
�rd International Workshop on Rules in Database Systems
�RIDS����� June �	
��� ����� Sk
ovde� Sweden�
Springer LNCS ����� pp� ��
���

Integrating Dynamic Aspects into Deductive

Object�Oriented Databases

Wolfgang May� Christian Schlepphorst�� Georg Lausen

Institut f�ur Informatik� Universit�at Freiburg� Germany
fmay�schlepph�lauseng�informatik�uni�freiburg�de

Abstract� We show how the dynamics of database systems can be mod�
eled by making states �rst�class citizens in an object�oriented deductive
database language� With states at the same time acting as objects� meth�
ods� or classes� several concepts of dynamic entities can be implemented�
allowing an intuitive� declarative modeling of the application domain�
Exploiting the natural strati�cation induced by the state sequence� the
approach also provides an implementable operational semantics�

The method is applicable to arbitrary object�oriented deductive database
languages which provide a su�ciently �exible syntax and semantics� Pro�
vided an implementation of the underlying database language� any spec�
i�cation in the presented framework is directly executable� thus unifying
speci�cation� implementation� and metalanguage for proving properties
of a system�

The concept is applied to F�Logic� Besides the declarative semantics
given by the rules of a State�F�Logic program� the use of F�Logic	s inher�
itance semantics for modeling states provides an e
ective operational se�
mantics exploiting the naturally given state�strati�cation� State�F�Logic
programs can be executed using the Florid implementation�

� Introduction

Rules in database systems appear twofold� Deductive rules are used to express
knowledge within states� and� orthogonally� active rules derive and express ac�
tions to be performed in transitions between states� In general� for modeling a
temporally changing application domain� a more or less explicit notion of state
is needed� Especially in deductive frameworks� integrating states explicitly into
a database language provides additional �exibility and clarity in modeling� also
supplying a model�theoretic base for reasoning about the database behavior�
From the theory de�ned by the program specifying and implementing the de�
ductive and dynamic behavior� correctness and liveness properties can be stated
and veri�ed using standard formal methods� such as temporal logics� Thus� for
example� work�ow systems can be de�ned� implemented� and validated from the
same given speci�cation�implementation�

In this paper� we present an abstract concept for modeling dynamic behavior
by integrating explicit states into deductive� object�oriented frameworks� State

� Supported by grant no� GRK ��
����� of the Deutsche Forschungsgemeinschaft�
�� Supported by the Deutsche Forschungsgemeinschaft� La ��������

� Integrating Dynamic Aspects into Deductive Object�Oriented Databases

changes can be re�ected by dynamic objects� dynamic methods� or dynamic
classes� allowing an intuitive modeling of the application domain�

The concept is applied to F�Logic 	KLW
��� which by providing the required
semantic and syntactic �exibility allows for a comprehensive treatment of state�
changes and updates in databases� Providing as well a model�theoretic� declara�
tive semantics as an operational semantics which is implemented by the Florid
system� State�F�Logic acts at the same time as speci�cation language� imple�
mentation language� and metalanguage for proving properties of a system�

The paper is structured as follows� the introduction is completed with a
review of related work� In Section
� the roles of states in an object�oriented
model are investigated� In Section �� semantical aspects of state changes are
analyzed� leading to a classi�cation of rules wrt� their temporal scope and a class
of programs suitable for speci�cation and implementation of database systems�
In Section �� the approach is instantiated for F�Logic� Section � illustrates the
concept and its application by examples� Section � closes with some concluding
remarks�

Related Work� The temporal� dynamic aspect of databases can be regarded
as orthogonal to the static� data�oriented aspect� A single�state framework can
be transferred into a multi�state framework by versioning �e�g� 	TCG�
���� i�e�
attaching an additional dimension by duplicating and indexing the single�state
framework� Versioning can be employed with di�erent granularity� e�g� the whole
database� relations� objects� etc� In relational database languages� explicit states
are introduced via rei�cation� i�e�� by adding an additional argument to each re�
lation� corresponding to versioning of relations� Following this way� in 	BCW
��
�Datalog�S� and 	Zan
�� �XY�Datalog�� Datalog has been extended to explicit
states� Templog 	AM�
� is another extension of Datalog� using temporal logic op�
erators� Datalog�S� XY�Datalog� and Templog have been proven to be equivalent�
A similar concept with explicit states in Datalog� Statelog� has been presented
in 	LML
��� There� every atom R��x� is augmented by a state term S to 	S�R��x��
Thus� Statelog amounts to versioning the whole database� Since complex state
terms are allowed� Statelog is not bound to linear time� but also allows branch�
ing or hierarchical state spaces� Versioning in object�oriented databases is dealt
with in 	CJ
��� There� the granularity of versioning is by objects� each database
version consists of a version of each object stored in the system� Updates and
versioning of objects in F�Logic has been presented in 	KLS

�� There� updates
are restricted to the form ins� mod� and del of method applications� Transaction
Logic 	BK
�� is a deductive language focussing on the dynamic acspects of pro�
cesses� supporting an abstract notion of states as theories� In 	FWP
��� an active
rule language is incorporated into an object�oriented deductive database concept
by introducing explicit states into the sublanguages concerned with events� con�
ditions� and actions� Summarizing� in these approaches� the temporal aspect is
not actually integrated into the modeling�

Notation� Object�oriented models can be represented by three types of atoms�
i�e� method applications� class membership� and the subclass relation� In order to
obtain a uniform notation� we will use F�Logic syntax �cf� Section �� throughout

Integrating Dynamic Aspects into Deductive Object�Oriented Databases �

this paper� o�m�v� denotes that application of method m to object o results
in the value v� Parameterized methods are written as o�m��x��� � � �xn��v�� Fur�
thermore� o	c denotes that o is a member of class c� and c		d denotes that c is a
subclass of d� We will use capital letters for variables�

� The Roles of States in an Object�Oriented Model

As mentioned in the previous paragraph� every object�oriented structure can be
encoded into a relational schema� using atoms meth appl�o�m�v�� isa�o�c�� and
subcl�c�d�� In this modeling� states can be introduced in the same way as in
relational systems� via rei�cation�versioning� i�e� augmenting every relation by
an additional argument� denoting the state� Beyond the fact that the relational
encoding impairs the intuitive modeling capabilities provided by the object�
oriented paradigm� with this approach� states are not really integrated as �rst�
order citizens into the modeling�

In an object�oriented modeling� providing a rich variety of concepts to cover
di�erent roles� such as objects� class hierarchy� and methods� there are several
possibilities how states can interfere with entities of the application domain�
Moreover� for every entity� it can be chosen individually how to model this inter�
ference� An important point when modeling large systems is that in every state
transition� only some objects� classes� and methods will be a�ected� To take care
of this� abstract objects� the �objects� of the application domain �e�g� the persons
x� y�� are distinguished from object instances which represent x and y at certain
time point�s�� Thus� if in state s� x is married to y� e�g� in x�married��s��y�� x
and y refer to the abstract objects� whereas� detailed state�dependent informa�
tion about x in state s is provided by the instance of x in state s� The same
applies to classes�

States as objects � If the focus is on the computation se�
quence represented by a speci�cation� it is preferable to
regard states s as objects� Abstract objects o act on them
as methods� addressing the instance i corresponding to
object o in this state� Then� state changing is simply mod�
eled by changing the interpretation of methods from state
to state�

s�

s�

i�

i�

i�

o�
o�

o�

o�

Dynamic objects � Objects changing their behavior only
from time to time can be modeled by the concept of dy�
namic objects� i�e�� for an abstract object o� a state s is
a method� giving the instance of o corresponding to state
s� In this case� the result of applying some method m
to an object o in state s is derived as the result of the
application of m to the corresponding instance�

o�

o�

i�

i�

i�

s�

s�
s�

s�

 Integrating Dynamic Aspects into Deductive Object�Oriented Databases

Dynamic classes � Dynamic classes are closely related with
dynamic objects since classes and objects can be seen
as two roles of the same entities �cf� F�Logic�� For an
abstract class c� a state s is a method� giving the instance
of the class cs in this state� Dynamic classes are suitable
if over a computation� classes change their extension or
some �default� properties inherited to all their members�

c

c� �
fo�� o�g

c� �
fo�� o�g

s�
s�

s�

If an object instance i is a member of class c in state s� i � cs s�t� c	s�cs�� it
inherits some properties from the instance of the class in this state �in general�
these are dynamic methods� cf� Example ���

Dynamic methods � If for some object� only parts of its
behavior are changing� those can be modeled by dynamic
methods �cf� Example ��� For an object o� a state s is
an additional argument of a method m� o	m��s�� X ��
giving the value of the method in this state� The concept
of dynamic methods is in some sense complementary to
dynamic objects�

o 	m��x�
m���s���y�
m���s���y�
m���s���z �

States as classes � A state can be regarded as a class� being able to have other
states as subclasses and�or members� s� �� s resp� s� � s and to inherit properties
to them�
A dynamic EDB entity is an instance whose behavior in some state is derived
from its behavior in the predecessor state� i�e�� by frame rules� whereas the be�
havior of a dynamic IDB entity is derived from the behavior of other entities in
the same state�

For providing this semantical �exibility when choosing an optimal way for
modeling changing properties� the object�oriented facet of the framework to be
used must allow entities to act simultaneously as objects� classes� and methods�
Additionally� the deductive facet should also support this �exibility by allowing
variables to occur at arbitrary positions of rules� standing for arbitrary entities�

Especially� �states as objects�� �dynamic objects�� and �dynamic classes�
require variables to appear at method positions� In �states as objects�� the ob�
jects are methods to states� thus� variables at object positions become variables
at method positions� In �dynamic objects� and �dynamic classes�� states appear
as methods� thus state variables appear as variables at method positions� Both
approaches also require object creation� anonymous objects� and anonymous
classes�

�Dynamic methods� corresponds directly to rei�cation in relational frame�
works� but must be complemented by one of the other approaches to cover also
a state�dependent class�membership and class hierarchy�

� States and Rules

For the abstract treatment� assume a deductive� object�oriented framework�
called X� providing the facilities mentioned in the previous section� X de�nes
the syntactic notions of terms� atoms� literals� rules� and programs �recall that
a logical rule is of the form h � b where h is an X�atom� and b is a conjunction

Integrating Dynamic Aspects into Deductive Object�Oriented Databases �

of X�literals�� and the semantic notions of an X�structure and a truth relation
j� between X�structures and X�formulas� As usual� for an X�structure I and a
ground instance of an X�rule r �� h � b� I j� r i� I j� b � h� and I is a
model of an X�program P i� I j� r for all ground instances of rules r of P � Let
D�P � denote X�s notion of declarative semantics� assigning an X�structure to
every X�program P �for instance� if X is �rst�order logic� DFO�P � could be the
well�founded model of P ��

De�nition � �State�X�Structure� A State�X�structure I is an X�structure
where the universe U � U

� �� S consists of a classical universe U� and a distin�
guished universe S� the state space� �

For modeling database behavior� some acyclic ordering on the state space S
is required� In this paper� we assume S � �IN� ��� In general� arbitrary state
spaces can be modeled� for instance branching models� hierarchical models �as
presented for Statelog in 	LML
���� or even a possible�worlds semantics can
be speci�ed� For states� the notions of �next� state�s�� �earlier�� and �later��
expressed by atoms S � T or S � T�n �occurring in the bodies of rules� play
an important role�

De�nition � For a linear state space S� a state s � S� and a State�X�structure
I with a universe U� � S� the part which is known in state s� denoted by Ij�s is
obtained by restricting I to the universe U� � fs� � S j s� � sg� �

Given an X�program P � the database evolution is determined by an initial
database D and a sequence E�� E�� � � �� where each Ei is the set of events occur�
ring in state i� leading to the transition to state i� � For simplicity� assume a
mapping which maps every set Ei to a E�

i of ground X�atoms� representing the
events in state i�

Example � For instance� an event move x to y occurring in state s is encoded
as x�moveTo��s��y�� �

De�nition 	 A State�X�structure is a model of P � D� and E�� E�� � � � � En �as
above� if X j� P � D � E�

� � � � � � E�
n� The declarative semantics of a State�X�

program P wrt� D and E�� � � � � En as above is de�ned as D�P � D � E�
� � � � � �

E�
n�� �

When describing database evolution by a State�X�program� a model I is
generated by successively computing its restrictions Ij��� Ij��� � � � � To ensure
a proper sequence� if some state is reached� no atoms must be derived which
contribute to the interpretation relevant to a previous state� Also� as long as
there are no events in a state s� no facts about state s� are derived�

De�nition
 A State�X�program P is incremental if for every D� E�� � � � � En

as above� with I �� D�P � D � E�
� � � � � � E�

n�� for every s � IN� the following
holds�

I�s�� � D�P � I�s � E�
s� � �

� Integrating Dynamic Aspects into Deductive Object�Oriented Databases

Obviously� incremental programs do not only give a declarative speci�cation�
but provided an implementation of D� can also serve as an implementation of the
database system� In the sequel� a su!cient syntactical criterion for an X�program
to be incremental is developed based on considering state terms � Presume that
in every rule� every term s denoting a state also occurs in an atom s�state in the
body�� Then� s is called a state term�

De�nition � A state�ground instance of an X�rule is obtained by replacing all
state variables of the rule by some elements of S �e�g� natural numbers�� A state
ground instance can be given as an assignment � �� fs��n�� � � � � sk�nkg of ele�
ments of S to state terms�
A state�ground model of an X�rule is a state�ground instance such that all ele�
ments of S which are replaced for state terms satisfy the requirements imposed
by the rule for states�natural numbers� �

Example � For a rule h�t�� � � � � s	state� t	 state� t�s� � � � � every �� �s� t�� IN�

is a state�ground instance� but only those �� �s� t�� f�n�m� � IN� j m � ng are
state�ground models� �

State�X�rules can be classi�ed wrt� their temporal scope �cf� 	LML
����

De�nition � �Rule Types for Linear State Spaces�
A State�X rule r
 h � b is

� global if there occurs no state term in it�
� local if there is at least one state term S occurring in h� and for every

state�ground model � of h � b� for all state terms Si� Sj occurring in r�
��Si� � ��Sj��

� progressive if for every state�ground model � of h � b� there is a state term
S occurring in h s�t� ��S� � ��Ti� for all other state terms Ti occurring in
r�

� de�nite progressive if there is a state term S occurring in h such that for all
other state terms Ti occurring in r� there is a ki � IN s�t� for every state�
ground model � of h � b� ��S� � ��Ti��ki�
�strictly de�nite progressive� if each ki � � and S does not occur in the body
except in an atoms comparing S to other state terms��
For a de�nite progressive rule� its temporal scope is de�ned to be the maxi�
mum of the above ki�

� ��progressive if it is de�nite progressive with ki � for all i �analogous
strong ��progressive��

� collective if h contains no state term� but b contains one or more state terms�
� backwards a state�ground model � s�t� there is a state term S occurring in b
such that for every state term T occuring in h� ��T � � ��S��

Note� that local rules are also de�nite progressive rules with ki � � for all i� �

Since the above criteria refer only to elements of S� the above properties can
be decided without regarding any object�oriented features� solely by reasoning
about the set S and its partial ordering�

� or s�x for some subclass x of state

Integrating Dynamic Aspects into Deductive Object�Oriented Databases �

Example 	 The rules

O�T�M�X� � S�state� T�state� O�S�M�X�� T� S � 	� not O�change
�S�M�� ��
O�T�M�Q� � S�state� T�state� T� S � 	� O�change
�S�M��Q��

are �progressive� in every state�ground model� due to the literal T
 S � ��
��T � � ��S�� � These rules act as frame rules for methods of dynamic objects�
i�e�� objects o which have an individual instance o�s for every state s�
The rule

P�hasTalkedTo��X� � P�talksWith
�S��X�� S�state�

is collective� at the end of a work�ow� for every person P � the method hasTalkedTo
gives all persons� P has talked with� �

Obviously� for specifying database behavior reasonably� only global and progres�
sive rules make sense �a past database state cannot be changed�� Especially� the
EDB is computed by �progressive rules� and the IDB is computed by local rules�
Progressive rules with a scope � are used mainly for transaction de�nitions�
coupling modes etc�

Theorem � Every program P containing only progressive rules and not deriving

any facts about a state s� if there are no events in state s is incremental� �

Clearly� backward rules impair the temporal strati�cation �and also the in�
tuitive understanding of a running database system�� they do not �t into the
presented approach�

Note� that collective rules are problematic� For P�hasTalkedTo��X�� the an�
swer set is di�erent in every state s� although not directly visible from the rule�
On the other hand� for reasoning about database behavior� collective and global
rules can be quite useful� When modeling and reasoning about database be�
havior a distinguished set M of ground atoms represents the knowledge about

a process� Here� for instance� for every x� y of the active domain� the atom
y�hasTalkedTo��x� is inM �for example� if a work�ow should guarantee� that at
the end� every person has talked to every other person��

De�nition
 A State�X�program P is incremental modulo a set M of ground

atoms if for every D� E�� � � � � En as above� for I �� D�P � D � E�
� � � � � � E�

n��
for every s � IN� the following holds�

I�s��nM � �D�P � I�s � E�
s��nM

� �D�P � I�snM � E�
s��nM �

�

Theorem � Let P be a State�X�program containing only global� progressive� and

collective rules and M a set of ground atoms� Then� P is incremental modulo

M if M contains all ground atoms unifying with heads of collective rules and no

atom from M is used to derive any state�dependent information� �

This corresponds to the intuitive understanding� collective rules are not used
to derive data of the application domain� but to derive information about the
running process�

� Integrating Dynamic Aspects into Deductive Object�Oriented Databases

De�nition � For a State�X�program P which is incremental modulo a setM of
ground atoms representing knowledge� a database D� sets E�� E�� � � � of events�
and I �� D�P � D � E� � E� � � � ��� the operational semantics is de�ned as the
sequence I��nM� I��nM� � � � � �

Theorem 	 For a State�X�program P which is incremental modulo a set M of

ground atoms� the database in state s� can be computed from the database Ds

and a set of events Es as Ds�� � D�P � Ds � Es� � �

Now� after identifying a class of programs suitable for specifying and imple�
menting dynamic systems� the details of modeling an evolving system can be
considered�

In general� each state consists of several stages stage�� stage�� � � � � stagen�
for instance� computing the EDB� then computing the IDB� and then deriving
the actions to be performed in the transition to the successor state� With this�
the rules have to be associated to stages�

De�nition � For every rule r� a state term S occurring in r is a governing

state term if for every state�ground model of r� ��S� is maximal among the set
f��T � j T is a state term in rg� �

Note that for local or de�nite progressive rules� the head contains at least
one governing state term� Assume that for every local or progressive rule� at
least one governing state term S of the rule is associated to one of the stages
via S	stagei� The partitioning of rules into stages imposes a kind of application�
semantic strati�cation along the temporal axis which corresponds to the exe�
cution of a database system� each state represents one �or several successive�
�xpoint�s�� Since in general� local strati�cation is undecidable 	CB
��� for pro�
viding an evaluation and implementation for state�X�programs according to the
above ideas� some mechanism is needed which controls the application of rules
dependent on the instantiation of their state variables� their association to stages�
and the existence of events�

� Applying the Concept to F�Logic

F�Logic 	KLW
�� is a deductive� object�oriented database language� combining
the advantages of deductive databases with the rich modeling capabilities �ob�
jects� methods� class hierarchy� non�monotonic inheritance� signatures� of the
object�oriented data model� The syntax and semantics satis�es the requirements
stated in Section
 for exploiting the conceptual �exibility of states in an object�
oriented framework� For the full syntax and semantics in all details� the reader
is referred to 	KLW
�� FHKS
��� Here� only the features which are relevant for
handling explicite states are presented� The modeling directly exploits F�Logic�s
inheritance mechanism and dynamic class�membership� the other features " both
the rich built�in semantical concepts and the syntactical opportunities " make
an intuitive modeling of the application domain possible� which will show up in
the examples� F�Logic has been implemented in Florid �F�LOgic Reasoning In
Databases� 	FHK�
����

� available at http���www�informatik�uni�freiburg�de��dbis�flogic�project�html�

Integrating Dynamic Aspects into Deductive Object�Oriented Databases �

For a short glance� the syntax and semantics can be described as follows�

� The alphabet of an F�Logic language consists of a set F of object construc�
tors� playing the role of function symbols� a set V of variables� several auxil�
iary symbols� containing �� �� �� 	� �� ��� ��� ���� �� and the usual �rst�order
logic connectives� For convention� object constructors start with lowercase
letters whereas variables start with uppercase ones�

� id�terms are composed from object constructors and variables� Id�terms are
interpreted as elements of the universe�

In the sequel� let O� C� D� M � Qi� S� Si� ScM� and MvM stand for id�terms�
� A method application is an expression M��Q�� � � � � Qk��
� if M��Q�� � � � � Qk� is a method application and O an id�term� the path ex�

pression O��M��Q�� � � � � Qk��� denoting the object resulting from applying
M��Q�� � � � � Qk� to O� can occur instead of an id�term�

� An is�a assertion is an expression of the form O � C �object O is a member
of class C�� or C �� D �class C is a subclass of class D��

� The following are object atoms �
� O	ScM��Q�� � � � � Qk��S�� applying the scalar method ScM with argu�

ments Q�� � � � � Qk to O " as an object " results in S�
� O	ScM��Q�� � � � � Qk���S�� O " as a class " provides the inheritable scalar

method ScM to its members� which� if called with arguments Q�� � � � � Qk

results in S�
� O	MvM��Q�� � � � � Qk���fS�� � � � � Sng�� applying themultivalued method
MvM with arguments Q�� � � � � Qk to O results in some Si�

� O	MvM��Q�� � � � � Qk����fS�� � � � � Sng�� analogous for an inheritable mul�

tivalued method�
� Formulas are built from is�a assertions and object atoms by �rst�order logic
connectives and quanti�ers�

� An F�Logic rule is a logic rule h� b over F�Logic�s atoms� i�e� is�a assertions
and object atoms�

� An F�Logic program is a set of rules�

The syntax shows that in F�Logic� entities� described via id�terms� act at the
same time as classes� objects� and methods� Also� variables can occur at arbitrary
positions of formulas� Thus� states can be integrated into F�Logic as �rst�class
citizens like all other entities� and they can be replaced by state variables in all
positions�

�� Programming Explicit States in F�Logic

In F�Logic� the state�by�state evaluation can be enforced using its trigger mech�
anism which allows insertion of atoms into the database after a deductive �x�
point has been reached� Originally� this mechanism is used to implement non�
monotonic inheritance� Non�monotonic inheritance of a property from a class
to an object takes place if a� it is inheritable� and b� no other property can be
derived for the object� Thus� inheritance is done after pure deduction� �xpoint
computation and inheriting one fact at a time alternate until an outer �xpoint
is reached�

�� Integrating Dynamic Aspects into Deductive Object�Oriented Databases

This mechanism can be utilized to de�ne a sequence of deductive �xpoint
computations� Every �abstract� state passes through several stages until it is
computed completely� This is implemented using a distinguished class state�
having subclasses stage�� � � stagen� Every stage corresponds to a �xpoint com�
putation� When a stage is computed completely� a trigger inserts the facts which
create the next stage resp� state� This is implemented via inheritable methods�
de�ning suitable triggers�

The schema in Table gives the rules for handling a four�stage state concept
for an active database system� consisting of generating the EDB� calculating the
IDB� receiving users� requests� and �nally computing the changes to be executed
in the transition to the next state�

�A� inheritable methods� �B� the stage sequence�
stage	��state�ready edb��true�� S�stage
 � S�ready edb� ��
stage
��state�ready idb��true�� S�stage� � S�ready idb� ��
stage���state� S�stage� � S�stage�� S�ready user� ��
stage���state�ready changes��true�� T�stage	 � S�ready changes� �� T� S � 	�

��stage	� � the initialization

Table �� Basic Schema for Implementing States

Every fact in �A� " for instance stage�		state�ready edb��true� " de�nes an in�
heritable method of the subclass stagei� e�g� every member s of class stage� can in�
herit the property s�ready edb�true�� Since deduction precedes inheritance� only
when the computation of associated with stage is completed� s�ready edb�true�
is inherited which enables the rule S	stage
� S�ready edb� � �B� �� deriving that
s also becomes a member of stage
� and the next deductive �xpoint is com�
puted by the rules associated with stage
� After stage
 which computes the
IDB� stage
		state�ready idb��true� �A�
� and S	stage� � S�ready idb� � �B�
� de�
�ne the transition to stage �� Then� the user interaction takes place� �nished
by s�ready user� �� This leads to stage �� where the changes to be executed in
the transition to the next state are derived� Finally� s�ready changes�true� is
inherited by �A���� and the next state t � s� is founded by �B����

Example
 Together with the rules given in Table � the following program
maintains the invariant that in state s� the method r gives exactly the value s
if s � �� then� in state �� r returns no value� and the program stops� Here�
states are objects� providing an EDB�method r and IDB�methods p� del r and
ins r� representing the requested changes�

T�r��X� � S�r��X�� not S�del r��X�� T�stage	� T�S�	� � frame rules for r�
T�r��X� � S�ins r��X�� T�stage	� T�S�	�

S�q��X� � not S�r��X�� ��X�	�� S�stage
� � q is f�� � � � � �gn r�

S�del r��X� � S�r��X� q��Y�� Y�X�	� S�stage�� � derive changes�
S�ins r��X� � S�q��X� r��Y�� Y�X�	� S�stage��

S�ready user�true� � ��S�	�� S�stage�� � run for 	� states�

��r����� � initialization�

�

Integrating Dynamic Aspects into Deductive Object�Oriented Databases ��

� Applications and Examples

In this section� we show how di�erent situations can be modeled by di�erent
concepts of change�� Also� generic frame rules are given which model di�erent
kinds of dynamic entities as introduced in Section
�

��� Simple Updates to a Database

This example shows a scenario where State�F�Logic�s ability of modeling state
change by dynamic classes provides an elegant and intuitive speci�cation� It
reveals only a very simple active behavior by translating user requests into the
internal representation and creating an object�

Example � Imagine a tram net� consisting of stations and sections� For repairs�
some sections have to be closed for some time� For each day� the possible con�
nections are computed� Additionally� for each section� it has to be determined
whether it runs hourly or two�hourly at some day �as a default� at weekend
days� trams go only two�hourly�� But� for single sections �e�g� between the sta�
dium and the railway station on saturdays� it should be possible to deviate from
this default�

Here� dynamic classes are well�suited for modeling� each section is a static
object� the set of open sections is a dynamic EDB class� By implementing the
running frequency as an inheritable dynamic IDB method� the desired properties
can easily be modeled� For dynamic EDB classes� the generic frame rules read
as follows �insert�E�C�S� means to insert an object E in state S into a dynamic
class C� analogous for delete�E�C�S���

� Frame rules for dynamic classes�
E��C�T� � T�stage	� T � S � 	� C�edbclass� E��C�S�� not delete�E�C�S��
E��C�T� � T�stage	� T � S � 	� C�edbclass� insert�E�C�S��

The problem�speci�c part includes the speci�cation of weekdays� weekend days
�using multivalued methods�� and the frequency of running the sections for ev�
ery day� The frequency is implemented as an inheritable method of every class
sections�s� which is overwritten in case of the section �stadium� railwStat� on
saturdays� The computation of the re�exive transitive closure is implemented by
local rules�

� Problem speci�c rules�
sections�edbclass�
days�isWeekday��f��	�
����g��
days�isWeekend��f���g��
S�weekno�N� � N � S � �� S�stage
� � Here� a state acts as an object�
S�weekday�D� � D � S � N � �� S�weekno�N�� S�stage
�
sections�S�frequency
�S���hourly� � days�isWeekday��S�weekday�� S�stage
�
sections�S�frequency
�S���twohourly� � days�isWeekend��S�weekday�� S�stage
�
E�frequency
�S��hourly� �

E��sections�S��start�stadium� end�railwStat�� S�weekday���� S�stage
�

� The examples are available at
http���www�informatik�uni�freiburg�de��dbis�flsys�morexamples�html�

�� Integrating Dynamic Aspects into Deductive Object�Oriented Databases

� Compute re�exive transitive closure
�sections�S����connections�S� � S�stage
�
p�X�Y���connections�S��start�X� end�Y� �

E��sections�S��start�Y� end�X�� S�stage
�
p�X�Z���connections�S��start�X� end�Z� �

E��sections�S��start�X� end�Y�� P��connections�S��start�Y� end�Z�� S�stage
�

� Actions
delete�E�sections�S� � remove�X�Y�S�� E��sections�S��start�X�end�Y�� S�stage��
insert�e�X�Y��sections�S�� e�X�Y��sections�start�X�end�Y� � add�X�Y�S�� S�stage��

The program uses the rules given in Table for handling states which have to
be inserted here�
The following interactive requests construct a small database�

state �� add�cathedral�zoo���� add�castle�stadium����
add�stadium�railwStat���� ��ready user� ��

state 	� add�airport�railwStat�	�� 	�ready user� ��
state
� remove�castle�stadium�
��
�ready user� ��

The following query outputs for every state all open sections with start and end
point� and their frequency�

�� E��sections�S�� E�start�A� end�B� frequency
�S��F��

As long as T is a state and its EDB is not yet computed� the frame rules are
active� deriving T �s EDB� When a �xpoint is reached� a trigger �res� setting
T�ready edb to true� Then� the IDB is computed� giving the set of connections
and the frequencies� After this� the users give their update requests via add and
remove� When the user has completed his requests� modeled by T�ready user�
the change requests are processed� entering the next state� �

��� Active Databases and Integrity Maintenance

Active database behavior� which is often utilized e�g� for integrity maintenance�
can also be modeled in State�F�Logic� As in the �rst example� the user speci�
�es update requests interactively� but now� from these updates and the current
database state� the database system derives additional updates� Then� from both
the user�requested and the internally derived updates� the next database state
is computed�

Example � The scenario is as follows� modeling a part of a production planning
system� An enterprise produces several types of items� from small screws up to
automobiles� There are many compound products� consisting of several parts�
The user can change the composition of compound products� say� removing the
 ����� wheels from the parts needed to built some car� instead adding �����
wheels� On the other hand� the production of parts can be stopped or started�
Obviously� if the production of e�g� a ���screw is stopped� the production of all
compound products needing ���screws also stops�

Here� dynamic multivalued methods are the best way of modeling� Both
the production palette and the needs�part relation are represented by EDB�
multivalued�methods�

Integrating Dynamic Aspects into Deductive Object�Oriented Databases ��

� Frame rules for scalar methods�
O�M
�T��Q� � T�stage	� T � S � 	� apply�O�M��edbscalar�

O�M
�S��Q�� not O�change
�S�M�� ��
O�M
�T��Q� � T�stage	� T � S � 	� apply�O�M��edbscalar� O�change
�S�M��Q��

� Frame�rules for multi�valued methods�
O�M
�T���Q� � T�stage	� T � S � 	� apply�O�M��edbmultivalued�

O�M
�S���Q�� not delete�O�M�Q�S��
O�M
�T���Q� � T�stage	� T � S � 	� apply�O�M��edbmultivalued� insert�O�M�Q�S��

The example shows the �exibility of our approach to deal with di�erent kinds
of changes� Since the set of products is assumed to change frequently� is it im�
plemented as a multivalued method which changes with every state� thus it is
propagated by a frame rule� considering current updates� On the other side� as
the con�guration of a certain product changes from time to time� a con�guration
is modeled as an object� addressed by the dynamic scalar method hasCon�g of
the product� Thus� for a sequence of states where the con�guration does not
change� only hasCon�g has to be copied to the next state� If the con�guration is
changed� a new con�guration object is introduced� and hasCon�g is set to point
to it�

� Problem Speci�c rules�
� Semantic Types�
apply�pps�produces��edbmultivalued�
apply�P�hasCon�g��edbscalar � pps�produces
�S���P�� S�state�

� start or stop production of some part�
insert�pps�produces�P�S� � start�P�S�� S�stage��
delete�pps�produces�P�S� � stop�P�S�� S�stage��

� addTo and removeFrom� change Con�gurations�
change�O�S�hasCon�g� � addTo�O�P�S�� S�stage��
change�O�S�hasCon�g� � removeFrom�O�P�S�� S�stage��
O�change
�S�hasCon�g��newCon�g�O�T�� �

T� S � 	� change�O�S�hasCon�g�� S�stage��

� active behavior�
� if con�guration changes� create new con�guration object�
newCon�g�O�T��needsPart��P� � T� S � 	� change�O�S�hasCon�g��

O�hasCon�g
�S��needsPart��P�� not removeFrom�O�P�S�� S�stage��
newCon�g�O�T��needsPart��P� � T� S � 	� change�O�S�hasCon�g��

addTo�O�P�S�� S�stage��

� stop all products which need stopped parts�
stop�P�S� � P�hasCon�g
�S��needsPart��Q�� stop�Q�S�� S�stage��

An example database and an example action sequence could be the following�

pps�produces
�����fgolf�passat�motor	��motor	��wheel	���screwg��
golf�hasCon�g
����newCon�g�golf�����
passat�hasCon�g
����newCon�g�passat�����
motor	��hasCon�g
����newCon�g�motor	������
newCon�g�golf����needsPart��fmotor	��wheel	��g��
newCon�g�passat����needsPart��fmotor	��wheel	��g��
newCon�g�motor	�����needsPart��fscrewg��

�
 Integrating Dynamic Aspects into Deductive Object�Oriented Databases

removeFrom�passat�motor	����� addTo�passat�motor	�����
start�wheel	������ ��ready user� ��

stop�screw�	�� removeFrom�golf�wheel	���	��
addTo�golf�wheel	���	�� 	�ready user� ��

With the following queries� for every state� all items which are currently produced
and which parts they need are given�

�� pps�produces
�S���P��
�� P�hasCon�g
�S��needsPart��Q�� �

��	 Other Applications

In continuation of the above examples� the presented concept can be used for
process modeling as a speci�cation� implementation� and veri�cation language�
For instance� the Alternating�Bit�Protocol has been formulated as a transition
system by State�F�Logic rules�

In the above examples� changes are only determined from the current database
state� By using progressive rules with scope � � it is possible to specify and
enforce transactions and dynamic constraints�

Additionally� the proposed extension by states can be employed for evaluat�
ing single�state programs wrt� complex logical semantics� Similar to relational
databases and Datalog semantics� there is a hierarchy of di�erently expressive
semantics for deductive object�oriented programs� including a well�founded style
semantics� Analogous to well�founded Datalog semantics� it can be e�ectively
computed as an alternating �xpoint by using explicite states�

An interesting aspect is the combination with Transaction Logic 	BK
��� a
language dealing with transitions and transactions in a logic programming style�
Transaction Logic makes no commitment which formalism to use for describ�
ing the interpretation of a state� Any kind of theory can be chosen� Then� the
transition oracle must be instantiated accordingly� Here� for an arbitrary frame�
work X chosen as a state representation language� the transition oracle can be
speci�ed and implemented in State�X� The resulting language provides a power�
ful language for speci�cation� implementation� and veri�cation of databases and
work�ow�systems�

� Conclusion

With its conceptional �exibility� i�e� allowing dynamic objects� dynamic classes�
and dynamic methods� the presented approach allows a straightforwardmodeling
of the application domain� thus relieving the user from the burden of encoding
into some restrictive formalism� As shown in the examples� the frame rules can be
given generically for each concept of object�oriented modeling� Thus� the user
can concentrate on the application semantical aspects� With the given imple�
mentation scheme for a linear state space� provided an implementation of the
underlying single�state framework X� State�X can be used as an implementation
language for an object�oriented interactive database system� Thus� a speci�cation
also provides an implementation� allowing rapid prototyping and testing� Due to

Integrating Dynamic Aspects into Deductive Object�Oriented Databases ��

the fact that the state sequence is isomorphic to the natural numbers� temporal

properties can also be speci�ed and veri�ed by rules� Thus� meta�reasoning about
the implemented speci�cation can be done in the same language� Summarizing�
the concept " and its instance State�F�Logic " provides an integrated framework
for speci�cation� implementation� validation� veri�cation� and runtime checks in
a single language�

Acknowledgements�
The authors thank Bertram Lud�ascher and Rainer Himmer�oder for many
fruitful discussions�

References

�AM��� M� Abadi and Z� Manna� Temporal Logic Programming� Journal of Sym�
bolic Computation� ����� September �����

�BCW��� M� Baudinet� J� Chomicki� and P� Wolper� Temporal Deductive Databases�
In Tansel et al� �TCG�����

�BK�
� A� J� Bonner and M� Kifer� An Overview of Transaction Logic� Theoretical
Computer Science� ��������������� ���
�

�CB�
� P� Cholak and H� A� Blair� The Complexity of Local Strati�cation� Funda�
menta Informaticae� ���
�� ���
�

�CJ��� W� Cellary and G� Jomier� Consistency of Versions in Object�Oriented
Databases� In Proc� Intl� Conference on Very Large Data Bases� pages

���

�� �����

�FHK���� J� Frohn� R� Himmer�oder� P��T� Kandzia� G� Lausen� and C� Schlepphorst�
FLORID� A Prototype for F�Logic� In Proc� Intl� Conference on Data En�
gineering� �����

�FHKS��� J� Frohn� R� Himmer�oder� P��T� Kandzia� and C� Schlepphorst� How to
Write F�Logic Programs in FLORID� ����� Available from ftp���ftp�in�
formatik�uni�freiburg�de�pub��orid�tutorial�ps�gz�

�FWP��� A� A� A� Fernandes� M� H� Williams� and N� W� Paton� A Logic�Based In�
tegration of Active and Deductive Databases� New Generation Computing�
�����������

� �����

�KLS��� M� Kramer� G� Lausen� and G� Saake� Updates in a Rule�Based Language
for Objects� In Proc� Intl� Conference on Very Large Data Bases� Vancouver�
�����

�KLW��� M� Kifer� G� Lausen� and J� Wu� Logical Foundations of Object�Oriented
and Frame�Based Languages� Journal of the ACM�
��
���
���
�� July
�����

�LML��� B� Lud�ascher� W� May� and G� Lausen� Nested Transactions in a Logical
Language for Active Rules� In D� Pedreschi and C� Zaniolo� editors� Proc�
Intl� Workshop on Logic in Databases �LID�� number ���
 in LNCS� pages
�������� San Miniato� Italy� ����� Springer�

�TCG���� A� U� Tansel� J� Cli
ord� S� Gadia� S� Jajodia� A� Segev� and R� Snodgrass�
editors� Temporal Databases� Benjamin�Cummings� �����

�Zan��� C� Zaniolo� A Uni�ed Semantics for Active and Deductive Databases� In
N� W� Paton and M� H� Williams� editors� Proc� of the �st Intl� Workshop on
Rules in Database Systems �RIDS�� Workshops in Computing� Edinburgh�
Scotland� ����� Springer�

