13th Workshop on Logic Programming (WLP’98), October 6-8, 1998, Vienna, Austria.
Technical Report 1843-1998-10, Institut fiir Informationssysteme, Technical University Vienna

Nonmonotonic Inheritance in
Object-Oriented Deductive Database
Languages

Wolfgang May Paul-Th. Kandzia

{may |kandzia}@informatik.uni-freiburg.de

Institut fiir Informatik, Universitat Freiburg,
Am Flughafen 17, D-79110 Freiburg, Germany

Abstract

Deductive object-oriented frameworks integrate logic rules and inheritance.
There, specific problems arise: Due to the combination of deduction and
inheritance, (a) deduction can take place depending on inherited facts, thus
raising indirect conflicts, and (b) also the class hierarchy and -membership
is subject to deduction. From this point of view, we investigate the applica-
tion of the extension semantics of Default Logic to deductive object-oriented
database languages. By restricting the problem to Horn programs and a
special type of defaults tailored to the semantics of inheritance, a forward-
chaining construction of extensions is possible. This construction is compared
with a solution as implemented in the F-Logic system FLORID which is based
on a combination of classical deductive fixpoints and an inheritance-trigger
mechanism. The paper is a condensed version of [MK98].

1 Introduction

In deductive object-oriented database languages, a class hierarchy and non-
monotonic inheritance is used for modeling an application domain. Facts
can be derived either by classical deduction, or by inheritance: Assume that
an object o is an instance of a class ¢, and it is known that a “typical”
instance of ¢ has a property p. Then, if it can consistently be assumed that
p holds for o, it is added to the model.

The combination of deductive rules with inheritance is significantly more
complex than pure deduction or pure inheritance concepts (e.g., Descrip-
tion Logics), where efficient implementations exist. In this work, we study
the restricted case where defeasible reasoning is only concerned with in-
heritance. This combination is particularly of interest in deductive object-
oriented databases.

Related Work. In the Al community, several frameworks for nonmono-
tonic reasoning have been presented which implement a notion of defaults
(for an overview, see [GHR94, Bre91]).

Nonmonotonic reasoning is integrated into logic programming with nega-
tion; such programs are evaluated wrt. well-founded semantics [VGRS88]

or stable semantics [GL88, BF91], see also extended logic programs [Prz91,
GL90]; for an overview, see [Dix95]. Circumscription [Lif94] uses the same
syntax as first-order logic, augmented with a special predicate abnormal.
In Default Logic [Rei80, Poo94, MT93], defeasible reasoning is expressed
by defaults, extending the first order syntax. Default Logic is presented
in more detail in Section 3. Inheritance Networks [Tou86, Hor94] pro-
vide a comprehensive framework for specifying typical or atypical proper-
ties. An approach to inheritance in frame systems based on circumscrip-
tion is presented in [Bre87]. As a semantic approach, preferential models
[Sho88, KLM90, Mak94] provide a very general formalization of nonmono-
tonic reasoning. Except inheritance nets, the above approaches are based
on first-order syntax. By representing classes as predicates, a derived class-
membership is supported.

In the deductive database community, nonmonotonic features (except
strict negation) are still very rare. The paradigm of deductive object-
oriented database languages conceptually includes nonmonotonic inheritance,
but this is not actually integrated into the existing languages and imple-
mentations. Here, structural inheritance denotes a refining, but not fully
overriding inheritance on the signature level. In contrast, value inheritance
denotes the concept of nonmonotonic inheritance known from Al.

The early object-oriented logics focussed on complex objects, but still
lacked a class-hierarchy or inheritance. A class hierarchy with only struc-
tural inheritance has been introduced in LOGRES [CCT90], IQL [AK92],
and ROL [Liu96]. Nonmonotonic value inheritance can be found in Gulog
[DT95]. The semantics is only defined for a very restricted class of “well-
defined” programs; the class hierarchy and class membership are static.

F-Logic [KLW95] supports nonmonotonic value inheritance with over-
riding together with a class hierarchy which can be defined by rules. The
combination of a T'p-like operator with a trigger mechanism for handling
nonmonotonic inheritance in the F-Logic system FLORID [FHT97, FLO] is
investigated in Section 5.

The paper is structured as follows: Section 2 introduces the syntax and
semantics of F-Logic used throughout the paper and illustrates the problem
arising from the combination of inheritance and deduction. In Section 3,
Default Logic is introduced, a characterization of inheritance by defaults is
given, and the global semantics of Default theories via extensions is inves-
tigated. In Section 4, we adapt the results to Default theories consisting
of a Horn program and the special “Horn-like” defaults which characterize
inheritance, resulting in a Herbrand-style representation of extensions. In
Section 5, we present the semi-declarative semantics based on logical deduc-
tion and inheritance triggers which is defined and implemented for F-Logic.
Section 6 shows the relation between the presented concepts wrt. the prob-
lem of inheritance and shows the equivalence and correctness of the F-Logic
solution. Proofs can be found in [MK98|.

2 F-Logic: Language and Basic Concepts

This work has been motivated by the problem of integrating non-monotonic
value inheritance into the deductive object-oriented database language F-
Logic (cf. [KLW95]). Here, a short summary of the relevant part of the F-
Logic syntax and semantics is given (we omit parameterized and multivalued
methods).

e The alphabet consists of a set F of object constructors, playing the role
of function symbols, a set V of variables, and several auxiliary symbols.
Object constructors are denoted by lowercase letters and variables by
uppercase ones.

e id-terms are composed from object constructors and variables. They are
interpreted as elements of the universe.

In the sequel, let O, C', D, M, and V' denote id-terms.

e An is-a atom is an expression of the form O isa C' (object O is a member
of class C'), or C' :: D (class C' is a subclass of class D).

e The following are object atoms:

— O[M—V]: applying the scalar method M to O results in V,

— C[Me>V]: C provides the inheritable scalar method M. For a mem-
ber O isa C, inheritance results in O[M—V]; for a subclass C' :: C,
inheritance results in C'[Me>V].

e Formulas, rules, and programs are defined as usual.

Note that F-Logic does not distinguish between classes, methods, and ob-
jects which uniformly are denoted by id-terms; also variables can occur at
arbitrary positions of an atom.

The semantics of F-Logic extends the semantics of first-order predicate
logic. Formulas are interpreted over a semantic structure. We restrict our
discussion to Herbrand-interpretations where the universe consists of ground
id-terms. An H-structure is a set of ground F-Logic atoms describing an
object world, thus it has to satisfy several closure axioms related to general
object-oriented properties:

Definition 1 (Closure Axioms) A set H of ground atoms is an H-structure

if the following conditions hold for arbitrary ground id-terms u, ug, u1,...:

e u::u € H (subclass reflexivity),

o if uy i ug € H and ug :: ug € H then uy :: ug € H (subclass transitivity),

o if uy i us € H and ug 2 uy € H then uy = us € H (subclass acyclicity),

o if uyisaus € H and us :: uz € H then uy isa ug € H (transitivity),

* there are no ground terms u' and «” such that ufu;~u'] € H and
u[ug~u'] € H, where ~» is — or &+ (uniqueness of scalar methods).

For a set M of ground atoms, C/(M) denotes the closure of M wrt. the above

axioms, C/(M) = L if the constraint (*) is violated in M.

By Thpr(F), we denote the F-Logic theory of a set F' of formulas which

means the closure of F' wrt. first-order logic and the above closure axioms.
[m]

Positive F-Logic programs are evaluated bottom-up by a Tp-like operator

including /, providing a minimal model semantics [KLW95]:

Definition 2 (Deductive Fixpoint)

For an F-Logic program P and an H-structure #,

Tp(H) :=H U{h | (h <+ by,...,b,) is a ground instance of some rule of P
and b; € H foralli=1,...,n},

TR(H) :=ClH) ,
Ty (H):=CUTp(TH(H))) ,

" lim; 00 Th(H) if the sequence TS (H), TH(H),. .. converges,
TE(H) = .
L otherwise.
Note that C/(H) = L can also lead to the result L. o

The above Tp-operator does not deal with inheritance. In [KLW95], inherit-
ance-canonic models are defined, based on inheritance triggers which extend
the above fixpoint semantics with some procedural flavor. This definition is
further investigated in Section 5.

First, we give some introductory examples which show that logical deduction
in combination with inheritance can lead to semantical difficulties and even
contradictions already in simple settings:

Example 1 (Nixon Diamond) Consider the program
P = {quaker[policye+pacifist], republican[policye+hawk],
r_nixon isa quaker, r_nixon isa republican}.
This shows the problem of multiple inheritance in its original form, without
additional logic rules: nothing can be derived by classical deduction. Both
policies can be argued to be inherited. Each of them can be inherited without
any problem, making r_nixon[policy—_] defined, “blocking” the other. o

Example 2 (Nixon Family)
P = {r_nixon isa republican, republican[policye+hawk], mrs_nixon[policy—pacifist],
mrs_nixon[husband—r_nixon], W[policy—P] <— W[husband—O]AO[policy—P]} .
Here, although there is no direct conflict when inheriting r_nixon[policy—hawk],
the logical consequences require mrs_nixon[policy—hawk], leading to an in-
consistency. Thus, a “responsible” semantics must not inherit in this situa-
tion, though leaving the policy of r_nixon undefined. 0

Example 3 Consider the following classical example:
P = {bird[flye>true; laying_eggse>true], penguin[flyesfalse],
penguin :: bird, tweety isa penguin} .

With the above definition, (/(P) = P U {tweety isa bird}. Here, tweety
should inherit tweety[fly—false] from penguin, not tweety[fly—true] from bird:
the potential inheritance of from bird is preempted by the intermediate class

4

penguin. On the other hand, [laying_eggse+true| should be inherited from
bird to penguin and then to tweety[laying_eggs—true]. o

In the report [MK98], it is shown that a “hard-coding” into logic rules is
not appropriate. In the following we show how defeasible inheritance can
be integrated with the classical logic programming idea underlying F-Logic
and similar deductive database languages by a solution derived from the
semantics of Default Logic.

3 Default Logic and Inheritance

In Default Logic [Rei80, Poo94, MT93], defeasible reasoning is expressed by
defaults: a default d =« : (,...,0, / w consists of a precondition p(d) =
a, a justification J(d) = 6 = {f1,...,Pn} and a consequence c¢(d) = w; for a
set D of defaults, J(D) = {J,cp J(d), analogous ¢(D). Given a, if 8 can be
assumed consistently, one can conclude w. If 3 is true, the default c:3/w is
equivalent to the logic rule w <— « as long as only consistent interpretations
are considered. A default theory is a pair A = (D, F') where D is a set of
defaults and F' is a set of formulas.

For characterizing inheritance, only a special form of defaults is needed,
called semi-normal defaults; i.e., of the form «(z):5(Z)/w(z) where a(Z) is a
conjunction of atoms, w(z) is also an atomic formula, and Vz : 5(z) — w(x)
holds.

Definition 3 For a given F-Logic program P, by Ap we denote the Horn
default theory (Djy,p, P), where
OisaC,C[Me>V] : =3C"(OisaC' NC" :: C) , O[M—V]
OM—V] ’
SC = C,CIMe>V] : =3C"(SC = C'"NC' 2 C), SC[MeV]
SC[Me>V]

Dipp =

O

3.1 Extensions

The semantics of a default theory is defined in terms of extensions. In the
following, for a set S of formulas, let Th(S) denote the theory of S.
Definition 4 (Extension; based on [P0094]) Let A = (D, F) be a de-
fault theory. For sets S, T' of formulas, let

GD(S,T,D) := {d|d is an instance of a default in D, Th(T) = p(d) , and
Th(S U {3}) is consistent for every g € J(d)}

(generating defaults). Then, for all sequences Sy = F,S1,Ss,... of sets of
formulas s.t. S = (U;2, Si) and

Sit1 = S; U C; where C; = ¢(GD(S, S;,D)) ,

Th(S) is an extension of A. Since S is needed later on, we call it an eztension
base of A. o

Remark S = F U J;2,C; and there is no default applicable in S. o

In [Mak94], this is termed a quasi-inductive definition: in the step i — i+1,
all ; are required to be consistent with Th(S) = Th(lJ;2, S;), thus, assump-
tions about future stages are made (note that in contrast, the evaluation of
a does not use S). Note that, depending on which assumptions are made,
there can be several different extensions (cf. Ex. 3).

3.2 Forward Chaining Evaluation

Motivated by the fixpoint semantics for positive logic programs, the evalu-
ation of logic programs with inheritance should also be based on a forward-
chaining approach, i.e. without having to guess S first. From Def. 4, a
forward-chaining, inflationary strategy can be defined by replacing “Th(S U
{B}) is consistent” with “Th(S; U {}) is consistent”, i.e. evaluating defaults
against the current belief set (in contrast to Def. 4, in every step, we allow
the application of exactly one default which is sufficient in this setting; cf.
[MK98, Sec. §]).

Definition 5 (Inflationary extension)

Let A = (D, F) be a default theory. For a theory S, let

GD(S,D) :={d | d is an instance of a default in D, Th(S) = p(d) , and
Th(S U {8}) is consistent for every g € J(d)} .

Let ADy = () and So=F, 51,59, ...,S5, be a sequence of sets of formulas s.t.
Siy1 =8SiU{c(d;)} , AD;jy1 = AD; U {d;} where d; € GD(S;,D) ,
and GD(S,,D) = 0. Then, with S = (U]_,Si), Th(S) is called an in-
flationary extension of A; we call S an inflationary extension base of A.

[m]
This approach is, e.g., investigated in [MT93, Section 3.7, Def. 3.61]. As

shown there, the above method is complete, but not sound: it generates
theories which are no extensions.

Proposition 1 (Extensions vs. Inflationary Extensions)

Let A = (D, F) be a Default theory.

1. Every extension S of A is also an inflationary extension of A, and

2. Let T be an inflationary extension base computed by the algorithm given
in Def. 5. If for every B € J(ADy), B is consistent with Th(T), then
Th(T) is an extension of A. 0

Proof cf. [MT93, Cor. 3.71 and Th. 3.65]. n

The strategy is inflationary in the sense that a default which has been once
applied is not undone (which would require to undo also all its logical con-
sequences) if in a later step one of its justifications turns out to be wrong
which is exactly the tested criterion in (2) of the above proposition.

This problem can be solved by either (i) forbidding the application of
defaults whose justifications will be falsified later, or (ii) forbidding the appli-
cation of a default whose logical consequences would falsify the justifications
of another default which has been applied earlier. The notion of extensions
includes (i) whereas (ii) is much easier to implement:

Definition 6 (Cautious inflationary extension)
Let A = (D, F) be a default theory. For a theory S, let

GDcaui(S, D, AD) := {d | d is an instance of a default in D, Th(S) |= p(d) ,
and Th(S U ¢(d) U B) is consistent
for every 5 € J(AD U {d})} .

Let ADy = () and Sp=F, S1,52,...,S, be a sequence of sets of formulas s.t.
Sit1=5; U {C(dz)} , ADj 1 = AD; U {dl} where d; € GDcaut(Sia D, ADl) ,
and GDegyui(Sy, D, ADy) = . Then, with S = (!, Si), Th(S) is called

a cautious inflationary extension of A; we call S a cautious inflationary
extension base of A. 0

Remark Note that now there can be applicable defaults in S (which would
falsify a justification of a previously applied default). o

Proposition 2 (Cautious Inflationary vs. Inflationary Extensions)

Let A = (D, F) be a default theory. Then,

e Fwvery cautious inflationary extension S of A can be extended to an infla-
tionary extension. If GD(S, D) = (), then S is an inflationary extension.

e If aninflationary extension S satisfies Prop. 1(2) then S is also a cautious
inflationary extension. O

Proof The computation sequences for cautious inflationary extensions given
in Def. 6 are prefixes of computation sequences for inflationary extensions
given in Def. 5. Thus, by applying further defaults in D, thereby falsifying
justifications of previously applied defaults, an inflationary extension can be
computed. m

Proposition 3 (Extensions vs. Cautious Inflationary Extensions)
Given o default theory A = (D, F), a cautious inflationary extension S of
A is an extension of A if GD(S,D) = 0.

Proof By Prop. 2, every cautious inflationary extension S s.t. GD(S, D) =
() is an inflationary extension. Since every cautious inflationary extension
satisfies the additional criterion stated in Prop. 1, it is then an extension of
A. =

4 The Horn Case

Given a default theory (D, P) which consists of a set P of Horn formulas
and a set D of semi-normal defaults, both in Definitions 4 and 5, every S;
and the resulting base S = P U |J;2, C; is Horn. Thus, the semantics can
equivalently be given in a Herbrand style similar to minimal models in logic
programming. In the following, we consider the case of F-Logic programs
and restrict ourselves to finite extensions.

Definition 7 Given an F-Logic program P and an extension base S of Ap,
M :=T¢(0) is called the H-extension of P to S (analogous for inflationary

H-extensions and cautious inflationary H-extensions).! 0

The forward-chaining approach of Def. 5 can also be used for computing
the inflationary H-extensions of a program without manipulating sets of
formulas:

Proposition 4 Let P be an F-Logic program, Ap its default theory ac-
cording to Def. 3. For an H-structure H and a semi-normal default theory
A= (D,F), let

GD(H,A) :={d | d is a ground instance of a default in A, p(d) CH , and

Thrr(F UM U{B}) is consistent for every € J(d)} .

Let Ho, Hi, ..., Hy be a sequence of H-structures s.t. Ho =TH(0) and
Hiv1 = T}LS)(HZ U {C(dz)}) , AD;11 = AD; U {dz} where d; € GD(HZ,AP) ,

and GD(H,,,A) = 0. If H =], Hi # L, then H is an inflationary H-
extension of P. Moreover, every inflationary H-extension can be computed
by such a sequence. O

Proof see [MK98]. n

The criterion given in Prop. 1(2) carries over to H-extensions:

Proposition 5 Let H be an inflationary H-extension computed by the above
algorithm. If for every 8 € J(AD,), B is consistent with H, then H is an
H-extension of A. o

Since only defaults of the form given in D, are used, the only case where
a justification can be annulled in later steps is when an intermediate class
is inserted. We come back to this issue later. First, we describe the trigger-
based inheritance mechanism extending the semantics defined for F-Logic
[KLW95] which is implemented in the FLORID system.

5 Inheritance via Inheritance Triggers

The deductive part of F-Logic programs is evaluated wrt. an inflationary
fixpoint semantics (cf. Def. 2), additionally, user-defined stratification is

note that by Def. 2, T% includes the closure CZ.

supported. Non-monotonic inheritance is implemented via a trigger mecha-

nism in a deduction precedes inheritance manner: The evaluation of a pro-

gram is defined by alternatingly computing a classical deductive fixpoint
and carrying out a specified amount of inheritance. The strategy is formally
characterized as follows, based on inheritance triggers:

Definition 8 (Inheritance Triggers) Let H be an H-structure.

e An inheritance trigger in H is a pair (offc, me+v) such that (offc) € H and
c[mesv] € H, and there is no o # ¢ # ¢ s.t. {ofic’, ¢’ :: ¢} € H (§ being
either isa or ::).

e An inheritance trigger (o isa ¢, me>v) or (¢ :: ¢, me>v) is active in H if
there is no v’ s.t. ofm—v'] € H or ¢'[mesv'| € H, respectively.

e T(H) denotes the set of active inheritance triggers in H.

e An inheritance trigger (o isa ¢, me+v) or (¢’ :: ¢, me>v) is blocked in H if
olm—v'] € H or '[mesv'] € H, respectively, for some v’ # v.

/

Note that this definition depends only on H, not on a program. o

The value of a method is inherited from a class to an object or a subclass
only if no other value for this method can be derived for the object or the
subclass, respectively. Hence, inheritance is done after classical deduction,
leading to an alternating sequence of (deductive) fixpoint computation and
inheritance steps.

Definition 9 (Firing a Trigger) For an H-structure and an active trig-
ger t = (0 isa ¢, me>v) or t = (¢’ :: ¢,me+v), the H-structure after firing ¢,
t(H), is defined as H U {o[m—v]} or H U {¢'[me>v]}, respectively.

In accordance to [KLW95], for an H-structure H and an active trigger ¢,

TIL(H) := T¥(t(H)) denotes the one step inheritance transformation. o

Proposition 6 (Correctness of one-step-inheritance) Let P be a pro-
gram and H an H-structure which is a model of P (i.e., H |= h < b for
every rule in P). For every t € T(H), if IL(H) = TE(t(H)) is consistent,
then it is also a model of P. o

Note that the notion of a model of an F-Logic program does not require
closure wrt. inheritance (e.g., in Ex. 2 there exists no model which is closed
wrt. inheritance).

In [KLW95], inheritance-canonic models of F-Logic programs are defined,
here we reformulate the definition for finite computations:

Definition 10 (Inheritance-Canonic Model) (Finite variant)

For an F-Logic program P, a sequence My, My, ..., M, of H-structures is
an ZIp-sequence if My = Ty (0) and for all i, there is a ¢; € T(M;) s.t.
Mis1 = Tp(My).

An H-structure M is an inheritance-canonic model of P if there is an Zp-
sequence Mo, M1,..., M # L s.t. M has no active triggers. 0

6 Comparison

In this section, the relationships between the concepts of extensions, in-
flationary (H-)extensions, and inheritance-canonic H-structures are investi-
gated, and criteria for isolating one class from the other are given.

In anticipation of the results of this section, these concepts compare as
follows:

(H-)Extensions of Ap

Prop.3 9 — —~~ ¢ Prop. 1(2)
Cautious Inflationary Prop. 2 Inflationary

(H-)extensions of Ap " O (H-)extensions of Ap
. Theorem 3(2) Theorem 1 —/ Prop. 7; Theorem 1
Theorem 3(1) = - N = p.
Inheritance-canonic < Inheritance-canonic
models of P* Prop. 10 models of P

M; =< Mj denotes that every structure/theory in M; can be extended to
one in Ms. Proofs can be found in [MK98].

6.1 Inheritance-Canonic Models and Inflationary H-Extensions

The computation of inheritance-canonic models implements the process de-
scribed in Prop. 4 for computing inflationary H-extensions:

Proposition 7 Let P be an F-Logic program and Ap the corresponding

default theory. Then the following sets coincide:

e the set of Zp-sequences (cf. Def. 10) Mo, My, ..., My, s.t. My, # L, and

e the set of prefivzes Ho,Hi,...,Hn of sequences of H-structures as de-
scribed in Prop. J (computation of inflationary H-extensions). 0

Corollary 1 Let P be an F-Logic program. Then, every (consistent) inher-
itance-canonic model of P is an inflationary H-extension of P. o

The inclusion in the other direction, i.e., that every inflationary H-extension
is an inheritance-canonic model of P, does not hold since the stopping crite-
rion is different in both approaches: The consistency check before inheriting
is omitted in the definition of inheritance-canonic models.

Definition 11 Let Sz(P) be the set of H-structures # s.t. there exists an

Tp-sequence Moy, My,...,H, and ZhL(H) = L for every t € T(H). O

Theorem 1 (Zp-sequences and inflationary H-Extensions)

e S7(P) is the set of inflationary H-extensions of P.

e An H-structure H € Sz(P) is an H-extension of P if and only if there is
an Ip-sequence Mo, M1, ..., H which satisfies Prop. 5. 0

10

6.2 Cautious Inflationary Extensions for Inheritance

The relationship between extensions and inflationary extensions has been
clarified by Prop. 1(2), giving a criterion for identifying inflationary exten-
sions which are no extensions: an inflationary extension S is an extension if
every justification of every default which is applied in the computation of S
is consistent with Th(S). By the concept of cautious inflationary extensions
this property has been enforced allowing a forward-chaining construction.

For defaults of the form Dy, occuring in the default theory of an F-Logic
program, the only justification which can be invalidated by later steps is the
non-existence of an intermediate class. Thus, the inflationary semantics
differs from the “real” semantics only when after inheritance, the existence
of an intermediate class is derived.

Proposition 8 (Static Class Hierarchy) For an F-Logic program P with
a static class hierarchy, i.e. no isa -atom or :: -atom occurs in any non-fact
rule head, the set of extensions of Ap and the set of inflationary extensions
of Ap coincide. a]

In presence of a non-static class hierarchy, the above effect can be termed as
postemption?. Cautious inflationary computations can be enforced by aug-
menting the consequence of the defaults by their justifications. For imple-
menting inheritance, with every instance of inheritance, the class hierarchy
at this point is fixed by forbidding the introduction of an intermediate class.
This is accomplished by the following modification of the inheritance default
schema (analogous for subclass inheritance), blocking the later introduction
of an intermediate class, obtaining a normal default o:3/0:

. OisaC,C[MesV] : =3C"(Oisa C' A C':: C) , OIM—V]
inh -3C"(OisaC'AC":: C) , O[M—V]

For an F-Logic program P, let D} be defined like Dp with D7 , instead of
D;y,p. Normal defaults guarantee the following:

Proposition 9 For an F-Logic program P, every inflationary extension of
A’} is also an extension of A}. o

Theorem 2 Given an F-Logic program P, there is a mapping ¢ from the
extensions of Ap to the (inflationary) extensions of A}, such that ¢(S) aug-
ments S exactly by the explicit knowledge about the absence of intermediate
classes in some places of the class hierarchy. O

Note that the consequences in D} , are no longer sets of atoms. Thus,
D7, cannot be directly translated to H-extensions and inheritance-canonic
models. In the following section, these notions are integrated by extending
the program appropriately.

%in contrast to preemption, where inheritance is not applied due to an already known
intermediate class.

11

6.3 Inheritance-Canonic Models and Cautious Extensions

The intended semantics of an F-Logic program P are the H-extensions of
Ap. Thus, the set of Zp-sequences has to be restricted to sequences where
no postemption occurs, resulting in H-extensions or at least in cautious
inflationary H-extensions.

The effect of cautious computations can be implemented by adding a rule

r(t) := inconsistent <— off C, C:: ¢, not (c=C).

as an integrity constraint to the program whenever an inheritance trigger
t = (ofc, me>v) is fired. In subsequent inheritance steps, this rule derives
an inconsistency whenever an intermediate class would be derived. This
requires only a slight modification in the concept of Zp-sequences:

Definition 12

For an F-Logic program P, a sequence My, My,..., M, of H-structures is
an Tjy-sequence if My = Tg(0) and for all i, there is a ¢; € T(M;) s.t.
M = If,i“rl(/\/li) # 1 where Py = P and P = P; U r(t;).

Let S5 (P) be the set of H-structures /{ such that there exists an Z}-sequence
Mo, My, ..., My, =H, and T, (t)(H) = | for every t € T(H). O

" UT
Proposition 10 (Zp- and Z}-sequences) Let P be an F-Logic program.
1. for every Ip-sequence Mo, My, ..., My, every M; is a model of P.

2. every Ip-sequence satisfies Prop. 5.

3. every Ly, -sequence is a prefiz of an Lp-sequence. O

Theorem 3 (Z}-sequences and cautious H-Extensions)

Let P be an F-Logic program. Then,

1. S;(P) is the set of cautious inflationary H-extensions of P.

2. for every H in S;(P), there is a H' in Sz(P) s.t. H CH'.

3. for every H in S§(P), if IL(H) = L for every t € T(H), then H is an
H-extension of P. o

Complexity Thus, with the strategies of Zp- and Z}-sequences, the se-
mantics of cautions and non-cautious inflationary extensions can be imple-
mented in F-Logic in a forward-chaining way.

As long as no object creation takes place, every T computation is poly-
nomial. Since the number of potential triggers is also polynomial, an H-
extension H € Sz(P) (or S;(P)) can be computed in polynomial time.
With object creation, the computations can become infinite.

7 Conclusion

We have shown how inheritance can be integrated into a deductive object-
oriented database language. By considering the Horn fragment (i.e. logic

12

programming rules) and restricting the use of defaults to the object-oriented
notion of inheritance, we could tailor the semantics to the requirements in

this area.

Given a program P, the presented algorithm computes those

Herbrand-like structures which represent the extensions of the default theory
corresponding to P.

References

[AK92]

[BF91]

[Bre87]
[Bre91]

[CCH90]

[Dix95]

[DT95]

[FH*97]

[FLO]

[GHR94]

[GL8S]
[GL90]

[Hor94]

S. Abiteboul and P. C. Kanellakis. Object Identity as a Query Lan-
guage Primitive. In Building an Object-Oriented Database System
— The Story of Og, ch. 5, pp. 98-127. Morgan Kaufmann, 1992.
N. Bidoit and C. Froidevaux. Negation by default and unstrati-
fiable logic programs. Theoretical Computer Science, 78:85-112,
1991.

G. Brewka. The Logic of Inheritance in Frame Systems. In Intl.
Joint Conference on Artificial Intelligence, pp. 483-488, 1987.

G. Brewka. Nonmonotonic Reasoning: Logical Foundations of
Commonsense. Cambridge University Press, 1991.

F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. In-
tegrating Object-Oriented Data Modeling with a Rule-Based Pro-
gramming Paradigm. In , ACM SIGMOD, pp. 225-236, 1990.

J. Dix. Semantics of Logic Programs: Their Intuitions and Formal
Properties. In A. Fuhrmann and H. Rott, editors, Logic, Action
and Information. de Gruyter, 1995.

G. Dobbie and R. Topor. On the Declarative and Procedural Se-
mantics of Deductive Object-Oriented Systems. Journal of Intel-
ligent Information Systems, 4(2):193-219, 1995.

J. Frohn, R. Himmeroder, P.-T. Kandzia, G. Lausen, and
C. Schlepphorst. FLORID: A Prototype for F-Logic. In Intl.
Conference on Data Engineering (ICDE), 1997.

The FLORID Home Page. http://www.informatik.
uni-freiburg.de/~dbis/florid/.

D. M. Gabbay, C. J. Hogger, and J. A. Robinson. Handbook of
Logic in Artificial Intelligence and Logic Programming. Oxford
Science Publications, 1994.

M. Gelfond and V. Lifschitz. The Stable Model Semantics for
Logic Programming. In Proc. ICLP, pp. 1070-1080, 1988.

M. Gelfond and V. Lifschitz. Logic Programs with Classical Nega-
tion. In Proc. ICLP, pp. 579-597, MIT Press, 1990.

J. F. Horty. Some direct Theories of Nonmonotonic Inheritance.
In [GHR94].

[KLM90] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic Reason-

ing, Preferential Models and Cumulative Logics. Artificial Intelli-

13

gence, 44:167-207, 1990.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-
Oriented and Frame-Based Languages. Journal of the ACM,
42(4):741-843, July 1995.

[Lif94] V. Lifschitz. Circumscription. In [GHR94].

[Liu96] M. Liu. ROL: A Deductive Object Base Language. Information
Systems, 21(5):431-457, 1996.

[Mak94] D. Makinson. General Patterns in Nonmonotonic Reasoning. In
[GHR94].

[MK98] W. May and P.-T. Kandzia. =~ Nonmonotonic Inheritance in
Object-Oriented Deductive Database Languages. Technical re-
port, Universitat Freiburg, Institut fiir Informatik, 1998. Avail-
able from http://www.informatik.uni-freiburg.de/“dbis/
Publications/98/Inheritance.html.

[MT93] V. W. Marek and M. Truszczyniski. Nonmonotonic Logic. Springer,
1993.

[Po094] D. Poole. Default Logic. In [GHR94].

[Prz91] T. Przymusinski. Stable Semantics for Disjunctive Programs. New
Generation Computing, (9):401-424, 1991.

[Rei80] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence,
12(1,2):81-132, 1980.

[Sho88] Y. Shoham. Reasoning about Change. MIT Press, 1988.

[Tou86] D. Touretzky. The Mathematics of Inheritance. Morgan-
Kaufmann, Los Altos, CA, 1986.

[VGRS88] A. Van Gelder, K. Ross, and J. Schlipf. Unfounded Sets and
Well-Founded Semantics for General Logic Programs. In Proc.
ACM PODS, pp. 221-230, 1988.

14

