Search, Analysis, and Integration of Web
Documents: A Case Study with FLORID

Rainer Himmerdder Paul-Th. Kandzia
Bertram Ludascher Wolfgang May Georg Lausen

Institut fiir Informatik, Universitat Freiburg, Germany
{himmeroe ,kandzia,ludaesch,may, lausen}@informat ik.uni-freiburg.de

Abstract

Languages supporting deduction and object-orientation seem particularly promising for
querying and reasoning about structure and contents of the Web, and for the integration
of information from heterogeneous sources. FLORID, an implementation of the deductive
object-oriented language F-logic, has been extended to provide a declarative semantics for
querying the Web. This extension allows extraction and restructuring of data from the
Web and a seamless integration with local data. Since the functionality of wrappers and
mediators is integrated into a single declarative language, the development of advanced
applications based on the Web as an information source is significantly simplified. This
claim is substantiated using a comprehensive example.

1 Introduction

The enormous impact of the World-Wide Web has originated novel questions, but also re-
newed the interest in problems which have been studied before in different contexts. Ob-
viously, during the design of a non-trivial Web application, various research areas may be
involved: For example, the recent work on semistructured data has discovered the Web as
an important and interesting example [Abi97, Bun97, Suc97]. Typical features of semistruc-
tured data include the following: the structure is irregular, partial, unknown, or implicit in
the data. Ome research goal is to find an appropriate data model and query language. In
contrast to full-fledged object-oriented languages, languages for semistructured data do not
allow to benefit from known structure or to handle “meta-knowledge” like schema information
in an adequate way.

Closely related to semistructured data is the research on Web query languages. Languages
like W3QS [KS95] and WebSQL [MMMO97] allow to specify conditions which refer to both,
the (hyperlink) structure and the contents of Web documents. However, in this area the focus
is on efficient searching of Web documents, not on their further processing and organization.

The main interest in the area of heterogeneous databases [GMPQ197, AMM97, LROY6]
lies on the semantic integration of different data sources. The typical architecture consists of
wrappers which map data sources to a common data model, on top of which mediators take
care for the semantical integration. In this context, the search for relevant Web documents
is not covered. Moreover, in advanced applications, the hierarchical architecture may not
be flexible enough, e.g., when wrappers for additional sources are required depending on the
results of a mediator, or when a data-driven wrapper can profit from the knowledge of a
mediator.

WebOQL [AM98] is designed as a unified platform for the aforementioned tasks and uses
a graph-based data model. Thus, like other languages for semistructured data, it does not
allow to reorganize data into a rich object-oriented data model, which is often desirable from
the user’s viewpoint.

Several approaches take Logic Programming and Deductive Databases as a starting point
for Web (query) languages in order to support the restructuring of documents [BHT97].
Unfortunately, to our knowledge, there is no language integrating Web access with a clear and
declarative semantics. Moreover, object-oriented modeling of data, which has proven useful
for various tasks when managing Web documents, is not directly supported by languages
in the style of Prolog or Datalog. In contrast, ADOOD [GMP97, GMNP97] and WebLog
[LSS96] add object-orientation to logic-based Web management. However, WebLog has not
been implemented (yet); moreover, both languages do not provide a formal semantics for the
actual Web access.

In this paper we present some experiences in designing Web applications with FLORID.
FLORID! (F-LOgic Reasoning In Databases) is an implementation of F-logic with path ez-
pressions [FLU94], which turn out to be particularly useful for navigating on semistructured
data. All deductive and object-oriented features of F-logic are supported by the system.
Recently, FLORID has been extended to provide a declarative semantics for querying Web
documents [HLLS97, HLLS98]. The proposed extension allows extraction and restructuring
of data from the Web and a seamless integration with local data. A main advantage of the
approach is that it brings together the above-mentioned issues in a unified, formal framework
and supports rapid prototyping and experimenting with all these features. In particular,
FLORID programs may be used (simultaneously) as wrappers, mediators, or for “ordinary”
queries. Hence, we claim that FLORID is quite convenient for programming all query aspects
of a Web application.

2 Preliminaries: F-Logic in a Nutshell

We briefly review the basic constructs of F-logic and its extension by path expressions; for
details see [KLW95] and [FLU94, HLM™], respectively. Consider the following fragment of
an F-logic program:

person[name => string; children@(integer) == person]. % signature of class person
employee::person. % subclass relationship
john:employee[% instance relationship and

name — " John Smith”; children©@(1998) —» {mary,bob}]. % ... some example data
X.father:man :— X:person. % object creation by ...
X.mother:woman :— X:person. % ... path expressions

First, the signature of class person is specified: The single-valued method name yields in-
stances of class string, whereas the multi-valued (and parameterized) method children yields
instances of person. The subclass relation employee::person states that all members of em-
ployee are also members of person. Next, john:employee defines that the object named john is
an instance of class employee; the specification inside [...] defines the actual data values for
name and children.

The last two rules demonstrate how path expressions in the head can be used to create
new object identifiers (oids): If X is bound to an instance of person, then the single-valued
method father becomes defined for X. The newly “created” father is referenced by the path
expression X.father and is made an instance of man. In particular, john[father — john.father]
and (john.father):man hold (similarly for mother and woman). Thus, the dot “.” corresponds

! Available through [FLO].

won

to navigation along single-valued methods (—) like name and father, while is used to
navigate along multi-valued methods (—) like children, e.g., as in john..children@(Y)[...].

The use of single-valued path expressions for object creation is crucial for our approach
to Web exploration (see below). Object creation has to be used with care in order to avoid
infinite universes and nontermination: e.g., the rule X.father:man :— X:man, if added to the
program, creates an infinite number of objects john.father, john.father.father, ...

3 Exploring the Web with F-Logic

The Web Model. We adopt the usual model, where the Web is conceived as a graph-like
structure consisting of documents and links between them. More precisely, we distinguish
between the class url of (potential) urls, and webdoc of (accessed) Web documents. Urls
are instances of string, for which a special method get is definable (see below). Typical
elements of class webdoc are SGML/HTML pages, but other document types may also be
included (e.g., BibTeX, ASCII text, etc.). If a Web document has been accessed, a number of
system-defined methods may become defined for it: e.g., url (the url of the Web document),
author, modif (time of last modification), type, and—most notably—the multi-valued method
hrefs@(label) representing the outgoing links of the Web document (see Fig. 1). Note that
hrefs is parameterized with the label of the link.2 If the Web access fails, error returns the

reason of the failure (e.g., server does not exist, page not found, etc.).
hrefs@(" label")

url::string[get = webdoc]. % signature of url and : 0

WedeC[ur| = Url; author = String; % . WedeC <HTML><HEAD>. . . EAD> <HTML><HEAD>. . .</HEAD>
type = string; hrefs@(string) == url; ... ; label ...</h>
modif = string; error == string]. <JHTHL> p—

wd1:webdoc[url — ; hrefs@("label”) —» { H

wd2:webdoc[url — ; type — | wdl wd?2

Figure 1: F-logic Web model: signature and example data

Web Exploration. A Web document is accessed and added to the local F-logic database by
defining the method get for an instance w of class url in the head of a rule, thereby creating
the new oid “u.get” of the fetched Web document. After the oid u.get has been created,
system-defined methods are automatically “filled in” by FLORID, and the Web document
named u.get becomes an ordinary F-logic object (conceivable as a large string). Thus, u.get
is “cached” and the url u is accessed only once. Note that the potentially system-defined
methods for class webdoc are fixed by the FLORID system—the actually system-defined (i.e.,
“filled”) methods for u.get depend on the result of accessing the url u. For example, if
error is defined, then hrefs@(...) will be undefined. Here, the advantages of using an object-
oriented framework like F-logic become apparent: although the instances of a certain class
may typically define a certain set of methods, some (or all) of these methods may be omitted.
Thus, the use of NULL values as in the relational model can be avoided.

Apart from this first document analysis done by the system, the main power of the
approach lies in the possibility to use all features of F-logic (and path expressions) for fetched
documents.

?Sometimes also the offset of the link in the document may be useful [MM97].

Declarative Semantics. Typically, browsing the Web means to access documents de-
pending on some information (in the most simple case an url), using the newly derived
information of those documents to find new documents, and so on. Clearly, this principle
of data-driven Web exploration lends itself to a direct integration with the forward-chaining
style of reasoning as employed in deductive databases. Thus, a seamless integration with
the bottom-up evaluation strategy of FLORID and a declarative semantics of the language is
achieved [HLLS97]. The special semantics of Web access can be integrated by adding a func-
tion ezplore which describes the semantics of an url using a subset of the extended Herbrand
base HB*.> For example, for "urll” in Fig. 1, ezplore yields facts of the form

"urll” .get[type — "text/html”], "urll”.get[hrefs@("label”) —» {"url2" }], "url2":url,

The immediate consequences operator Tp can be easily adapted to incorporate this semantics,
simply by adding the corresponding facts for all documents which have been “requested” via
get:

Let URL be the set of all url’s, R a set of reserved names (0-ary functors), and HB* the
extended Herbrand base. R contains the names for system-defined methods; here, at least
the methods url, get, hrefs, and errors. Then, a Web Interface W is a tupel (R, explore),
where

explore : URL — 275"
is a function mapping each u € URL to a set of new facts (representing what is known after
accessing and analyzing u). A Web interpretation wrt. a Web interface W is a Herbrand
interpretation H C HB* that additionally satisfies the Web access aziom:

for all uw € URL, if u:url,u.get € H then explore(u) C H .

Then, the computation of the (inflationary) Herbrand Web model is integrated into FLORID’s
bottom-up evaluation by the following extended immediate consequence operator:*

TY(H) := HUTp(H) U Uu:url —— explore(u) .

(#)

4 Designing a Web Application with FLORID

To demonstrate the power and flexibility of FLORID for designing advanced Web applications,
we present an example which integrates data from two different sources, the CIA World
Factbook and World Online. This and further examples can be obtained (and executed) via
the FLORID homepage [FLO]. Although one may argue that the data in those sources is quite
regular and should be put on the Web as a database in the first place, such a database is not
available from the Web, whereas the semistructured HTML pages are. Moreover, the data
actually contains some irregularities and idiosyncrasies which have to be considered when
extracting information.

The structure of the FLORID program below mirrors a kind of “methodology” that is
frequently encountered in the context of integration of Web sources: After accessing/browsing

3HB* is defined over an extended Herbrand universe U* containing, in addition to the usual constants,
so-called pure references like john.father.mother or "urll” .get; see [HLLS97, HLM™].

“In addition to inflationary semantics, FLORID also supports user-defined stratification, which is useful for
programs involving negation, or to enforce a certain evaluation order. Here, for simplicity, we assume that P
also includes F-logic’s closure axioms [KLW95].

the pages of interest, the “raw” remote data can be retrieved and then reorganized, thereby

obtaining a local (re)structured database. When this has been done for all data sources, an
integration step follows in which the data from the different sources has to be correlated, for
example, by identifying synonyms for common real world entities.

4.1 Accessing Entry Pages

In our example this task is not very difficult, since the urls of the interesting Web-servers and
their principal structure are known in advance. Nevertheless, the data structuring facilities
of F-logic turn out to be useful:

First, the url of the CIA World Factbook and of a local mirror are defined for the object
cia, our “entry” object to the World Factbook:?

cia[home — " http://www.odci.gov/cia/publications/nsolo/factbook/";
mirror — " http:/ /www.informatik.uni-freiburg.de/~dbis/.mir/ciawfb/"].

To allow for easy substitution of the data source, a generic name cia.src is defined:

cia[src — cia.mirror]. % use the local mirror

On the top-level, the World Factbook is organized as a set of pages, one page for each
continent. The following facts define the local names of those pages as the result of the method
file®@(cia) on continent names, which additionally are made instances of class continent:

" Europe” :continent[file@(cia) — "eur.htm"].
" Asia” :continent[file@(cia) — "asia.htm"].
" Antarctic Region” :continent[file@(cia) — "ant.htm"].

The actual url U of the page for a continent C is obtained by concatenating (via the built-in
strcat) the CIA root url and C’s file name FN. Each such U is made an instance of class url
and accessed by defining the method get for it:

Clurl@(cia) = U] - % define the continents’ urls
C:continent][file@(cia) — FN], % ... using the filename
strcat(cia.src,FN,U). % ... and the CIA source url

U:url.get :— C:continent[url@(cia) — U]. % add urls to class url and get all continent pages

As mentioned in Section 3, the method hrefs@(label) is automatically defined by the system
(unless an error has occurred) for all accessed Web documents (i.e., for which get is defined).
The links found on a continent page refer to the country pages of this continent, hence they
are used to populate a class country. The result of the following rules is needed for further
access to Web sites; hence, this represents an example of a mutual dependency between Web
search and information found on Web documents:

cid(cia,C):country[url@(cia) — U; name®(cia) — C; continent — CT] :— % define new country objects
CT:continent.url@(cia).get[hrefs@(Label) —» U], % ...using labels of continent pages
match(Label, "\(.*\) ([0-9]","\1",C). % ...if they have a certain form

>The local mirror is not only useful when the main site is unavailable, but also when the original Web pages
are completely reorganized. Then the mirror can be used until the “wrapper part” of the FLORID program
has been adjusted to the new structure.

For each continent CT, the labels and their corresponding urls U are inspected: If the label
has a certain form (e.g., "Spain (32 KB)"), then the country name can be extracted from
the label using a regular expression and the built-in match (Section 4.2). We use a Skolem
functor cid to construct a new oid (internal name) for each country. Since we will later use
another data source for countries, we add “cia” as a parameter to the oid. The reason for
parameterizing the single-valued method name (which holds the external name of the country)
will become clear when country objects from different source are fused into a single object;
see Section 4.4.

Finally, the individual country pages can be accessed by making their urls instances of
class url and defining get for them:

U:url.get :— C:country[url@(cia) = U]. % access all cia countries

4.2 Retrieving “Raw” Data

The penultimate rule of the previous section (defining new country objects cid(cia,C)) is an
example where data is extracted using the link structure of Web pages. Although such hyper-
links (represented by the method hrefs) and other structural features often carry meaningful
information, often also textual components of a document have to be analyzed.

To this end, built-in predicates for extracting and analyzing data from accessed Web
documents have to be provided. A simple, yet flexible and powerful approach used in FLORID
and also in many other systems, is to view Web documents as (large) strings. Then, using
reqular expressions, patterns in Web documents can be easily exploited, e.g., to extract all
strings between pairs of HTML tags like <h2> and </h2> (level-2 headings), or to analyze
tables or lists. The regular expressions employed in FLORID include groups and format strings
thereby providing a quite expressive language: The predicate

match(Str, RegEz, Fmt, Res)

finds all strings in the input string Str which match the pattern given by the regular expression
RegEx. The format string Fmt describes how the matched strings should be returned in Res.
This feature is particularly useful when using groups (expressions enclosed in \(...\)) in regular
expressions. For example,

?— match(” Time heals all wounds”, "\(.*\) heals \(.*\) \(.:*¥\)”", "\1\3\2 heels”", X).

yields X="Time wounds all heels”. Instead of Fmt¢ and Res, also lists of format strings and
result variables can be given.
Continuing the World Factbook example, data from the country pages can be extracted

and stored in the F-logic database as follows:

C[capital = X] '— match(C:country.url@(cia).get, " Capital:.x\n\(.*\)", "\1", X).

C[total_area — X] '— match(C:country.url@(cia).get, "total area:.*\n\(.*xsq km\)", "\1", X).

Clexternal_debt — X] :— match(C:country.url@(cia).get, " External debt:.*\n\(.*\)", "\1", X).
These rules show a strong regularity. Thus, one can take advantage of the meta-programming
facilities of F-logic (here: variables at method position) and replace the code by a single
generic rule and facts describing the used patterns:

C[Method — X] :— pattern(Method, RegEx), match(C:country.url@(cia).get, RegEx, "\1", X).

pattern(capital,” Capital:.¥\n\(.*\)").
pattern(total_area,”total area:.*x\n\(.*sq km\)").
pattern(external_debt,” External debt:.x\n\(.*\)").

Clearly, such a “pattern-base” may be extended easily for other methods.

4.3 Organizing and Extracting Information

Once the necessary sites are found and interesting information is extracted, it can be organized

in an object-oriented way. If —as usual- the amount of data is large or not clearly structured,

an interactive exploration may be very helpful to find an appropriate representation.
Queries like the following give a first impression of the World Factbook:

?— N = count{C ; C:country}. % wuse aggregation to count the countries (Q1)
?— _:country[name®(cia) — N; capital — C]. % name all countries and their capitals (Q2)

Query (Q1) yields N=266 countries (see [FHKS97] for details on aggregation in FLORID).
However, (Q2) outputs a binary relation (Country,Capital) with only 256 entries (note, that
as in Prolog, variables starting with an underscore are conceived as existentially quantified
and are not shown in the answer).

Data Cleaning. To shed some light on this apparent contradiction, the next query reveals
the 10 “countries” for which the method capital is not defined:

?— _C:country[name®(cia) — N], not _C.capital. % (Q3)

Among others, answers are " Antarctica”, " Atlantic Ocean”, and "World". Moreover, it turns
out that there are some “countries” which have the method capital defined, yet do not have
a proper capital. For example, for " Bouvet Island” the method capital yields the result " none;
administered from Oslo, Norway”. Thus, we may specify the class of real countries as follows:

C:real_country « C:country[capital = CA], not substr("none”, CA).

Now, the query ?- C:country, not C:real_country discloses 25 more “false countries” (apart
from the 10 above) like "Bouvet Island”, " Clipperton Island”, and " Western Sahara”.

A characteristic advantage of F-logic is the possibility of schema browsing. Consider the
following queries:

?— _country[M — _]. % what scalar methods are defined for countries? (Q4)
?— _:country.M, _C:country[name®(cia) — N], not _C.M. % what methods are undefined for C? (Q5)

Query (Q4) yields all single-valued methods (capital, total_area, land_area, etc.) potentially
defined for countries (i.e., defined for at least some country). The first literal _:country.M
of (Q5) is a syntactic variant of (Q4); together with the rest of (Q5), “countries” C with
undefined methods M are reported: e.g., for C="Ashmore and Cartier Islands”, the method
M="1labor_force” is undefined.

Extracting Structured Data. Often, data sources already contain some structured data,
e.g., in the form of lists (like HTML lists or comma(-separated) lists in plain text). In the
World Factbook, ethnic groups, religions, and languages are given as comma lists of the form

Ethnic Divisions: Pashtun 38%, Tajik 25%, Uzbek 6%, Hazara 19%,
minor ethnic groups (Aimaks, Turkmen, Baloch, and others).

Such information can be extracted in two steps. First, the whole comma list after Ethnic
Divisions is read as a string (and augmented with an additional “”). In the second step,
individual list elements are extracted from the string. For every pair (country, group), a new
object with oid ethgrp(country, group) is created, which provides the methods name and perc:

Clegrps — L2] :-

match(C:country.url©(cia).get, " Ethnic divisions:.*\n\ (. *\)","\1", L), strcat(", ", L, L2).
Clethnicgroups —» ethgrp(C,G)[group — G; perc = P]] -

match(C.egrps,”, \([70-9,1*\)\([~a-zA-ZI*\)\%",["\1","\2"], [G,P]).

Here again, generic rules and patterns can be given to extract information from several
comma, lists, (here: ethnic divisions, languages, and religions):

CM—=L2] -
commapattern(M,F,S,N), strcat(S," : . *\n\ (. *\)",S2),
match(C:country.url©(cia).get, S2, "\1", L), strcat(", ",L,L2).
C[M = cr(F,C,X)[N = X; perc > P]] -
commapattern(M,F,S,N),
match(C.M,”, \([70-9,1%\) \(["a-zA-Z]1*\)\%", ["\1","\2"]1,[X,P]).

commapattern(ethnicgroups,egrp,” Ethnic divisions” ,group).
commapattern(languages,lg,” Languages”,lang).
commapattern(religions,rel,” Religions” ,rel).

Then, e.g., the ethnic groups of the United Kingdom can be queried:

Answer to: ?- _[name®@(cia) — " United Kingdom"]..ethnicgroups[group — G; perc — P].
P/"2.8" G/"and other”

P/"81.5" G/" English”

P/"9.6" G/"Scottish”

P/"2.4” G/" Irish”

P/"1.9" G/" Welsh”

P/"1.8" G/" Ulster"

4.4 Integration of Different Sources

In the running example, we have shown how the country information of the World Factbook
can be retrieved and “cleaned”. However, often it is not sufficient to use only one source
of data; rather information from different sources has to be integrated and restructured.
Programming such problems again benefits very much from the features provided by F-logic.
The World Factbook gives no information about cities. However, such data for the main
cities of a country can be found on another Web server, the World Online server. Below, we
illustrate how data from World Online can be integrated with World Factbook data.

The first steps are very similar as those for the World Factbook, since the top-level
organization of the server is analogous. First, the server location as well as the needed pages
are defined and the country pages are accessed. Note that continents have a unique name in
the Web sources considered here, hence can be used directly as oids.

wol[src — " http:/ /home.worldonline.nl/“quark/"].

" Europe” [file@(wol) — " europe/euix.htm"].
" Asia" [file@(wol) — " asia/asix.htm"].

" Africa" [file@(wol) — " africa/afix.htm"].
Clurl@(wol) — U] :— C:continent][file@(wol) — A], strcat(wol.src,A,U).
U:url.get :— C:continent[url@(wol) — U].

When accessing the country pages (which are found by following all links except those con-
taining certain words in the label), an irregularity has to be considered (in the sequel the
discussion is restricted to Europe): There are two alternative pages for Germany, hence the
rule excludes one of them (the one which contains a “2” in the name):

wol[exclude —» {"home"," general data”," population”,” economy” " Profiler” }].

cid(wol,C):country[url@(wol) — U; continent — Cont; name®(wol) = C] -
Cont:continent.url@(wol).get[hrefs@(C) —» U],
not substr(wol..exclude,C), not substr("2",U).

U.get :— C:country[url@(wol) — U].

Now the information about the main cities of a country is retrieved from World Online’s
country pages. Oids for newly created instances of class city are defined using the Skolem
functor cty. Note that we have to include both the city name and the country name in this
oid to ensure uniqueness:

C[main_cities — cty(CN,C):city[name®(wol) — CN; population — P]] -
C:country[url@(wol) — U],
match(U.get, "<.><..>.x</.>< .. =right>.x</..></.>\n", ["\1","\2"],[CN,P]),
not substr("align”,CN), not substr(" ALIGN",CN).

Object Fusion. The connection between data from both Web sources is established using
country names. However, we have to deal with synonyms, since names are not unique over
different sources, e.g., ”Czech Republic” (World Factbook) vs. " Czech Rep.” (World Online).
Here, a simple heuristic is used to merge the information on countries: Different pages are
about the same country, if they lie in the same continent and (i) the name of the country is
the same in both sources, or (ii) the capital according to the World Factbook is one of the
main cities according to World Online. If those conditions are satisfied, the objects describing
the same country can be fused by equating their oids. As a result of such a derived equation,
we get a single fused object combining all properties of both objects. Since the single-valued
method name has been parameterized with the data source (cia or wol), no violation of the
functionality constraint occurs. Note that this holds only under the assumption that country
names are unique within the World Factbook and World Online, respectively.

Cl=C2 -
Cl:country[continent — Cont; name®©(S1) — N]J,
C2:country[continent — Cont; name@(S2) — N], not S1=S52.

Cl=C2 -
Cl:country[continent — Cont]..main_cities[name®(wol) — N],
C2:country[continent — Cont; name®(cia) — _; capital — N].

To check which country objects have been fused, one can use the following query:

Answer to: ?- cid(cia,X) = cid(wol,Y), not X =Y.
X/" Czech Republic” Y /" Czech Rep.”
X/" Germany” Y /" Germany I”

Now the user can freely query the integrated information from both sources, e.g., the capital
of Germany together with its population:

Answer to: ?- _:country[name@(S1) — " Germany"; capital — N], _:city[name@(S2) — N; population — P].
N/"Berlin” S1/cia P/"3,472,009" S2/wol

5 Conclusion

We have demonstrated how several Web data management problems can be handled using the
FLORID system. In this paper, we have focused on Web querying and information integration;
the handling of semistructured data is detailed in [HLM™]. In contrast to other approaches,
which typically consider the various aspects (i.e., Web querying, semistructured data, and
information integration) in isolation, we propose a unified declarative framework based on
F-logic.

A limitation of the current implementation is the exclusive use of regular expressions for
analyzing Web documents. We are currently extending the Web model and implementation
of FLORID to include the SGML (resp. XML) structure of Web documents using the SGML
parser SPS.

References

[Abi97] S. Abiteboul. Querying Semi-Structured Data. In Intl. Conference on Database Theory
(ICDT), number 1186 in LNCS, pp. 1-18. Springer, 1997.

[AM9Sg] G. O. Arocena and A. O. Mendelzon. WebOQL: Restructureing Documents, Databases,

and Webs. In Intl. Conference on Data Engineering (ICDE), 1998.

[AMM97] P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web. In Intl. Conference on Very
Large Data Bases (VLDB), 1997.

[BHT97] K. D. Bosschere, M. Hermenegildo, and P. Tarau, editors. 2nd Intl. Workshop on Logic
Programming Tools for Internet Applications, 1997. in conjunction with ICLP’97, Bel-
gium, http://clement.info.umoncton.ca/"Ipnet /iclp97.

[BRRI7] F. Bry, K. Ramamohanarao, and R. Ramakrishnan, editors. Intl. Conference on Deduc-
tive and Object-Oriented Databases (DOOD), number 1341 in LNCS, Montreux, Switzer-
land, 1997. Springer.

[Bun97] P. Buneman. Semistructured Data (invited tutorial). In ACM Symposium on Principles
of Database Systems (PODS), pp. 117-121, Tucson, Arizona, 1997.

[FHKS97] J. Frohn, R. Himmerdder, P.-T. Kandzia, and C. Schlepphorst. How to Write F-Logic
Programs in FLORID, Version 2.0, 1997.

[FLO] The FLORID Home Page. http://www.informatik.uni-freiburg.de/~dbis/florid/.

[FLU94] J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expressions and Rules.
In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Intl. Conference on Very Large Data
Bases (VLDB), Santiago de Chile, 1994.

[GMNP97] F. Giannotti, G. Manco, M. Nanni, and D. Pedreschi. Datalog++: A Basis for Active
Object-Oriented Databases. In Bry et al. [BRR9I7].

[GMP97] F. Giannotti, G. Manco, and D. Pedreschi. A Deductive Data Model for Representing
and Querying Semistructured Data. In Bosschere et al. [BHT97]. in conjunction with
ICLP’97, Belgium, http://clement.info.umoncton.ca/"Ipnet /iclp97.

[GMPQ™97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman,
V. Vassalos, and J. Widom. The TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Information Systems, 8(2), 1997.

Shttp://www.jclark.com/sp/

10

[HLLS97]
[HLLS98]

[HLM™]

[KLW95]
[KS95]
[LRO96]

[LSS96]

[MMO97]
[MMMO97]

[Suc97]

R. Himmero6der, G. Lausen, B. Ludéscher, and C. Schlepphorst. On a Declarative Se-
mantics for Web Queries. In Bry et al. [BRR97], pp. 386-398.

R. Himmero6der, G. Lausen, B. Ludéascher, and C. Schlepphorst. FLORID: A DOOD-
System for Querying the Web. In Demonstration Session at EDBT, Valencia, 1998.

R. Himmerdder, B. Ludéscher, W. May, C. Schlepphorst, and G. Lausen. Managing
Semistructured Data with FLORID: A Deductive Object-Oriented Perspective. submit-
ted.

M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM, 42(4):741-843, July 1995.

D. Konopnicki and O. Shmueli. W3QS: A Query System for the World-Wide Web. In
Intl. Conference on Very Large Data Bases (VLDB), 1995.

A.Y.Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogenous Information Sources
Using Source Descriptions. In Intl. Conference on Very Large Data Bases (VLDB), 1996.

L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A Declarative Language for
Querying and Restructuring the Web. In Proc. Sixth International Workshop on Re-
search Issues in Data Engineering (RIDE), 1996.

A. Mendelzon and T. Milo. Formal Models of Web Queries. In ACM Symposium on
Principles of Database Systems (PODS), 1997.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web. Inil.
Journal on Digital Libraries (JODL), 1(1), 1997.

D. Suciu, editor. Proc. of the Workshop on Management of Semi-
Structured Data (in conjunction with SIGMOD/PODS), Tucson, Arizona, 1997.
http://www.research.att.com/~suciu/workshop-papers.html.

11

