Nonmonotonic Inheritance in Object-Oriented Deductive Database Languages

Wolfgang May Paul-Th. Kandzia

{may|kandzia}@informatik.uni-freiburg.de

Institut für Informatik, Universität Freiburg

October 1998

Deductive Databases + (Nonmonotonic) Inheritance

Object orientation:	Default Logic, Extension semantics,
F-Logic, Horn programs,	special type of defaults
(forward-chaining evaluation)	

deductive object-oriented database languages

- deduction can take place depending on inherited facts
 ⇒ indirect conflicts.
- class hierarchy and -membership is subject to deduction.

F-Logic in a Nutshell

Atoms:

- Object isa Classtweety isa penguin% ISA-relation, "∈"SubClass :: Classpenguin :: bird% SUBCLASS-relation "⊆"Object[Method@(Params)→R]% single-valued object methodtweety[lives→"Antarctica"]% single-valued inheritable methodObject[Method@(Params)•>R]% single-valued inheritable methodbird[fly •>true; laying_eggs •>true]penguin[fly •>false]
- Variables can occur at arbitrary positions.
- Formulas, rules, and programs defined as usual.
- Implemented: T_P -based bottom-up evaluation.
- Semantics: H-structures; similar to Herbrand structures (+ subclass transitivity) Consistency: not $o[m \rightarrow v]$ and $o[m \rightarrow w]$ for $v \neq w$.

Inheritance

bird[laying_eggs ↔ true]	
penguin :: bird	
penguin[laying_eggs → true]	
tweety <mark>isa</mark> penguin	
tweety[laying_eggs \rightarrow true]	

bird[fly ↔ true] penguin :: bird penguin [fly ↔ false] penguin[fly ↔ false] tweety isa penguin tweety[fly → false]

Indirect Conflict

```
\label{eq:r_nixon} r\_nixon isa republican, republican[policy \rightarrow hawk], $$$ mrs_nixon[policy \rightarrow pacifist], mrs_nixon[husband \rightarrow r\_nixon], $$$ W[policy \rightarrow P] \leftarrow W[husband \rightarrow O], $$ O[policy \rightarrow P]. $$
```

 $republican[policy { \leftrightarrow } hawk].$

r_nixon isa republican.

```
r_nixon[policy \rightarrow hawk].
```

```
mrs\_nixon[husband \rightarrow r\_nixon].
```

```
\mathsf{W}[\mathsf{policy}{\rightarrow}\mathsf{P}] \gets \mathsf{W}[\mathsf{husband}{\rightarrow}\mathsf{O}], \ \mathsf{O}[\mathsf{policy}{\rightarrow}\mathsf{P}].
```

 $mrs_nixon[policy \rightarrow hawk].$

```
mrs\_nixon[policy \rightarrow pacifist].
```

inconsistent !!

 \rightsquigarrow policy of r_nixon must remain undefined.

Default Logic

Defaults:

$$d = \frac{\alpha : \beta_1, \dots, \beta_n}{w}$$

- precondition $p(d) = \alpha$,
- justification $J(d) = \beta = \{\beta_1, \dots, \beta_n\},\$
- consequence c(d) = w.

Given α , if β can be assumed consistently, one can conclude w.

Inheritance as Defaults:

$$O \text{ isa } C, C[M \leftrightarrow V] : \neg \exists C'(O \text{ isa } C' \land C' :: C), O[M \rightarrow V]$$
$$O[M \rightarrow V]$$
$$SC :: C, C[M \leftrightarrow V] : \neg \exists C'(SC :: C' \land C' :: C), SC[M \leftrightarrow V]$$
$$SC[M \leftrightarrow V]$$

Extensions

Let $\Delta = (D, F)$ be a default theory.

Then, for all sequences $S_0 = F, S_1, S_2, \ldots, S_n$ of sets of formulas s.t. $S = (\bigcup_{i=0}^{\infty} S_i)$ and

$$S_{i+1} = S_i \cup c(GD(S, S_i, D)) ,$$

$$AD_{i+1} = AD_i \cup GD(S, S_i, D) ,$$

where $GD(S, S_i, D) :=$

$$= \{ d \text{ such that } d \text{ is an instance of a default in } D, \\ \operatorname{Th}(S_i) \models p(d) \text{ , and} \\ \operatorname{Th}(S \cup \{\beta\}) \text{ is consistent for every } \beta \in J(d) \} \text{ ,}$$

Th(S) is an extension of Δ .

"quasi-inductive definition" (S used in Definition of S_{i+1})

•
$$S = F \cup \bigcup_{i=0}^{\infty} c(AD_i),$$

• no default applicable in Th(S).

Inflationary Extensions

Let $\Delta = (D, F)$ be a default theory.

Then, for all sequences $S_0 = F, S_1, S_2, \ldots, S_n$ of sets of formulas s.t. $S = (\bigcup_{i=0}^{\infty} S_i)$ and

$$S_{i+1} = S_i \cup c(d) ,$$
$$AD_{i+1} = AD_i \cup d ,$$

where $d \in GD(-, S_i, D) :=$

$$:= \{ d \text{ such that } d \text{ is an instance of a default in } D, \\ \operatorname{Th}(S_i) \models p(d) \text{ , and} \\ \operatorname{Th}(S_i \cup \{\beta\}) \text{ is consistent for every } \beta \in J(d) \}$$

Th(S) is an inflationary extension of Δ .

replace "Th $(S \cup \{\beta\})$ is consistent" with "Th $(S_i \cup \{\beta\})$ is consistent"; e.g. [Marek/Truszczynski 93].

- $S = F \cup \bigcup_{i=0}^{\infty} c(AD_i),$
- no default applicable in Th(S).

,

Complete, but not correct:

Proposition 1 (Extensions vs. Inflationary Extensions)

Let $\Delta = (D, F)$ be a Default theory.

- 1. Every extension S of Δ is also an inflationary extension of Δ , and
- 2. Let S be an inflationary extension. If for every $\beta \in J(AD_n)$, β is consistent with S, then S is an extension of Δ .

Inflationary: a default which has been once applied is not undone if in a later step one of its *justifications* turns out to be wrong (above criterion).

- forbidding the application of defaults whose justifications will be falsified later,
- forbidding the application of a default whose logical consequences would falsify the justifications of another default which has been applied earlier.

Cautious Inflationary Extensions

Let $\Delta = (D, F)$ be a default theory.

Then, for all sequences $S_0 = F, S_1, S_2, \ldots, S_n$ of sets of formulas s.t. $S = (\bigcup_{i=0}^{\infty} S_i)$ and

$$S_{i+1} = S_i \cup c(d) ,$$
$$AD_{i+1} = AD_i \cup d ,$$

where $d \in GD(AD_i, S_i, D) :=$

$$= \{ d \text{ such that } d \text{ is an instance of a default in } D, \\ Th(S_i) \models p(d) \text{ , and} \\ Th(S_i \cup \{\beta\}) \text{ is consistent for every } \beta \in J(d), \\ \text{ and } Th(S_i \cup c(d) \cup \beta) \text{ is consistent} \\ \text{ for every } \beta \in J(AD_i) \} .$$

Th(S) is a cautious inflationary extension of Δ .

•
$$S = F \cup \bigcup_{i=0}^{\infty} c(AD_i),$$

• possibly applicable defaults in Th(S).

Proposition 2 (Cautious Inflationary vs. Inflationary Extensions)

Let $\Delta = (D, F)$ be a default theory.

- Every cautious inflationary extension S of Δ can be extended to an inflationary extension.
 If GD(S, D) = Ø, then S is an inflationary extension.
- If an inflationary extension S satisfies Prop. 1(2) then S is also a cautious inflationary extension.

Proof: Prefixes of computation sequences.

Proposition 3 (Extensions vs. Cautious Inflationary Extensions)

Given a default theory $\Delta = (D, F)$, a cautious inflationary extension S of Δ is an extension of Δ if $GD(S, D) = \emptyset$.

The Horn Case

- $\Delta = (D, P),$
- P Horn formulas,
- *D* Inheritance Defaults, i.e. of the form

 $O \text{ isa } C, C[M \bullet \forall V] : \neg \exists C'(O \text{ isa } C' \land C' :: C) , O[M \rightarrow V]$ $O[M \rightarrow V]$

 \Rightarrow the "extension base" $S = P \cup \bigcup_{i=0}^{\infty} c(AD_i)$ is Horn.

Definition 1 Given an F-Logic program P and an extension base S of Δ_P ,

 $\mathcal{H} := T_S^{\omega}(\emptyset)$

is called the *H*-extension of P to S(analogous for *inflationary H*-extensions and *cautious inflationary H*-extensions).

Computing Inflationary H-extensions

Proposition 4 Let P be an F-Logic program, Δ_P its default theory.

Then, for all sequences $\mathcal{H}_0 = T_P^{\omega}(\emptyset), \mathcal{H}_1, \mathcal{H}_2, \dots$ of sets of *H*-structures s.t. $\mathcal{H} = (\bigcup_{i=0}^{\infty} \mathcal{H}_i)$ and

$$\mathcal{H}_{i+1} = T_P^{\omega}(\mathcal{H}_i \cup c(d)) ,$$
$$AD_{i+1} = AD_i \cup d$$

where $d \in GD(\mathcal{H}_i, \Delta_P) :=$

 $:= \{ d \text{ such that } d \text{ is a ground instance of a default in } D_P, \\ p(d) \subseteq \mathcal{H}_i \text{ , and} \\ Th(F \cup \mathcal{H}_i \cup \{\beta\}) \text{ is consistent for every } \beta \in J(d) \} \text{ ,} \\ \mathcal{H} \text{ is an inflationary H-extension.} \end{cases}$

Proposition 5 Let \mathcal{H} be an inflationary H-extension computed by the above algorithm. If for every $\beta \in J(AD_n)$, β is consistent with \mathcal{H} , then \mathcal{H} is an H-extension of Δ .

Inheritance Triggers

alternatingly computing a classical deductive fixpoint and carrying out a specified amount of inheritance.

Definition 2 (Inheritance Triggers) \mathcal{H} an H-structure.

- An inheritance trigger in \mathcal{H} : (o isa $c, m \rightarrow v$) s.t.
 - $(o \text{ isa } c) \in \mathcal{H},$
 - $\text{ and } c[m \bullet v] \in \mathcal{H},$
 - $\text{ no } o \neq c' \neq c \text{ s.t. } \{ o \text{ isa } c', c' :: c \} \subseteq \mathcal{H}.$
 - (analogous for ::).
- An inheritance trigger (o isa c, m→v) is active: no v' s.t. o[m→v'] ∈ H.
- $\mathbf{T}(\mathcal{H})$: set of active inheritance triggers in \mathcal{H} .
- Application ("firing") of a trigger:

 $\begin{array}{l} t = (o \text{ isa } c, m \bullet \forall v) \\ t = (c' :: c, m \bullet \forall v) \end{array} \end{array} \right\} \rightsquigarrow t(\mathcal{H}) := \left\{ \begin{array}{l} \mathcal{H} \cup \{o[m \to v]\} \\ \mathcal{H} \cup \{c'[m \bullet \forall v]\} \end{array} \right.$

• $\mathcal{I}_P^t(\mathcal{H}) := T_P^\omega(t(\mathcal{H}))$ one step inheritance transformation.

Definition 3 (Inheritance-Canonic Model) Let P be an F-Logic program P.

A sequence $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_n$ of H-structures is an \mathcal{I}_P -sequence if

- $\mathcal{M}_0 = T_P^{\omega}(\emptyset)$ and
- for all *i*, there is a $t_i \in \mathbf{T}(\mathcal{M}_i)$ s.t. $\mathcal{M}_{i+1} = \mathcal{I}_P^{t_i}(\mathcal{M}_i)$.

 \mathcal{M} is an *inheritance-canonic* model of P if there is an \mathcal{I}_P -sequence $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M} \neq \bot$ s.t. \mathcal{M} has no active triggers.

The consistency check before inheriting is omitted in the definition of inheritance-canonic models:

Definition 4 Let $\mathcal{S}_{\mathcal{I}}(P)$ be the set of H-structures \mathcal{H} s.t. there exists an \mathcal{I}_P -sequence $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{H}$, and $\mathcal{I}_P^t(\mathcal{H}) = \bot$ for every $t \in \mathbf{T}(\mathcal{H})$.

Comparison

 $M_1 \preceq M_2$: every structure/theory in M_1 can be extended to one in M_2 .

Computation of inheritance-canonic models implements the computation of inflationary H-extensions:

Proposition 6 P an F-Logic program, Δ_P the corresponding default theory. Then the following sets coincide:

- the set of \mathcal{I}_P -sequences $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_n$ s.t. $\mathcal{M}_n \neq \bot$, and
- the set of prefixes $\mathcal{H}_0, \mathcal{H}_1, \ldots, \mathcal{H}_n$ of computations of inflationary *H*-extensions.

Theorem 1

$(\mathcal{I}_P$ -sequences and inflationary H-Extensions)

- $S_{\mathcal{I}}(P)$ is the set of inflationary H-extensions of P.
- An H-structure $\mathcal{H} \in \mathcal{S}_{\mathcal{I}}(P)$ is an H-extension of P if and only if there is an \mathcal{I}_P -sequence $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{H}$ which satisfies Prop. 5.

Cautious Strategy

 D_{inh} : justification can only be annulled in later steps is when an intermediate class is inserted:

 $O \text{ isa } C, \ C[M \leftrightarrow V] : \neg \exists C'(O \text{ isa } C' \land C' :: C), \ O[M \rightarrow V]$ $O[M \rightarrow V]$

Proposition 7 (Static Class Hierarchy) Let P be an F-Logic program P with a static class hierarchy. Then, the set of extensions of Δ_P and the set of inflationary extensions of Δ_P coincide.

Enforce cautious computations: with every instance of inheritance, the class hierarchy at this point is fixed by forbidding the introduction of an intermediate class.

 $O \text{ isa } C, C[M \bullet \forall V] : \neg \exists C'(O \text{ isa } C' \land C' :: C) , O[M \to V]$ $\neg \exists C'(O \text{ isa } C' \land C' :: C) , O[M \to V]$

Proposition 8 For an F-Logic program P, every inflationary extension of Δ_P^* is also an extension of Δ_P^* .

Cautious Trigger Mechanism

Adding a rule

$$r(t) :=$$
 inconsistent $\leftarrow o \ \ C$, C :: c, not (c=C).

as an *integrity constraint* to the program whenever an inheritance trigger $t = (o \sharp c, m \bullet v)$ is fired.

Definition 5 P an F-Logic program P. A sequence $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_n$ of H-structures is an \mathcal{I}^*_P -sequence if

- $\mathcal{M}_0 = T_P^{\omega}(\emptyset)$ and
- for all *i*, there is a $t_i \in \mathbf{T}(\mathcal{M}_i)$ s.t. $\mathcal{M}_{i+1} = \mathcal{I}_{P_{i+1}}^{t_i}(\mathcal{M}_i) \neq \bot$ where $P_0 = P$ and $P_{i+1} = P_i \cup r(t_i)$.

Theorem 2 (\mathcal{I}_P^* -sequences and cautious H-Extensions) Let P be an F-Logic program. Then,

- 1. $S^*_{\mathcal{I}}(P)$ is the set of cautious inflationary H-extensions of P.
- 2. for every \mathcal{H} in $\mathcal{S}^*_{\mathcal{I}}(P)$, if $\mathcal{I}^t_{\mathbf{P}}(\mathcal{H}) = \bot$ for every $t \in \mathbf{T}(\mathcal{H})$, then \mathcal{H} is an H-extension of P (equiv. to $GD(\mathcal{H}, \Delta_P) = \emptyset$).

Conclusion

- integrating nonmonotonic inheritance into a deductive object-oriented database language.
- T_P -based computation of Herbrand-like structures which approximate the extensions of the default theory corresponding to P.
- investigation of the current F-Logic definition/implementation for inheritance: approximately correct:
- correct in all cases where the specification is "well-behaved"; post-computation check by Theorem 2.