ��R� �A�M�� �X
� M�� �X
� �A� �� �X� �A�� M �M� � & I � f�g

pot chg R� �A�M� �X
 � pot mod R�� �K��R��F �M�� �X
� M�� �X
� �A� �� �X� �A�� & I � f�� �g

pot mod ��R� �A�M�� �X
� M�� �X
� �A� �� �X� �A�� M �M� �M� �

For every foreign key �F and foreign or candidate key �A s�t� �F and �A overlap	

allow chg R��F� �A �M� �X
� chg R��F �M�� �X
� � blk chg R��F �M�� �X
� M � M���F � �A��

chg R��F �M�� �X
� � blk chg R��F �M�� �X
� M � M���F � �A� �

blk chg R��F �M� �X
� pot chg R��F �M� �X
� � allow chg R��F� �A �M �� �X
� M � �M ��F � �A� �

�ABC

For every rac RC � �F � RP � �K on mod parent propagate	

blk mod RP � �K�RC � �F �M� �X
� pot mod RP � �K�RC � �F �M� �X
� blk chg RC � �F �M� �X
 � �BMC

For every rac RC � �F � RP � �K on mod parent propagate	

blk mod RC�M� �X
 � �mod RC�M� �X
� blk mod ��RC � �F �M �� �X
� M � �M ��F � �

mod RC�M� �X
 � mod RP � �K�RC � �F �M� �X
 �
�EXT�

Table 	 Rules for Dealing with Interfering Modi�cations

For every candidate key R� �K	

blk ins R� �X
 � pot ins R� �X
� rem ref�able R� �K� �X� �K�
 �

blk chg R� �K�M� �X
 � chg R� �K�M� �X
� rem ref�able R� �K�M� �X
� �K�
 �

blk ins R� �X
 � pot ins R� �X
� ins R� �Y
� �X� �K� � �Y � �K� �

blk ins R� �X
 � pot ins R� �X
� chg R� �K�M� �Y
� �X� �K� �M� �Y
� �K� �

blk chg R� �K�M� �Y
 � pot chg R� �K�M� �Y
� ins R� �X
� �X� �K� �M� �Y
� �K� �

blk chg R� �K�M� �X
 � pot chg R� �K�M� �X
� chg R� �K�M �� �Y
� M� �X
� �K� �M �� �Y
� �K� �

�K

Table �	 Rules for Preserving Key Dependencies

��

