3rd International Workshop on Rules in Database Systems
(RIDS’97), June 26-28, 1997, Skoévde, Sweden.
Springer LNCS 1312, pp. 20-34.

Integrating Dynamic Aspects into Deductive
Object-Oriented Databases

Wolfgang May* Christian Schlepphorst** Georg Lausen

Institut fiir Informatik, Universitat Freiburg, Germany
{may,schlepph,lausen}@informatik.uni-freiburg.de

Abstract. We show how the dynamics of database systems can be mod-
eled by making states first-class citizens in an object-oriented deductive
database language. With states at the same time acting as objects, meth-
ods, or classes, several concepts of dynamic entities can be implemented,
allowing an intuitive, declarative modeling of the application domain.
Exploiting the natural stratification induced by the state sequence, the
approach also provides an implementable operational semantics.

The method is applicable to arbitrary object-oriented deductive database
languages which provide a sufficiently flexible syntax and semantics. Pro-
vided an implementation of the underlying database language, any spec-
ification in the presented framework is directly executable, thus unifying
specification, implementation, and metalanguage for proving properties
of a system.

The concept is applied to F-Logic. Besides the declarative semantics
given by the rules of a State-F-Logic program, the use of F-Logic’s inher-
itance semantics for modeling states provides an effective operational se-
mantics exploiting the naturally given state-stratification. State-F-Logic
programs can be executed using the FLORID implementation.

1 Introduction

Rules in database systems appear twofold: Deductive rules are used to express
knowledge within states, and, orthogonally, active rules derive and express ac-
tions to be performed in transitions between states. In general, for modeling a
temporally changing application domain, a more or less explicit notion of state
is needed. Especially in deductive frameworks, integrating states explicitly into
a database language provides additional flexibility and clarity in modeling, also
supplying a model-theoretic base for reasoning about the database behavior.
From the theory defined by the program specifying and implementing the de-
ductive and dynamic behavior, correctness and liveness properties can be stated
and verified using standard formal methods, such as temporal logics. Thus, for
example, workflow systems can be defined, implemented, and validated from the
same given specification/implementation.

In this paper, we present an abstract concept for modeling dynamic behavior
by integrating explicit states into deductive, object-oriented frameworks. State

* Supported by grant no. GRK 184/1-97 of the Deutsche Forschungsgemeinschaft.
** Supported by the Deutsche Forschungsgemeinschaft, La 598/3-2.

2 Integrating Dynamic Aspects into Deductive Object-Oriented Databases

changes can be reflected by dynamic objects, dynamic methods, or dynamic
classes, allowing an intuitive modeling of the application domain.

The concept is applied to F-Logic [KLW95], which by providing the required
semantic and syntactic flexibility allows for a comprehensive treatment of state-
changes and updates in databases. Providing as well a model-theoretic, declara-
tive semantics as an operational semantics which is implemented by the FLORID
system, State-F-Logic acts at the same time as specification language, imple-
mentation language, and metalanguage for proving properties of a system.

The paper is structured as follows: the introduction is completed with a
review of related work. In Section 2, the roles of states in an object-oriented
model are investigated. In Section 3, semantical aspects of state changes are
analyzed, leading to a classification of rules wrt. their temporal scope and a class
of programs suitable for specification and implementation of database systems.
In Section 4, the approach is instantiated for F-Logic. Section 5 illustrates the
concept and its application by examples. Section 6 closes with some concluding
remarks.

Related Work. The temporal, dynamic aspect of databases can be regarded
as orthogonal to the static, data-oriented aspect: A single-state framework can
be transferred into a multi-state framework by versioning (e.g. [TCG193]), i.e.
attaching an additional dimension by duplicating and indexing the single-state
framework. Versioning can be employed with different granularity, e.g. the whole
database, relations, objects, etc. In relational database languages, explicit states
are introduced via reification, i.e., by adding an additional argument to each re-
lation, corresponding to versioning of relations. Following this way, in [BCW93]
(Datalogys) and [Zan93] (XY-Datalog), Datalog has been extended to explicit
states. Templog [AM89] is another extension of Datalog, using temporal logic op-
erators. Datalog; s, XY-Datalog, and Templog have been proven to be equivalent.
A similar concept with explicit states in Datalog, Statelog, has been presented
in [LML96]. There, every atom R(Z) is augmented by a state term S to [S]R(Z).
Thus, Statelog amounts to versioning the whole database. Since complex state
terms are allowed, Statelog is not bound to linear time, but also allows branch-
ing or hierarchical state spaces. Versioning in object-oriented databases is dealt
with in [CJ90]. There, the granularity of versioning is by objects, each database
version consists of a version of each object stored in the system. Updates and
versioning of objects in F-Logic has been presented in [KLS92]. There, updates
are restricted to the form ins, mod, and del of method applications. Transaction
Logic [BK94] is a deductive language focussing on the dynamic acspects of pro-
cesses, supporting an abstract notion of states as theories. In [FWP97], an active
rule language is incorporated into an object-oriented deductive database concept
by introducing explicit states into the sublanguages concerned with events, con-
ditions, and actions. Summarizing, in these approaches, the temporal aspect is
not actually integrated into the modeling.

Notation. Object-oriented models can be represented by three types of atoms,
i.e. method applications, class membership, and the subclass relation. In order to
obtain a uniform notation, we will use F-Logic syntax (cf. Section 4) throughout

Integrating Dynamic Aspects into Deductive Object-Oriented Databases 3

this paper: o[m—v] denotes that application of method m to object o results
in the value v. Parameterized methods are written as o[m@(xy,. .. x,)—v]. Fur-
thermore, o:c denotes that o is a member of class ¢; and c::d denotes that ¢ is a
subclass of d. We will use capital letters for variables.

2 The Roles of States in an Object-Oriented Model

As mentioned in the previous paragraph, every object-oriented structure can be
encoded into a relational schema, using atoms meth_appl(o,m,v), isa(o,c), and
subcl(c,d). In this modeling, states can be introduced in the same way as in
relational systems, via reification/versioning, i.e. augmenting every relation by
an additional argument, denoting the state. Beyond the fact that the relational
encoding impairs the intuitive modeling capabilities provided by the object-
oriented paradigm, with this approach, states are not really integrated as first-
order citizens into the modeling.

In an object-oriented modeling, providing a rich variety of concepts to cover
different roles, such as objects, class hierarchy, and methods, there are several
possibilities how states can interfere with entities of the application domain.
Moreover, for every entity, it can be chosen individually how to model this inter-
ference. An important point when modeling large systems is that in every state
transition, only some objects, classes, and methods will be affected. To take care
of this, abstract objects, the “objects” of the application domain (e.g. the persons
x,y), are distinguished from object instances which represent x and y at certain
time point(s). Thus, if in state s, is married to y, e.g. in x[married@(s)—y],
and y refer to the abstract objects, whereas, detailed state-dependent informa-
tion about z in state s is provided by the instance of z in state s. The same
applies to classes.

States as objects: If the focus is on the computation se-
quence represented by a specification, it is preferable to 01 @
regard states s as objects. Abstract objects o act on them @

as methods, addressing the instance i corresponding to o1 Q
object o in this state. Then, state changing is simply mod- e

eled by changing the interpretation of methods from state 02 @
to state.

Dynamic objects: Objects changing their behavior only

from time to time can be modeled by the concept of dy- 50 @
namic objects, i.e., for an abstract object o, a state s is

a method, giving the instance of o corresponding to state So @
s. In this case, the result of applying some method m

to an object o in state s is derived as the result of the 51 @

application of m to the corresponding instance.

4 Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Dynamic classes: Dynamic classes are closely related with
dynamic objects since classes and objects can be seen

as two roles of the same entities (cf. F-Logic): For an S0
abstract class ¢, a state s is a method, giving the instance
of the class ¢, in this state. Dynamic classes are suitable 5 C2:

if over a computation, classes change their extension or {01,03}
some (default) properties inherited to all their members:

If an object instance i is a member of class ¢ in state s, i : ¢ s.t. ¢[s—cq], it
inherits some properties from the instance of the class in this state (in general,
these are dynamic methods; cf. Example 5).

Dynamic methods: If for some object, only parts of its

behavior are changing, those can be modeled by dynamic

- .| o[mi—a,
methods (cf. Example 6). For an object o, a state s is ma@(s1)—
an additional argument of a method m, ojm@(s) — X], mz@(sl)_)y’
giving the value of the method in this state. The concept mz@(;)_)g,]
of dynamic methods is in some sense complementary to e

dynamic objects.

States as classes: A state can be regarded as a class, being able to have other
states as subclasses and/or members, s’ :: s resp. s’ : s and to inherit properties
to them.

A dynamic EDB entity is an instance whose behavior in some state is derived
from its behavior in the predecessor state, i.e., by frame rules, whereas the be-
havior of a dynamic IDB entity is derived from the behavior of other entities in
the same state.

For providing this semantical flexibility when choosing an optimal way for
modeling changing properties, the object-oriented facet of the framework to be
used must allow entities to act simultaneously as objects, classes, and methods.
Additionally, the deductive facet should also support this flexibility by allowing
variables to occur at arbitrary positions of rules, standing for arbitrary entities.

Especially, “states as objects”, “dynamic objects”, and “dynamic classes”
require variables to appear at method positions: In “states as objects”, the ob-
jects are methods to states, thus, variables at object positions become variables
at method positions. In “dynamic objects” and “dynamic classes”, states appear
as methods, thus state variables appear as variables at method positions. Both
approaches also require object creation, anonymous objects, and anonymous
classes.

“Dynamic methods” corresponds directly to reification in relational frame-
works, but must be complemented by one of the other approaches to cover also
a state-dependent class-membership and class hierarchy.

3 States and Rules

For the abstract treatment, assume a deductive, object-oriented framework,
called X, providing the facilities mentioned in the previous section. X defines
the syntactic notions of terms, atoms, literals, rules, and programs (recall that
a logical rule is of the form h <— b where h is an X-atom, and b is a conjunction

Integrating Dynamic Aspects into Deductive Object-Oriented Databases 5

of X-literals), and the semantic notions of an X-structure and a truth relation
= between X-structures and X-formulas. As usual, for an X-structure J and a
ground instance of an X-rule r := h<«b, I Erif I |=b—h, and Jis a
model of an X-program P iff J |= r for all ground instances of rules r of P. Let
D(P) denote X’s notion of declarative semantics, assigning an X-structure to
every X-program P (for instance, if X is first-order logic, D po(P) could be the
well-founded model of P).

Definition 1 (State-X-Structure) A State-X-structure J is an X-structure
where the universe § = ' U & consists of a classical universe {{' and a distin-
guished universe G, the state space. &)

For modeling database behavior, some acyclic ordering on the state space &
is required. In this paper, we assume & = (IN, <). In general, arbitrary state
spaces can be modeled, for instance branching models, hierarchical models (as
presented for Statelog in [LML96]), or even a possible-worlds semantics can
be specified. For states, the notions of “next” state(s), “earlier”, and “later”,
expressed by atoms S > T or S = T+n (occurring in the bodies of rules) play
an important role.

Definition 2 For a linear state space G, a state s € &, and a State-X-structure
J with a universe {' U &, the part which is known in state s, denoted by J|<; is
obtained by restricting J to the universe ' U {s' € & | s’ < s}. o

Given an X-program P, the database evolution is determined by an initial
database D and a sequence Ejy, Eq,..., where each E; is the set of events occur-
ring in state ¢, leading to the transition to state ¢+1. For simplicity, assume a
mapping which maps every set E; to a E! of ground X-atoms, representing the
events in state .

Example 1 For instance, an event move x to y occurring in state s is encoded
as x[moveTo®(s)—y]. o

Definition 3 A State-X-structure is a model of P, D, and Ey, E, ..., E, (as
above) if X = PU D U EjU...U E/. The declarative semantics of a State-X-
program P wrt. D and Ey, ..., E, as above is defined as ®(PUD U E{ U ... U
E). o

When describing database ewvolution by a State-X-program, a model J is
generated by successively computing its restrictions J|<o, J|<1, To ensure
a proper sequence, if some state is reached, no atoms must be derived which
contribute to the interpretation relevant to a previous state. Also, as long as
there are no events in a state s, no facts about state s+1 are derived.

Definition 4 A State-X-program P is incremental if for every D, FEy, ..., E,
as above, with J:=©9(PU D U Ej U ...U E!), for every s € IN, the following
holds:

J<st1 =D(PUT< U E;) . O

6 Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Obviously, incremental programs do not only give a declarative specification,
but provided an implementation of ©, can also serve as an implementation of the
database system. In the sequel, a sufficient syntactical criterion for an X-program
to be incremental is developed based on considering state terms: Presume that
in every rule, every term s denoting a state also occurs in an atom s:state in the
body?®. Then, s is called a state term.

Definition 5 A state-ground instance of an X-rule is obtained by replacing all
state variables of the rule by some elements of & (e.g. natural numbers). A state
ground instance can be given as an assignment 3 := {s1/ni,...,sp/ni} of ele-
ments of & to state terms.

A state-ground model of an X-rule is a state-ground instance such that all ele-
ments of & which are replaced for state terms satisfy the requirements imposed

by the rule for states/natural numbers. o
Example 2 For arule h(t) « ..., sistate, t: state, t>s, ..., every 3: (s,t) — IN?
is a state-ground instance, but only those 3: (s,t) = {(n,m) € IN? | m > n} are
state-ground models. o

State-X-rules can be classified wrt. their temporal scope (cf. [LMLI6]):

Definition 6 (Rule Types for Linear State Spaces)
A State-X ruler = h « b is

e global if there occurs no state term in it.

e [ocal if there is at least one state term S occurring in h, and for every
state-ground model 3 of h A b, for all state terms S;, S; occurring in 7,
8(S5) = B(S;).

e progressive if for every state-ground model 3 of h A b, there is a state term
S occurring in h s.t. B(S) > B(T;) for all other state terms 7; occurring in
T

o definite progressive if there is a state term S occurring in A such that for all
other state terms T; occurring in r, there is a k; € IN s.t. for every state-
ground model 3 of h A'D, B(S) = B(T;)+ki.

(strictly definite progressive, if each k; > 0 and S does not occur in the body
except in an atoms comparing S to other state terms).

For a definite progressive rule, its temporal scope is defined to be the maxi-
mum of the above k;.

e I-progressive if it is definite progressive with k; = 1 for all i (analogous
strong 1-progressive).

e collective if h contains no state term, but b contains one or more state terms.

o backwards a state-ground model 3 s.t. there is a state term S occurring in b
such that for every state term T occuring in h, S(T) < 3(S).

Note, that local rules are also definite progressive rules with k; = 0 for all i. g

Since the above criteria refer only to elements of S, the above properties can
be decided without regarding any object-oriented features, solely by reasoning
about the set S and its partial ordering.

3 or s:x for some subclass z of state

Integrating Dynamic Aspects into Deductive Object-Oriented Databases 7

Example 3 The rules

O.T[M—X] <« S:state, T:state, O.S[M—=X], T=S + 1, not O.change@(S,M)[].
O.T[M—Q] < S:state, T:state, T=S + 1, O[change@(S,M)—Q].

are l-progressive: in every state-ground model, due to the literal T=S 4 1,
B(T) = B(S)+1. These rules act as frame rules for methods of dynamic objects,
i.e., objects o which have an individual instance o.s for every state s.

The rule

P[hasTalkedTo—X] « P[talksWith@(S)—X], S:state.

is collective: at the end of a workflow, for every person P, the method hasTalkedTo
gives all persons, P has talked with. o

Obviously, for specifying database behavior reasonably, only global and progres-
sive rules make sense (a past database state cannot be changed). Especially, the
EDB is computed by 1-progressive rules, and the IDB is computed by local rules.
Progressive rules with a scope > 1 are used mainly for transaction definitions,
coupling modes etc.

Theorem 1 Every program P containing only progressive rules and not deriving
any facts about a state s+1 if there are no events in state s is incremental. o

Clearly, backward rules impair the temporal stratification (and also the in-
tuitive understanding of a running database system), they do not fit into the
presented approach.

Note, that collective rules are problematic: For P[hasTalkedTo—+X], the an-
swer set is different in every state s, although not directly visible from the rule.
On the other hand, for reasoning about database behavior, collective and global
rules can be quite useful. When modeling and reasoning about database be-
havior a distinguished set 91 of ground atoms represents the knowledge about
a process. Here, for instance, for every x,y of the active domain, the atom
y[hasTalkedTo—x] is in 9 (for example, if a workflow should guarantee, that at
the end, every person has talked to every other person).

Definition 7 A State-X-program P is incremental modulo a set I of ground
atoms if for every D, Ey, ..., E, as above, for 3:=D(PUDUE,U...UE]),
for every s € IN, the following holds:
Tt \M = (D(P U I, U E)\M
=®PU sz\m u E;))\Qﬁ : o

Theorem 2 Let P be a State-X-program containing only global, progressive, and
collective rules and M a set of ground atoms. Then, P is incremental modulo
M if M contains all ground atoms unifying with heads of collective rules and no
atom from 9 is used to derive any state-dependent information. o

This corresponds to the intuitive understanding: collective rules are not used
to derive data of the application domain, but to derive information about the
running process.

8 Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Definition 8 For a State-X-program P which is incremental modulo a set 9t of

ground atoms representing knowledge, a database D, sets Fy, Fs, ... of events,
and J:=O(PUD U Ey U E; U...), the operational semantics is defined as the
sequence J<o\M, T<1\M,. ... -

Theorem 3 For a State-X-program P which is incremental modulo a set M of
ground atoms, the database in state s+1 can be computed from the database D
and a set of events Es as Dsy1 =9D(P U Dy U Ey) . o

Now, after identifying a class of programs suitable for specifying and imple-
menting dynamic systems, the details of modeling an evolving system can be
considered.

In general, each state consists of several stages stagey, stages,...,stageny;
for instance, computing the EDB, then computing the IDB, and then deriving
the actions to be performed in the transition to the successor state. With this,
the rules have to be associated to stages:

Definition 9 For every rule r, a state term S occurring in r is a governing
state term if for every state-ground model of r, 8(S) is maximal among the set
{B(T) | T is a state term in r}. o

Note that for local or definite progressive rules, the head contains at least
one governing state term. Assume that for every local or progressive rule, at
least one governing state term S of the rule is associated to one of the stages
via S:stage;. The partitioning of rules into stages imposes a kind of application-
semantic stratification along the temporal axis which corresponds to the exe-
cution of a database system: each state represents one (or several successive)
fixpoint(s). Since in general, local stratification is undecidable [CB94], for pro-
viding an evaluation and implementation for state-X-programs according to the
above ideas, some mechanism is needed which controls the application of rules
dependent on the instantiation of their state variables, their association to stages,
and the existence of events.

4 Applying the Concept to F-Logic

F-Logic [KLW95] is a deductive, object-oriented database language, combining
the advantages of deductive databases with the rich modeling capabilities (ob-
jects, methods, class hierarchy, non-monotonic inheritance, signatures) of the
object-oriented data model. The syntax and semantics satisfies the requirements
stated in Section 2 for exploiting the conceptual flexibility of states in an object-
oriented framework. For the full syntax and semantics in all details, the reader
is referred to [KLW95, FHKS96]. Here, only the features which are relevant for
handling explicite states are presented. The modeling directly exploits F-Logic’s
inheritance mechanism and dynamic class-membership; the other features — both
the rich built-in semantical concepts and the syntactical opportunities — make
an intuitive modeling of the application domain possible, which will show up in
the examples. F-Logic has been implemented in FLORID (F-LOgic Reasoning In
Databases) [FHKT97]%.

* available at http://www.informatik.uni-freiburg.de/~dbis/flogic-project.html.

Integrating Dynamic Aspects into Deductive Object-Oriented Databases 9

For a short glance, the syntax and semantics can be described as follows:

e The alphabet of an F-Logic language consists of a set F of object construc-
tors, playing the role of function symbols, a set V of variables, several auxil-
iary symbols, containing), (, |, [, —, &>, —», e, :, and the usual first-order
logic connectives. For convention, object constructors start with lowercase
letters whereas variables start with uppercase ones.

e id-terms are composed from object constructors and variables. Id-terms are
interpreted as elements of the universe.

In the sequel, let O, C, D, M, Q;, S, S;, ScM, and MvM stand for id-terms.

e A method application is an expression MQ(Q1, ..., Qk)-

o if MQ(Q1,...,Q) is a method application and O an id-term, the path ex-
pression O.(MQ(Q1,...,Qk)), denoting the object resulting from applying
M@(Q,...,Qk) to O, can occur instead of an id-term.

e An is-a assertion is an expression of the form O : C (object O is a member
of class C'), or C :: D (class C is a subclass of class D).

e The following are object atoms:

— O[ScM@Q(Q1, . .., Qr)—S]: applying the scalar method ScM with argu-
ments @1, ...,Q to O — as an object — results in S,

— O[ScM@Q(Q1, . ..,Qr)e>S]: O —as a class — provides the inheritable scalar
method ScM to its members, which, if called with arguments Q1, ..., Qg
results in S,

— O[MvMQ(Q1,...,Q)—{S1,-..,Sp}]: applying the multivalued method
MvM with arguments @1, ..., Qx to O results in some S;.

— O[MvMQ(Q,...,Qr)e»{S1,...,S,}], analogous for an inheritable mul-
tivalued method.

e Formulas are built from is-a assertions and object atoms by first-order logic
connectives and quantifiers.

e An F-Logic rule is a logic rule h < b over F-Logic’s atoms, i.e. is-a assertions
and object atoms.

e An F-Logic program is a set of rules.

The syntax shows that in F-Logic, entities, described via id-terms, act at the
same time as classes, objects, and methods. Also, variables can occur at arbitrary
positions of formulas. Thus, states can be integrated into F-Logic as first-class
citizens like all other entities, and they can be replaced by state variables in all
positions.

4.1 Programming Explicit States in F-Logic

In F-Logic, the state-by-state evaluation can be enforced using its trigger mech-
anism which allows insertion of atoms into the database after a deductive fix-
point, has been reached. Originally, this mechanism is used to implement, non-
monotonic inheritance: Non-monotonic inheritance of a property from a class
to an object takes place if a) it is inheritable, and b) no other property can be
derived for the object. Thus, inheritance is done after pure deduction: fixpoint
computation and inheriting one fact at a time alternate until an outer fixpoint
is reached.

10 Integrating Dynamic Aspects into Deductive Object-Oriented Databases

This mechanism can be utilized to define a sequence of deductive fixpoint
computations: Every (abstract) state passes through several stages until it is
computed completely. This is implemented using a distinguished class state,
having subclasses stage;. .. stage,. Every stage corresponds to a fixpoint com-
putation. When a stage is computed completely, a trigger inserts the facts which
create the next stage resp. state. This is implemented via inheritable methods,
defining suitable triggers.

The schema in Table 1 gives the rules for handling a four-stage state concept
for an active database system, consisting of generating the EDB, calculating the
IDB, receiving users’ requests, and finally computing the changes to be executed
in the transition to the next state:

(A) inheritable methods: (B) the stage sequence:
stagel::state[ready_edbe>true]. S:stage2 < S.ready_edb|].
stage2::state[ready_idbe>true]. S:stage3 < S.ready_idb[].
stage3::state. S:stage4 < S:stage3, S.ready_user]].

staged:state[ready_changese>true]. T:stagel « S.ready_changes[], T=S + 1.
O:stagel. % the initialization

Table 1. Basic Schema for Implementing States

Every fact in (A) — for instance stagel::state[ready_edbestrue] — defines an in-
heritable method of the subclass stage;, e.g. every member s of class stagel can in-
herit the property s[ready_edb—true]. Since deduction precedes inheritance, only
when the computation of associated with stage 1 is completed, s[ready_edb—true]
is inherited which enables the rule S:stage2 « S.ready_edb[] (B.1), deriving that
s also becomes a member of stage?2, and the next deductive fixpoint is com-
puted by the rules associated with stage 2. After stage 2 which computes the
IDB, stage2::state[ready_idbestrue] (A.2) and S:stage3 < S.ready_idb[] (B.2) de-
fine the transition to stage 3. Then, the user interaction takes place, finished
by s.ready_user[]. This leads to stage 4, where the changes to be executed in
the transition to the next state are derived. Finally, s[ready_changes—true] is
inherited by (A.3), and the next state t = s+1 is founded by (B.4).

Example 4 Together with the rules given in Table 1, the following program
maintains the invariant that in state s, the method r gives exactly the value s
if s < 10, then, in state 10, r returns no value, and the program stops. Here,
states are objects, providing an EDB-method r and IDB-methods p, del_r and
ins_r, representing the requested changes.
T[r—X] < S[r—X], not S[del_r—X], T:stagel, T=S+1. % frame rules for r.
T[r—X] < S[insor—X], T:stagel, T=S+1.

S[q—+X] + not S[r—+X], 0<X<10, S:stage2. % qis{1,...,9}\ r:
S[del_r—+X] « S[r—X, g—*Y], Y=X-1, S:stage3. % derive changes.
Slins_r—X] < S[q—X, r—Y], Y=X-1, S:stage3.

S[ready_user—true] <— 0<S<10, S:stage3. % run for 10 states.

0[r—»0]. % initialization.

Integrating Dynamic Aspects into Deductive Object-Oriented Databases 11

5 Applications and Examples

In this section, we show how different situations can be modeled by different
concepts of change.® Also, generic frame rules are given which model different
kinds of dynamic entities as introduced in Section 2.

5.1 Simple Updates to a Database

This example shows a scenario where State-F-Logic’s ability of modeling state
change by dynamic classes provides an elegant and intuitive specification. It
reveals only a very simple active behavior by translating user requests into the
internal representation and creating an object.

Example 5 Imagine a tram net, consisting of stations and sections. For repairs,
some sections have to be closed for some time. For each day, the possible con-
nections are computed. Additionally, for each section, it has to be determined
whether it runs hourly or two-hourly at some day (as a default, at weekend
days, trams go only two-hourly). But, for single sections (e.g. between the sta-
dium and the railway station on saturdays) it should be possible to deviate from
this default.

Here, dynamic classes are well-suited for modeling: each section is a static
object, the set of open sections is a dynamic EDB class. By implementing the
running frequency as an inheritable dynamic IDB method, the desired properties
can easily be modeled. For dynamic EDB classes, the generic frame rules read
as follows (insert(E,C,S) means to insert an object E in state S into a dynamic
class C; analogous for delete(E,C,S)):

% Frame rules for dynamic classes:
E:(C.T) « T:stagel, T =S + 1, Ciedbclass, E:(C.S), not delete(E,C,S).
E:(C.T) « T:stagel, T =S + 1, C:edbclass, insert(E,C,S).

The problem-specific part includes the specification of weekdays, weekend days
(using multivalued methods), and the frequency of running the sections for ev-
ery day. The frequency is implemented as an inheritable method of every class
sections.s, which is overwritten in case of the section (stadium,railwStat) on
saturdays. The computation of the reflexive transitive closure is implemented by
local rules.

% Problem specific rules:
sections:edbclass.
days[isWeekday—+{0,1,2,3,4}].
days[isWeekend—»{5,6}].
S[weekno—N] <~ N =S / 7, S:stage?2. % Here, a state acts as an object.
S[weekday—D] <— D =S - N * 7, S[weekno—N], S:stage2.
sections.S[frequency@(S)e+hourly] < days[isWeekday—»S.weekday], S:stage2.
sections.S[frequency@(S)e+twohourly] < days[isWeekend—+S.weekday], S:stage2.
E[frequency@(S)—hourly] +

E:(sections.S)[start—stadium; end—railwStat], S[weekday—>5], S:stage2.

® The examples are available at
http://www.informatik.uni-freiburg.de/“dbis/flsys/morexamples.html.

12 Integrating Dynamic Aspects into Deductive Object-Oriented Databases

% Compute reflexive transitive closure
(sections.S)::(connections.S) « S:stage?.
p(X,Y):(connections.S)[start—X; end—Y] +
E:(sections.S)[start—Y; end—X], S:stage2.
p(X,Z):(connections.S)[start—X; end—Z] +
E:(sections.S)[start—X; end—Y], P:(connections.S)[start—Y; end—Z], S:stage?2.

% Actions
delete(E,sections,S) + remove(X,Y,S), E:(sections.S)[start—X;end—Y], S:stage4.
insert(e(X,Y),sections,S), e(X,Y):sections[start—X;end—Y] + add(X,Y,S), S:stage4.

The program uses the rules given in Table 1 for handling states which have to
be inserted here.
The following interactive requests construct a small database:

state 0: add(cathedral,z0o,0). add(castle,stadium,0).
add(stadium,railwStat,0). 0.ready_user[].

state 1: add(airport,railwStat,1). 1.ready_user[|.

state 2: remove(castle,stadium,2). 2.ready_user] .

The following query outputs for every state all open sections with start and end
point, and their frequency:

7- E:(sections.S), E[start—A, end—B, frequency@(S)—F].

As long as T is a state and its EDB is not yet computed, the frame rules are
active, deriving 7”’s EDB. When a fixpoint is reached, a trigger fires, setting
T.ready_edb to true. Then, the IDB is computed, giving the set of connections
and the frequencies. After this, the users give their update requests via add and
remove. When the user has completed his requests, modeled by T.ready_-user,
the change requests are processed, entering the next state. o

5.2 Active Databases and Integrity Maintenance

Active database behavior, which is often utilized e.g. for integrity maintenance,
can also be modeled in State-F-Logic: As in the first example, the user speci-
fies update requests interactively, but now, from these updates and the current
database state, the database system derives additional updates. Then, from both
the user-requested and the internally derived updates, the next database state
is computed.

Example 6 The scenario is as follows, modeling a part of a production planning
system: An enterprise produces several types of items, from small screws up to
automobiles. There are many compound products, consisting of several parts.
The user can change the composition of compound products, say, removing the
145/75 wheels from the parts needed to built some car, instead adding 155/75
wheels. On the other hand, the production of parts can be stopped or started.
Obviously, if the production of e.g. a 3”-screw is stopped, the production of all
compound products needing 3”-screws also stops.

Here, dynamic multivalued methods are the best way of modeling. Both
the production palette and the needs-part relation are represented by EDB-
multivalued-methods.

Integrating Dynamic Aspects into Deductive Object-Oriented Databases 13

% Frame rules for scalar methods:
O[MQ(T)—Q] « T:stagel, T =S + 1, apply(O,M):edbscalar,
O[M@(S)—Q], not O.change@(S,M)[].
O[MQ@(T)—Q] « T:stagel, T =S + 1, apply(O,M):edbscalar, O[change®@(S,M)—Q].
% Frame-rules for multi-valued methods:
O[MQO(T)—»Q] « T:stagel, T =S + 1, apply(O,M):edbmultivalued,
O[M@(S)—+Q], not delete(O,M,Q,S).
O[MQ(T)—Q] « T:stagel, T =S + 1, apply(O,M):edbmultivalued, insert(O,M,Q,S).

The example shows the flexibility of our approach to deal with different kinds
of changes: Since the set of products is assumed to change frequently, is it im-
plemented as a multivalued method which changes with every state, thus it is
propagated by a frame rule, considering current updates. On the other side, as
the configuration of a certain product changes from time to time, a configuration
is modeled as an object, addressed by the dynamic scalar method hasConfig of
the product. Thus, for a sequence of states where the configuration does not
change, only hasConfig has to be copied to the next state. If the configuration is
changed, a new configuration object is introduced, and hasConfig is set to point
to it.

% Problem Specific rules:

% Semantic Types:

apply(pps,produces):edbmultivalued.

apply(P,hasConfig):edbscalar < pps[produces@(S)—+P], S:state.

% start or stop production of some part:
insert(pps,produces,P,S) < start(P,S), S:stage4.
delete(pps,produces,P,S) < stop(P,S), S:stage4.

% addTo and removeFrom: change Configurations:
change(O,S,hasConfig) < addTo(O,P,S), S:stage4.
change(0O,S,hasConfig) < removeFrom(O,P,S), S:stage4.
O[change®(S,hasConfig) —newConfig(O,T)] +

T=S + 1, change(0O,S,hasConfig), S:stage4.

% active behavior:

% if configuration changes, create new configuration object.

newConfig(O,T)[needsPart—+P] +— T=S + 1, change(O,S,hasConfig),
0.hasConfig@(S)[needsPart—+P], not removeFrom(O,P,S), S:stage4.

newConfig(O,T)[needsPart—»P] - T=S + 1, change(O,S,hasConfig),
addTo(O,P,S), S:stage4.

% stop all products which need stopped parts.
stop(P,S) « P.hasConfig@(S)[needsPart—»Q], stop(Q,S), S:stage4.

An example database and an example action sequence could be the following;:

pps[produces®(0)—+{golf,passat,motorl4,motorl8,wheel145,screw}].
golf[hasConfig@(0)— newConfig(golf,0)].
passat[hasConfig@(0)—newConfig(passat,0)].
motorl4[hasConfig@(0)— newConfig(motor14,0)].
newConfig(golf,0)[needsPart—»{motorl4,wheel145}].
newConfig(passat,0)[needsPart—»{motorl4,wheel145}].
newConfig(motor14,0)[needsPart—»{screw}].

14 Integrating Dynamic Aspects into Deductive Object-Oriented Databases

removeFrom(passat,motor14,0). addTo(passat,motorl8,0).

start(wheel155,0). 0.ready_user|].
stop(screw,1). removeFrom(golf,wheel145,1).
addTo(golf,wheel155,1). 1.ready_user|].

With the following queries, for every state, all items which are currently produced
and which parts they need are given:

7~ pps[produces@(S)—+P].
7- P.hasConfig@(S)[needsPart—+Q]. o

5.3 Other Applications

In continuation of the above examples, the presented concept can be used for
process modeling as a specification, implementation, and verification language.
For instance, the Alternating-Bit-Protocol has been formulated as a transition
system by State-F-Logic rules.

In the above examples, changes are only determined from the current database
state. By using progressive rules with scope > 1, it is possible to specify and
enforce transactions and dynamic constraints.

Additionally, the proposed extension by states can be employed for evaluat-
ing single-state programs wrt. complex logical semantics: Similar to relational
databases and Datalog semantics, there is a hierarchy of differently expressive
semantics for deductive object-oriented programs, including a well-founded style
semantics. Analogous to well-founded Datalog semantics, it can be effectively
computed as an alternating fixpoint by using explicite states.

An interesting aspect is the combination with Transaction Logic [BK94], a
language dealing with transitions and transactions in a logic programming style.
Transaction Logic makes no commitment which formalism to use for describ-
ing the interpretation of a state: Any kind of theory can be chosen. Then, the
transition oracle must be instantiated accordingly. Here, for an arbitrary frame-
work X chosen as a state representation language, the transition oracle can be
specified and implemented in State-X. The resulting language provides a power-
ful language for specification, implementation, and verification of databases and
workflow-systems.

6 Conclusion

With its conceptional flexibility, i.e. allowing dynamic objects, dynamic classes,
and dynamic methods, the presented approach allows a straightforward modeling
of the application domain, thus relieving the user from the burden of encoding
into some restrictive formalism. As shown in the examples, the frame rules can be
given generically for each concept of object-oriented modeling. Thus, the user
can concentrate on the application semantical aspects. With the given imple-
mentation scheme for a linear state space, provided an implementation of the
underlying single-state framework X, State-X can be used as an implementation
language for an object-oriented interactive database system. Thus, a specification
also provides an implementation, allowing rapid prototyping and testing. Due to

Integrating Dynamic Aspects into Deductive Object-Oriented Databases 15

the fact that the state sequence is isomorphic to the natural numbers, temporal
properties can also be specified and verified by rules. Thus, meta-reasoning about
the implemented specification can be done in the same language. Summarizing,
the concept — and its instance State-F-Logic — provides an integrated framework
for specification, implementation, validation, verification, and runtime checks in
a single language.

Acknowledgements.
The authors thank BERTRAM LUDASCHER and RAINER HIMMERODER for many
fruitful discussions.

References

[AM89] M. Abadi and Z. Manna. Temporal Logic Programming. Journal of Sym-
bolic Computation, 8(3), September 1989.

[BCW93] M. Baudinet, J. Chomicki, and P. Wolper. Temporal Deductive Databases.
In Tansel et al. [TCG193].

[BK94] A.J. Bonner and M. Kifer. An Overview of Transaction Logic. Theoretical
Computer Science, 133(2):205-265, 1994.

[CBY4] P. Cholak and H. A. Blair. The Complexity of Local Stratification. Funda-
menta Informaticae, 21(4), 1994.

[CJ90] W. Cellary and G. Jomier. Consistency of Versions in Object-Oriented
Databases. In Proc. Intl. Conference on Very Large Data Bases, pages
432-441, 1990.

[FHK*97] J. Frohn, R. Himmeréder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst.
FLORID: A Prototype for F-Logic. In Proc. Intl. Conference on Data En-
gineering, 1997.

[FHKS96] J. Frohn, R. Himmerdder, P.-T. Kandzia, and C. Schlepphorst. How to
Write F-Logic Programs in FLORID, 1996. Available from ftp://ftp.in-
formatik.uni-freiburg.de/pub/florid/tutorial.ps.gz.

[FWP97] A. A. A. Fernandes, M. H. Williams, and N. W. Paton. A Logic-Based In-
tegration of Active and Deductive Databases. New Generation Computing,
15(2):205-244, 1997.

[KLS92] M. Kramer, G. Lausen, and G. Saake. Updates in a Rule-Based Language
for Objects. In Proc. Intl. Conference on Very Large Data Bases, Vancouver,
1992.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42(4):741-843, July
1995.

[LML96] B. Ludéscher, W. May, and G. Lausen. Nested Transactions in a Logical
Language for Active Rules. In D. Pedreschi and C. Zaniolo, editors, Proc.
Intl. Workshop on Logic in Databases (LID), number 1154 in LNCS, pages
196-222, San Miniato, Italy, 1996. Springer.

[TCG193] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,
editors. Temporal Databases. Benjamin/Cummings, 1993.

[Zan93] C. Zaniolo. A Unified Semantics for Active and Deductive Databases. In
N. W. Paton and M. H. Williams, editors, Proc. of the 1st Intl. Workshop on
Rules in Database Systems (RIDS), Workshops in Computing, Edinburgh,
Scotland, 1993. Springer.

