Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Integrating Dynamic Aspects into
Deductive Object-Oriented Databases

Wolfgang May
Christian Schlepphorst

Georg Lausen

Institut fiur Informatik
Universitat Freiburg

Germany

June 26, 1997

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Overview

e The Roles of States in Modeling

e Theoretical issues:
Declarative and Operational semantics

e Implementation in F-Logic

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Active + Deductive Database Systems

Deductive Rules: Derive and express knowledge inside a
state.

Active Rules: Derive and express actions (additional to
the user’s interaction) leading from one state to another.

Representation of the dynamic aspect:
Snapshot Database: Represents one state at a time.

History Database: Contains knowledge about past states
and actions.
e (complex) event detection

e object reuse

e garbage collection

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Object-Oriented Model

® is-a atoms: 0:C
relational encoding: isa(o,c)

e subclass atoms: c::d
relational encoding: subcl(o,c)

e Method applications to objects:
o[m—v] (scalar)
o[m—»v| (multivalued)
analogous with arguments: o[m®@(xy,.. . ,x,)—V].
inheritable:
o[me-v|
o[me->»v]

relational encoding:
method_appl_sc(o,m,v), method_appl_mvd(o,m,v)

e path expressions: o.m = 0’ : o[m—0']

e Inheritance

e Transitivity of subclass hierarchy

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Representation of States

Relational Model

Reification: r(x1,...,2,) ~> r(8,T1,. .., Tyn).

Other Approaches in OODB’s

Versioning of objects.

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

The Roles of States

States as objects

Focus: computation sequence.

Every state s is an object. Abstract objects o act on them
as methods, addressing the instance ¢ corresponding to
object o in state s.

Syntax: s.o[m — V]

e Allows comparison of states (Deep Equality) to detect
cycles.

e Application: Subordinate internal computations of the

database system.

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Example: Alternating Bit Protocol

e Sender and receiver file
e Sender and receiver unit
e Data Messages: data + control bit

e Ack Messages: control bit

SenderFile[c@(0)— d1; ...; c@(n)— dn] (static)]

é) (" sender é) é)
sender(l,O)‘§ sender(1-1) state 0 dmsg(dy,0) dmsg(d1,1)
[sno — 1; \ [sno — 1; [data — d; [data — di;
sbit — 0] sbit.— 1] bit — 1]

\\\

é) é)
sender(2,0) | .. dmsg(d2,1)
[sno — 21; [data — da;
sbit — 0] bit — 1]

)/ . J

(()
rcvr(l,O)/) revr(1,15°" amsg(mt)
[rno — 1; [rno — 1; [bit — €]
rbit — 0] rbit — 1]

. J J

() (
rcvr(2,0) rcvr(2,1)

[rno — 2; [rno — 2}°¢
rbit — 0] rbit — 1]

. J . J
ReceiverFile[c@(0)— dy;...] (accumulating)]

RIDS '97 26.6.97 7

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

A State

S[sender — sender(sn,sb)[sno — sn; sbit — sb];
receiver — rcvr(rn,rb)[rno — rn; rbit — rb];
dmsg — dmsg(d,b)[data — d; bit — b];
amsg — amsg(b')[bit — b']]

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Dynamic objects

Objects changing their behavior only from time to time.
For an abstract object o, a state s is a method, giving the
instance of o corresponding to state s.

S0 .

- Z

01) 1
@ S1

S0

02

Syntax: o.s[m — V]

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Example: Enterprise’s car fleet

president
[drives — o

4)
w-126

length —... ;
price@(s1) —80000 ;
price@(s 2)—85000 |

)

s-class
[s1 —e;
s e;
— ;]
/ !
4)
w-140
length —... ;

riceQ(s3) —100000
P (s3)])

_ J

Query:

new_car_for_president_costs(S,Z) «+

president[drives —

X], X[S — Y], Y[price®(S) — Z].

RIDS '97

26.6.97

10

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Example: English Administration

(")
head _of state {George (VI))
[s1 — o [born — 14.12.1895;
)
S2 — o] enthroned — 20.1.1936;

_ / Y,

heir — ;
died ~+76.2.1952]

\

J

7
Elizabeth (II)
[born — 21.4.1926;

enthroned — 6.2.1952]
- J

Event: dies(person) in state s.
X[dies — D] <dies(X,S), date(S) = D.
Event creates a new state:
state(S+1) < dies(X,S).
Frame rules:
head_of state[S+1 — Y], Y[enthroned — D] +
head_of state[S — X], date(S) = D, X[heir — Y], dies(X,S).
head_of state[S+1 — X] «
head_of state[S — X], — dies(X,S), state(S+1).

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Dynamic classes

Classes which change their extension or some inheritable
properties.

Closely related with dynamic objects: For an abstract class
c, a state s is a method, giving the instance c, of the class c

in this state.

C1
S0 {01702}
C s1
S92 Co .

Syntax: o:c.s

RIDS '97 26.6.97 12

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Example: English Administration Revisited

Parliament
[presided by — head_of_state]

SubclaSV ‘\subclass
N (7

7 N
H_of Lords H_of _Commons
[s1 — ...; [s1 — e;

S2 — ...; s2 ;
\s3—>...]{z / 3—>/0] Jj
O\ LbclaSS/’ 2 7
// subclass
[[H_of_C. (1)J [

[H_of_C. (3)]

RIDS '97 26.6.97

13

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Example: Tram net

sh:friday
section.S[freq@(S) e»1h| < S:weekday

subclass

sec(stad,railw)
[start — stadium;
end — railw.stat;

Q(s5) —1h;
\ I

subclass \

el

//

section.sH
[freq@(s5) e>1h)]

-

kfreq@ (s5)

—

~

sec(zoo,airport)
[start — zoo0;
end — airport;

1h
)

sec(castle,airport)
[start — castle;
end — airport;
freq@(s5) —1h;

U I

section.s6

[]

RIDS '97

26.6.97

14

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Dynamic methods

Object where only parts of its behavior are changing. For
an object o, a state s is an additional argument of a method

m, giving the value of the method in this state.

o[mi— x,
mo@(s1)— vy,
mo@(s2)— vy,

mo@(s3)— 2 |

Syntax: o[m@(s,...) — V]

RIDS '97 26.6.97 15

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Example: Production Planning System

_

[has_config@(s0) —
has_config@(s1) —

cfg golf_SO

needs_part| —
[

[has_config@(s0) — e;

_

()
PpS
[produces@(s0)
produces@ Sl /\/ \}\
motorl4
4 N
golf passat

has_config@(Sl

\

7

|
v

cfg_golf sl

needs_part —
[

o]

cfg passat_s

[needs_part o...}]

RIDS '97

26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Requirements

e entities act simultaneously as objects, classes, and
methods.

e variables occur at arbitrary positions of rules, standing
for arbitrary entities.

e “states as objects”, “dynamic objects”, and “dynamic
classes” require variables to appear at method positions.
“states as objects”: objects are methods to states.
Variables at object positions become variables at
method positions.

“dynamic objects” and “dynamic classes”: states
appear as methods, thus state variables appear as
variables at method positions.

e object creation, anonymous objects, and anonymous
classes.

RIDS '97 26.6.97 17

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

State Space

Given a single-state framework: X PL1, F-Logic

Definition 1 (State-X-Structure)

A State-X-structure is an X-structure with universe
U= UG;

I a classical universe, G the state space.

e acyclic ordering on &, (IN, <)

e notions of “next” state(s), “earlier”, and “later”
expressed by atoms S > T or S = T+n.

Definition 2
J a State-X-structure with universe ' UGS, s € 6.
The part which is known in state s, denoted by J<; is

obtained by restricting J to the universe
Wu{s'ed|s <s}

(7 S 0)

WUu{ses|s <s1}

js—l
_ J T,
WU{sed|s <s ~—~
| Wo{ses|s<s)

Ku’UG /

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Database Evolution

e Initial database D,

e Sequence Ey, Eq,... of sets of events, represented by
ground X-atoms.

Example:

event move x to y occurring in state s ~» x[moveTo®@(s)—y].

Definition 3 A State-X-structure J is a model of P, D,
and Ey, F1, ..., E, (as above) if

J=EPUDUEyU...UE,
Declarative semantics:
Dx(PUDUEyU...UE,)

inflationary, stratified, well-founded

RIDS '97 26.6.97

19

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Operational Semantics

Computing states successively:

Dy := ®(PUD,),

D, = ©(PUDyU Ey),

Dy := ©9(PUDyUE),
= Do 3

With

J:=®(PUDUEyU...UE,)

Definition 4 A State-X-program P is incremental if for
every D, Fy, ..., E,, with

J=9(PUDUEyU...UE,) ,
for every s € IN, the following holds:
J<st1 = @(P UJ<s U E8> :

RIDS '97 26.6.97

20

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Rules

Rules are e.g. of the form

head(S) < body(S,T), S=T + 1

Definition 5
State-ground instance ((r) of a State-X-rule r: replace all
terms denoting states by some elements of &

Bi={s1/n1,..., sK/nK}
State-ground model: state-ground instance ((r) which

satisfies the requirements imposed by the rule for
states/natural numbers.

Example: For a rule
h(t) < ..., s:state, t:state, t>s, ...

every f3: (s,t) — IN? is a state-ground instance, but only
those B: (s,t) = {(n,m) € IN* | n < m} are state-ground
models.

RIDS '97 26.6.97

21

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Types of Rules (informally)

An State-X ruler = h < b is

global if there occurs no state term in it.

local if there is at least one state term S occurring in A,
and for every state-ground model 3 of h A b and all
other state terms T; occurring in r, 5(T;) = B(.5).

progressive if for every state-ground model 5 of A A b,
there is a state term S occurring in h s.t. 5(S) > B(T;)
for all other state terms 7T; occurring in 7.

collective if h contains no state term, but b contains one

or more state terms.

backwards if there is a state-ground model § and a state
term S occurring in b such that for every state term T’

occuring in h, B(T) < B(S).

RIDS '97 26.6.97 22

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Example 1
1-progressive:
Frame rules for methods of dynamic objects, i.e., objects o which have an individual
instance o.s for every state s.
O.T[M—X] < S:state, T:state, O.S[M—X], T=S + 1, not O.change®(S,M)[].

O.T[M—Q] «+ S:state, T:state, T=S + 1, O[change®(S,M)—Q].

collective:
P[hasTalkedTo—X] <+ P[talksWith@(S)—X], S:state.

Theorem 1 FEvery program P containing only progressive rules and not deriving

any facts about a state s+1 if there are no events in state s s incremental.

~» Controlling state-generation

RIDS '97 26.6.97 23

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Meta-Knowledge

Collective Rules:

P[hasTalkedTo—»X] < P[talksWith@(S)—X], S:state.

Definition 6 A State-X-program P is incremental modulo
a set M of ground atoms if for every D, Fy, ..., FE, as
above, for

J:=9(PUDUEjU...UE)),
for every s € IN, the following holds:

Jeert \ M = (D(PUT<, UEL)) \ M
= (D(PUJ<; \ MUE))\ M.

Theorem 2 Let P be a State-X-program containing only

and M a set of
ground atoms. Then, P s incremental modulo N if MM
contains all ground atoms unifying with heads of collective
rules and no atom from 9N is used to derive any
state-dependent information.

RIDS '97 26.6.97 24

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Definition 7 For a State-X-program P which is
incremental modulo a set 9 of ground atoms, a database
D, sets Ey, E5, ... of events, and

jZ:@(PUDUEOUElLJ...) ,
the operational semantics is defined as the sequence

J<o \ MM, T<1 \ M,

In this case, the database in state s+1 can be computed
from the database D, and a set of events E, as

Dsi1 =D(PUDgU Ey)

RIDS '97 26.6.97

25

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Programming Explicit States in F-Logic
e Inflationary semantics,

e user-defined stratification (fixed number of predefined
strata),

e Trigger mechanism: Insert atoms into the database
after reaching a deductive fixpoint (used for
nonmonotonic inheritance).

deductive

fixpoint

inserted fact

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

The State Sequence

Every state passes through several stages, e.g.
e Computing the EDB
e Computing the IDB
e User Interaction
e Computing necessary changes
Sequence of deductive fixpoint computations via inheritable

methods:

(A) inheritable methods:
stagel::state[ready_edbe-true].
stage2::state[ready_idbe>true].
stage3::state.

staged::state[ready_changese>true].

0:stagel.

(B) the stage sequence:

S:stage2 <— S.ready_edb][|].

S:stage3 < S.ready_idb][|.

S:staged4 < S:stage3, S.ready_user|].
T:stagel < S.ready_changes[], T=S + 1.

RIDS '97 26.6.97

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

s:stagel

y

stagel::state[ready_edbe>true]

insert s:[ready_edb—true]

S:stage2 < S.ready_edb] |

y

_Compute IDB

Y

stage2::state[ready_idbe>true]

insert s:[ready_idb—true]

S:stage3 < S.ready_idb] |

@r Interact@

RIDS '97 26.6.97

28

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

S:stage3 < S.ready_idb| |

|
@r Interact@

finished by s:[ready_edb—true]

y

S:stage4 <— S.ready_user| |

@mpu‘ce intended Chan@

y

stage4::state[ready_changese>true]

insert s:[ready_changes—true]

y

T:stagel < S.ready changes[], T=S + 1

s+1:stagel

RIDS '97 26.6.97

29

Integrating Dynamic Aspects into Deductive Object-Oriented Databases

Conclusion
e OO: flexibility in modeling
e F-Logic: flexible syntax

e generic frame rules

e declarative 4+ operational semantics
e specification = implementation
e meta-reasoning about database behavior

e in the same language

RIDS '97 26.6.97

30

