
On Active Deductive Databases�

The Statelog Approach�

Georg Lausen Bertram Lud�ascher Wolfgang May

Institut f�ur Informatik� Universit�at Freiburg� Germany
flausen�ludaesch�mayg�informatik�uni�freiburg�de

Abstract� After brie�y reviewing the basic notions and terminology of
active rules and relating them to production rules and deductive rules�
respectively� we survey a number of formal approaches to active rules�
Subsequently� we present our own state�oriented logical approach to ac�
tive rules which combines the declarative semantics of deductive rules
with the possibility to de�ne updates in the style of production rules
and active rules� The resulting language Statelog is surprisingly simple�
yet captures many features of active rules including composite event de�
tection and di�erent coupling modes� Thus� it can be used for the formal
analysis of rule properties like termination and expressive power� Finally�
we show how nested transactions can be modeled in Statelog� both from
the operational and the model�theoretic perspective�

� Introduction

Motivated by the need for increased expressiveness and the advent of new appli�
cations� rules have become very popular as a paradigm in database programming
since the late eighties �Min���	 Today� there is a plethora of quite di
erent appli�
cation areas and semantics for rules	 From a bird�s�eye view� deductive and active
rules may be regarded as two ends of a spectrum of database rule languages�

Deductive Rules
�higher� level

Production Rules Active Rules
�lower� level

strati�ed� well�
founded Datalog�

� � � � � �
RDL�� pro�

cedural Datalog�
� � � � � � A�RDL � � � � � � Ariel � � � � � � Starburst � � � � � � Postgres

Fig� �� Spectrum of database rule languages 	adapted from
Wid��
�

On the one end of the spectrum� deductive rules provide a concise and elegant
representation of intensionally de
ned data	 Recursive views and static integrity
constraints can be speci
ed in a declarative and uniform way using deductive
rules� thereby extending the query capabilities of traditional relational languages
like SQL	 Moreover� the semantics developed for deductive rules with negation
are closely related to languages from the
eld of knowledge representation and

� In� Transactions and Change in Logic Databases� B� Freitag� H� Decker�

M� Kifer� and A� Voronkov� editors� LNCS ����� Springer� �		

nonmonotonic reasoning� which substantiates the claim that deductive rules are
rather �high�level� and model a kind of natural reasoning process	 However�
deductive rules do not provide enough expressiveness or control to directly sup�
port the speci
cation of updates or active behavior	 Since updates play a crucial
role even in traditional database applications� numerous approaches have been
introduced to incorporate updates into deductive rules	

In contrast to deductive rules� active rules support �re�active behavior like
triggering of updates as a response to external or internal events	 Conceptually�
most rule languages for active database systems �ADBs� are comparatively �low�
level� and often allow to exert explicit control on rule execution	 While such
additional procedural control increases the expressive power of the language
considerably� this is also the reason why the behavior of active rules is usually
much more di�cult to understand or predict than the meaning of deductive
rules	 Not surprisingly� researchers continue to complain about the unpredictable
behavior of active rules and the lack of a uniform and clear semantics	

Production rules constitute an intermediate family of languages and provide
facilities to express updates and some aspects of active behavior� yet avoid overly
detailed control features of active rules at the right end of the spectrum	

Contributions and Overview� In this paper� we introduce to the di
erent
rule paradigms in databases in Figure �� and survey a number of formal and
logical approaches to active rules	 We then present a speci
c state�oriented logical
approach to active rules called Statelog� which yields a precise formal semantics
for active rules	 It can be shown that certain production rules and deductive rules
are special cases of Statelog rules� and that many �but not all� features of active
rules like composite event detection and di
erent coupling modes can be speci
ed
in Statelog	 Thus� Statelog can serve as a uni
ed logical framework for active
and deductive rules� in which fundamental properties of rules like termination
behavior� complexity� and expressiveness can be studied in a rigorous way	 The
main technical contribution of this paper is the continuation and re
nement
of �LML���� where a model�theoretic Kripke�style semantics for Statelog in the
context of a nested transaction model has been presented	

The paper is organized as follows� In Section �� we
rst introduce the basic
terminology and features of active rules� and then brie�y relate them to pro�
duction rules and deductive rules� respectively	 Section � is a short survey on
some formal approaches to active rules	 In Section �� we introduce Statelog� a
state�oriented extension of Datalog and summarize the main results	 A key idea
of the approach is to add a state argument to every predicate� for example�
�s� p�x� y� intuitively means that p�x� y� holds in state �s� �this idea has come
up several times� see Section �	��	 Starting from a simple model for �at transac�
tions� the framework is extended subsequently to incorporate nested transactions
�Section ��	 Section � develops an abstract� conceptual model for Statelog with
nested transactions by a model�theoretic Kripke�style semantics	 Some conclud�
ing remarks are given in Section �	

�

� Rules in Databases

Rules in database programming languages come in many di
erent �avors	 In this
section� we discuss language issues of the above�mentioned rule spectrum and
highlight di
erences between the paradigms	

��� Active Rules

Active rules are typically expressed as Event�Condition�Action �ECA� rules of
the form

on heventi if hconditioni then hactioni	

Whenever the speci
ed event occurs� the rule is triggered and the corresponding
action is executed if the condition is satis
ed in the current database state	 Rules
without the event part are sometimes called production rules� rules without the
condition part are sometimes referred to as triggers	

Events� Events can be classi
ed as internal or external	 Internal events are
caused by database operations like retrieval or update �insertion� deletion� mod�
i
cation� of tuples� or transactional events like commit or abort	 In object�
oriented systems� such internal events may take place through method invo�
cations	 External events occurring outside the database system may also be
declared and have to be monitored by the ADB	
Starting from primitive �external or internal� events� more complex composite

events can be speci
ed using an event algebra� typical operators are disjunction
�E�jE��� sequence �E��E��� conjunction �E�� E��� etc	 �cf	 �CKAK���Sin����	
Alternatively� logics like past temporal logic �see e	g	� �LS���Cho��b�� may be
used for the speci
cation of composite events	 Several event detection algorithms
have been developed which allow to detect composite events without storing the
complete database history� for instance by applying temporal reduction rules
�LS���Cho��b� or residuation �Sin���	
A question arising from the use of composite events is which of the constituent

events �take part� in the composite event and how they are �consumed� by the
composite event	 This event consumption policy is elaborated using parameter
contexts� which were introduced for the SNOOP algebra in �CKAK���CM���	 In
order to illustrate the di
erent parameter contexts� consider the composite event
E �� ��F�G��H�� which occurs if H occurs after both F and G have occurred	
Assume the following event history is given�

G�

j
F�
j

F�
j

G�

j
F�
j

H�

j
H�

j
t

Here� the Fj �s denote several occurrences of the same primitive event F � similarly
for Gk and Hl	

�

Di
erent parameter contexts are motivated by applications where constituent
events should be consumed by the composite event in a certain way	 The following
parameter contexts have been proposed �CKAK����

� Recent� In this context� only the most recent occurrences of constituent
events are used� all previous occurrences are lost	 In the above event his�
tory� E will be raised twice� for the constituent events fG�� F�� H�g and for
fG�� F�� H�g	

� Chronicle� In this context� events are consumed in their chronological order	
In a sense� this corresponds to a
rst�in�
rst�out strategy� E will be reported
for fG�� F�� H�g and for fF�� G�� H�g	

� Continuous� In this context� each event which may initiate a composite
event starts a new instance of the composite event	 A constituent event can
be shared by several simultaneous occurrences of the composite event	 In the
example� each Gi and each Fj starts a new instance	 Thus� the composite
occurrences fG�� F�� H�g� fF�� G�� H�g� fF�� G�� H�g� and fG�� F�� H�g are
reported	 The composite event initiated at F� is still to be completed	

� Cumulative� In this context� all occurrences of constituent events are accu�
mulated until �and consumed when� the composite event is detected	 In the
example� E is raised once for the constituent events fG�� F�� F�� G�� F�� H�g	

� Unrestricted� In this context� constituent events are not consumed� but are
reused arbitrarily many times	 For the above history� E is reported for all
twelve possible combinations of fFj � Gk� Hlg	

Conditions� If the triggering event of an active rule has been detected� the
rule becomes eligible� and the condition part is checked	 The condition can be
a conventional SQL�like query on the current state of the database� or it may
include transition conditions� i	e	� conditions over changes in the database state	
The possibility to refer to di�erent states or delta relations is essential in order
to allow for active state�changing rules	

Actions� If the condition of the triggered rule is satis
ed� the action is executed	
Internal actions are database updates �insert� delete� modify� and transactional
commands �commit� abort�� external actions are executed by procedure calls
to application programs and can cause application�speci
c actions outside the
database system �e	g	� send�mail� turn�on�sensor�	 Usually� it is necessary to pass
parameters between the di
erent parts of ECA�rules� i	e	� from the triggering
event to the condition and to the action part	 In logic�based approaches this can
be modeled very naturally using logical variables� while this issue may be more
involved under the intricacies of certain execution models	

Execution Models� The basic execution model of active rules is similar to the
recognize�act cycle of production rule languages like OPS� �BFKM���� one or
more triggered rules �i	e	� whose triggering event and condition are satis
ed� are

�

selected and their action is executed	 This process is repeated until some termi�
nation condition is reached�for example� when no more rules can be triggered�
or a
xpoint is reached	 Clearly� there are a lot of possible choices and details
which have to be elaborated in order to precisely specify the semantics of rule
execution	

One issue is the granularity of rule processing� which speci
es when rules are
executed	 This may range from execution at any time during the ADB�s opera�
tion �
nest granularity�� over execution only at statement boundaries� to trans�
action boundary execution �coarsest granularity�	 Another important aspect is
whether rules are executed in a tuple�oriented or set�oriented way	 Set�oriented
execution conforms more closely to the standard model of querying in relational
databases� and is in a sense more �declarative� than tuple�oriented execution	 In
contrast� tuple�oriented execution adds another degree of nondeterminism to the
language� since the outcome may now depend on the order in which individual
rule instances are
red	

Finally� several coupling modes have been proposed� which describe the re�
lationship between rule processing and database transactions	 Under immediate
and deferred coupling� the triggering event� as well as condition evaluation and
action execution� occur within the same transaction	 In the former case� the ac�
tion is executed immediately after the condition has become true� while in the
latter case� action execution is deferred to the end of the current transaction	
Under decoupled �sometimes called detached or concurrent� execution mode� a
separate transaction is spawned for condition evaluation and action execution	
Decoupled execution may be further divided into dependent or independent de�
coupled� in the former case� the separate transaction is spawned only after the
original transaction commits� while in the latter case the new transaction is
started independently	 In the most sophisticated models� one may even have
distinct coupling modes for event�condition coupling and for condition�action
coupling	

Systems� Most of the active database systems provide a low�level� procedural se�
mantics of rules� see e	g	 �WC��a� for an overview on a number of systems	 Early
precursors of active rules have been introduced in CODASYL� System R� and
OPS�	 More recent systems include Postgres� Starburst� Ariel� Heraclitus� ODE�
and SAMOS	 HiPAC has been in�uential by establishing the ECA�rule paradigm�
follow�on projects are Sentinel �CKAK��� �with its powerful event speci
cation
language SNOOP� and REACH	 Regarding commercial systems� the current
SQL� proposal o
ers so�called declarative constraints used speci
cally for main�
taining referential integrity� and general�purpose triggers �CPM���ISO���	

A�RDL �SK��� is closely related to deductive databases� intensional relations
are de
ned by means of deductive rules	 Delta relations record the net e
ect of
changes to edb�relations during execution of a transaction	 Active behavior is
encoded via rules in an if�then style	

Chimera �CFPT��� distinguishes between declarative and procedural expres�
sions� Declarative expressions are used in query primitives� integrity constraints�

�

and view declarations� transactions are speci
ed using procedural expressions
for actions and declarative expressions in conditions	

��� Production Rules

Production rules can be viewed as ECA�rules without the event part	 However�
production rules have been around long before the ECA paradigm has been
established	 In particular� the production rule language OPS� �BFKM��� has
been used in the AI community since the seventies	 From a more abstract point
of view� one can regard general ECA�rules also as production rules since the
event detection part can be encoded in the condition	� This abstraction is very
useful as it allows to apply techniques and results developed for production rules
to active rules	
A characteristic feature of production rule semantics is the forward chaining

execution model� The conditions of all rules are matched against the current
state	 From the set of triggered rules �candidate set� one rule is selected using
some con�ict resolution strategy and the corresponding actions are executed	
This process is repeated until there are no more triggered rules	
In the database community� such a forward chaining or �xpoint semantics

has been studied for a number of Datalog variants �see� e	g	� �AV���� thereby
providing a logic�based formalization of production rules�
Let Datalog� denote the class of Datalog programs which allow negated atoms

in rule bodies	 The in�ationary Datalog� semantics �I�Datalog� turns the well�
known immediate consequence operator TP developed for �de
nite� logic pro�
grams into an in�ationary operator T�

P by keeping all tuples which have been
derived before� i	e	� T�

P �I� �� I � TP �I�� where I is the set of ground atoms
derived in the previous round	 Starting with a set of facts I �the initial state��
T�
P is iterated until a
xpoint �the
nal state� is reached	 Since the computation
is in�ationary� deletions cannot be expressed directly	 In contrast� Datalog���

has a nonin�ationary semantics by allowing negative literals to occur also in
the head of rules and interpreting them as deletions� if a negative literal �A
is derived� a previously inferred atom A is removed from I	 If both A and �A
are inferred in the same round� several options exists� priority may be given ei�
ther to insertion or to deletion� or a �no�op� may be executed� using the truth
value of A from the previous state� or the whole computation may be aborted
�Via���	 While for I�Datalog termination is guaranteed� this is no longer the case
of Datalog��� it is undecidable whether a Datalog�� program reaches a
xpoint
for all databases� moreover� con�uence is no longer guaranteed if instead of the
presented semantics� a nondeterministic semantics is used �AS���	 On the other
hand� nondeterminism can be a powerful programming paradigm which increases
the �theoretical and practical� expressiveness of a language �AV���GGSZ���	

� For e�ciency reasons however� the distinction between events and conditions may
be crucial in practice�

� Another nonin�ationary semantics called P�Datalog is obtained by only keeping the
newly derived tuples in each iteration� see also Section ����

�

A problem with these �procedural� Datalog semantics is that the handling
of negation can lead to quite unintuitive results�

Example � Under the in�ationary semantics� the program

tc�X�Y� � e�X�Y��
tc�X�Y� � e�X�Z�� tc�Z�Y��
non tc�X�Y� � � tc�X�Y��

does not compute in non tc the complement of the transitive closure of a given
edge�relation e	 The reason is that the last rule is applied �too early�� i	e	� before
the computation of the
xpoint for tc is completed	 Thus� despite the fact that
the derivation of non tc�x�y� may be invalidated by a subsequent derivation of
tc�x�y�� this unjusti
ed tuple remains in non tc	 �

Although the given program may be rewritten using a �somewhat intricate�
technique for delaying rules� a better solution is to use one of the declarative se�
mantics developed for logic programs whenever the use of negation is important�
see Section �	�	
RDL� �KdMS��� is a deductive database language with production rule se�

mantics� a rule algebra is used as an additional control mechanism	 A�RDL
�SK��� extends RDL� by active database concepts� in particular delta relations
and a module concept	

��� Deductive Rules

The logic programming and deductive databases communities have studied in�
depth the problem of assigning an appropriate semantics to logic programs with
negation and have come up with now well�established solutions� The strati�ed�
well�founded� and stable semantics �ABW���VG���GL��� are generally accepted
as intended and intuitive semantics of logic programs with negation	 For strat�
i
ed programs like the one in Example �� all three semantics coincide	� For
non�strati
ed programs� the well�founded semantics yields a unique three�valued
model� whereas the stable semantics consists of a �possibly empty� set of two�
valued stable models� each of them extending the well�founded model	
For relational databases� i	e	�
nite structures� termination and con�uence of

declarative rules can be guaranteed� For example� under the strati
ed semantics�
rules are partitioned into strata according to the dependencies between rule
de
nitions	 Thus� the strata induce a partial order on rules which is used to
evaluate programs	 Within each stratum� the rules are
red simultaneously in
a set�oriented way	 Since the computation within strata is monotonic� the rules
may also be evaluated in arbitrary order and�or tuple�oriented within a stratum
without sacri
cing con�uence	 Termination is guaranteed since it is not possible
to add and remove the same fact repeatedly as is the case for Datalog�� and
nonin�ationary Datalog�	

� A program is strati�ed if no relation de�nition negatively depends on itself� thus�
there is �no recursion through negation��

�

In principle� although Datalog is primarily a query language� it could be
used as a relational update language� for example by interpreting relations like
old R and new R as the old and new values of a relation R� respectively� or
by assuming that R�� R��� etc	 refer to di
erent states of R	 However� such an
approach has several drawbacks� First� part of the semantics is encoded into
relation names and thus outside of the logical framework	 More importantly� the
language does not incorporate the notion of state which is central to updates
and active rules	 In particular� only a
xed number of state transitions can be
modeled by �priming� relation names as described above	
A number of deductive database prototypes with declarative semantics exist

including Aditi� Coral� FLORID� Glue�Nail� LDL� LOLA� and XSB�Prolog �cf	
�RH���Min���SP����	

� Formal Approaches to Active Rules

Whereas the meaning of deductive rules is based on solid logical foundations�
the meaning of the more low�level and operationally intricate active rules is
often hard to understand and predict�especially� if the semantics is only given
informally	 This has lead to numerous research towards formal foundations of
active rules	 In the sequel� we discuss some of these approaches� due to lack of
space and the focus on logic�based approaches� we can only provide a rough and
necessarily incomplete summary	

��� Analysis of Rule Properties

Although there is a great variety of execution models for active rules� certain
fundamental properties like termination and complexity come up repeatedly and
have been studied in the context of the respective execution models�

Termination� Con�uence� and Determinism� �AWH��� develop static anal�
ysis techniques for active rules which guarantee termination� con�uence� and ob�
servable determinism �i	e	� whether each program produces a unique stream of
observable actions� under the Starburst execution model	 Rule analysis is based
on a triggering graph which contains an edge between rules ri and rj if the for�
mer may trigger the latter	 Termination is guaranteed if the triggering graph
is acyclic� con�uence is guaranteed if all unrelated rules commute pairwise	 Re�
lated work on static rule analysis using triggering and dependency graphs or
techniques from term rewriting include �ZH���BW���BCP���KC���KU���	

Expressive Power and Complexity� �PV��� develop a generic formal frame�
work for the speci
cation of active databases� A trigger program consists of rules
of the form condition � action� where condition is a
rst�order sentence and
action is an external program	 Each rule is assigned a coupling mode �either
immediate or deferred� and a set of database events �insertion� deletion� on

�

which it reacts	 It is assumed that a priority is assigned to rules� and that the
semantics is deterministic	 Existing active database prototypes can be obtained
by specializing certain parameters of the framework which allows to compare
their relative expressiveness	 Moreover� the impact of active database features
on expressive power and complexity is studied	 In the presented framework� the
complexity of immediate triggering is essentially EXPTIME� even without delta
relations and PSPACE if there is a bound on the nesting of immediate queues	
Deferred triggering is more expressive and captures PSPACE� EXPSPACE� or
all computations on ordered databases� depending on the allowed operations for
queue management	

��� Logic�Based Formalizations of Rule Semantics

Whereas the above�mentioned works focus on analysing rule properties in some
speci
c execution model� a lot of research aims at formalizing and characterizing
the semantics of active rules in the
rst place	 Once a formal model has been
established� abstract properties like termination or expressiveness can be studied	

Situation Calculus Based� In �BL���BLT��� a language Lactive for active
rules is developed� which allows to formalize and reason about the behavior of
active rules	 The language borrows from L� �BGP���� an extension of the ac�
tion description language A �GL��� used for modeling actual and hypothetical
actions and situations� which in turn is based on the situation calculus	 The
main constructs of Lactive are causal laws describing which �uents are added
or deleted by an action� executability conditions stipulating when actions can
be executed� and active rules de
ning a triggering event� an evaluation mode� a
conjunctive precondition� and a sequence of actions	 The automaton�based se�
mantics of Lactive uses transition diagrams with states �labeled by sets of �uents�
and transitions �labeled by actions� to specify the meaning of an active database
description in Lactive	 A translation of Lactive into logic programs is presented
using a situation calculus notation	 The generated rules are non�strati
ed� and
the choice operator of �SZ��� �which is based on stable models� is used for nonde�
terministically selecting one rule among all rules that may be
red in a situation	
Like the situation calculus� Lactive focuses more on reasoning about the e
ect of
actions than on the computationally easier task of executing them	

State�Oriented Datalog Extensions� By extending Datalog with a notion of
state� �re�active production rules and deductive rules can be handled in a uni
ed
way� thereby combining the advantages of active and deductive rules	 Two such
�closely related� Datalog extensions are XY�Datalog �Zan���Zan���MZ��� and
Statelog �LHL���LML��� �see �KLS��� for an early precursor of the latter�	 The
speci
cation of operational aspects like composite event detection and coupling
modes is possible in the logical language since the rules allow access to di
erent
database states�even complex execution models for nested transactions can
be handled in this way as shown in detail for Statelog in subsequent sections	

�

However� the more procedural aspects are introduced into the language� the more
intricate the representation of these features in the logical framework becomes	
XY�Datalog and Statelog are themselves closely related to Datalog�S �Cho��a��
a query language for temporal databases	

Logic�Based Formalization of Operational Semantics� In �FWP���� a
framework for the integration of the di
erent operational semantics of active
and deductive rules is developed	 The meaning of ECA rules is speci
ed using
distinct speci
cation languages for events� conditions� and actions� respectively	
The operational semantics for these ECA sublanguages and their interplay is
formalized by means of deductive rules	 More precisely� the database history
�i	e	� the ordered set of database states� is modeled using timestamped atoms�
and the meaning of events� conditions� and actions is de
ned based on the event
calculus in �Kow���	 The approach has been used for the formalization of the
active rule component which is added to the deductive object�oriented database
system ROCK ROLL �BFP����	
In contrast to Statelog and XY�Datalog� which provide a single uni�ed lan�

guage for active and deductive rules� �FWP��� integrate the di
erent operational
semantics of active and deductive rules using a common �deductive� speci
cation
formalism	
Another approach to logic�based formalization of active rule semantics is pre�

sented in �FT���� where so�called Extended ECA rules are used to encode the
operational semantics of an ADB	 Using these user�readable EECA rules� exist�
ing ADBs can be compared and classi
ed	 The precise meaning of EECA rules
is obtained by translating them into a logical core language which speci
es pro�
cedural details like event consumption� coupling modes� etc	 Unlike in Statelog�
this logical language is not meant to be handled by the rule programmer� but is
considered as an internal representation which is used by the execution model�
and thus is on a lower�level than the EECA rules	

Production Rule Semantics� Many approaches to active rules are based on a
forward chaining execution model in the style of production rules� e	g	� �AWH����
�PV���� and �Zan���LHL��� above	� This is particularly true also for the PARK
semantics of active rules �GMS���� which can be conceived as an in�ationary

xpoint semantics extended by a mechanism to handle update literals !L and
�L� denoting insertion and deletion of L� respectively	 Similar as in Statelog
�Section ��� update literals correspond to events if they occur in the body� and
to actions if they occur in the head	 A main bene
t of the approach is the simple
and precise semantics with its �exible con�ict resolution policy� the latter being
a parameter to the PARK semantics	 The Statelog approach also allows �exible
con�ict resolution policies� however� they are not treated as a black box as in

� Due to their declarative semantics with explicit states the latter may also be eval�
uated top�down� say in XSB�Prolog
SSW��
� however� the bottom�up view is more
natural in this context�

��

�GMS���� but can be programmed within the logical rule language �Section �	�
and �Lud����	

��� Update Languages vs� Active Rules

Since active behavior can be speci
ed by de
ning new updates as an automatic
response to previous updates� active rule languages and languages for updates
share essential features	 A prominent logical framework for updates is Transac�
tion Logic TR �BK���� a language that deals on a high level of abstraction with
the phenomenon of state change in logic databases	 The focus is on the composi�
tion of complex updates� whereas primitive updates �so�called elementary tran�
sitions� are not part of TR but regarded as parameters which are supplied by a
transition oracle	 In TR�like in most languages based on top�down evaluation�
updates are expressed in the body	 These approaches are often tuple�oriented�
so the speci
cation of set�oriented updates �bulk�updates� becomes an issue	
�WF��� present an update language based on deferred updates which solves this
problem	 Other well�known approaches in the deductive database community
subsumable under the �updates in the body� paradigm are the early works on
DLP �MW��� �based on dynamic logic�� and LDL updates �NT���	 In contrast�
frameworks with semantics similar to production rules typically express updates
in the head of rules �cf	 Sections �	� and ��	 A main di
erence between update
languages and active rules is that in the former� updates are initiated explicitly
by the user� whereas the latter specify how rules initiate update �trans�actions
automatically in response to occurring events	

Bibliographic Notes

A good starting point for further reading is �WC��a� which contains a nice in�
troduction to active rules �WC��b�� and describes the essentials of a number of
prototypes	 �DHW��� is another introductory text� �Cha��� contains a special
issue on active databases	 �PDW���� discusses dimensions of active behavior
�such as structure and execution model of active rules� which allow to examine
and classify ADBs according to their distinctive features	 �FT��� contains an�
other classi
cation of ADBs� the di
erent possible options in rule behavior are
encoded using Extended ECA rules� expressing the above�mentioned semantic
dimensions� which are then translated into an internal core language	 �PCFW���
surveys work on formal speci
cation of active database functionality	 �DGG���
presents the active database management system manifesto	 In �Day���� a survey
on the accomplishments of research in active databases is given	 The workshops
�WC��� and �BH��� were dedicated particularly to active rules� the workshop
series �PW���Sel���GB��� also has major sections on active rules	

��

� Extending Datalog with States� Flat Statelog

Although there has been lot of work in active databases� no single generally
accepted framework for active rules has evolved �the ECA paradigm�though
widely used and accepted�only gives a very rough idea of rule execution and
leaves most issues unresolved�	 The semantics of active rules is often de
ned
only in an informal and procedural way� making it very di�cult to understand
and predict the behavior of rules	 Not surprisingly� it is required in the active
database manifesto �DGG��� that 	� � � rule execution must have a clear seman�
tics
 i�e�
 must de�ne when
 how
 and on what database state conditions are
evaluated and actions executed�	
In the sequel� we introduce Statelog� a logical framework for active rules which

precisely and unambiguously de
nes the meaning of rules	 Moreover� it allows
to study fundamental properties of active rules like termination� con�uence and
expressive power	 The framework does not account for all facets of active rules
which may be useful in practice �e	g	� tuple�level execution�� but covers many
essential features including immediate and deferred execution and composite
events	
In this section� we present ��at� Statelog� which is based on a linear state

space and corresponds to a �at transaction model	 Using a hierarchical state
space� a framework incorporating nested transactions is developed in Section �	
For simplicity of presentation� we postpone a detailed description of the signa�
ture �delta relations� control relations� etc	� to Section �	�� the intended use of
relations will be clear from the context	

	�� Basic Execution Model

The basic execution model of Statelog is illustrated in Figure �� States are iden�
ti
ed by the natural numbers IN�� the k�th �nal state is denoted by fk � IN�	
Assume fi is the current
nal state of the database	 The database remains

in this state as long as no new external events occur	 Queries are executed
against fi and may involve base relations� derived relations �i	e	� local views on
the current state�� or historical information �using certain auxiliary relations�
see Section �	��	 Observe that intermediate states are depicted as small circles�
whereas bigger circles correspond to
nal states� i	e	� which are materialized
and directly accessible to the user	 External actions correspond to outputs of
the active rule program and are reported at
nal states	 As described below� a
stream of incoming external events is conceived as a sequence E�� E�� � � � of sets of
events which induces �i� a sequence of transactions between �user�visible�
nal
states f�� f�� � � �� and �ii� a stream of outgoing external actions A��A�� � � �
The �simultaneous� occurrence of a set of external events Ei is modeled by

asserting� at the i�th
nal state fi� a
nite set of facts
�

Ei � f�fi��e�"x� j event e�"x� has occurredg �

� For clarity� relations for external events 	�input�� and external actions 	�output��
are pre�xed with ��� and ���� respectively� states are often bracketed�
s
 �

��

In general� using this new �seed� information� the rules of a Statelog program
de
ne a sequence of �intermediate� transitions

fi � fi!�� fi!�� 	 	 	� fi!k � fi��

until the transaction starting at fi ends in the next
nal state fi��	 Events
occurring between fi and fi�� are mapped to the new
nal state fi��	 It should
be clear from Figure � that the logic model of P � D � E� � 	 	 	 � Ek �where D
denotes the initial database� is �add�only�� i	e	� past states cannot be changed�
and new events in�uence only the current and future states	 System�de
ned
predicates BOT and EOT can be used to distinguish between the di
erent kinds
of states	 In this model� the state space �or temporal domain� over which the
database evolves is isomorphic to the natural numbers IN�� i	e	� a linear time
model is used	 Another more general model is presented in Section �	

�E� �E� � � � �Ei incoming
external events

f� � � � f� � � � fi � � � fi��

BOT EOT EOT EOT

BOT BOT ���

�A� �A� � � � �Ai
outgoing

external actions

Classi�cation of states

state BOT EOT

initial true false

intermediate false false

past �nal true true

actual �nal
�
 false true

Fig� �� Mapping of external events to �nal states and classi�cation of states

	�� Syntax

In Statelog� access to di
erent database states is accomplished via state terms of
the form �S!k� � where S!k denotes the k�fold application of the unary function
symbol �!�� to the state variable S	 Since the database evolves over a linear
state space� S may only be bound to some n � IN�	
A Statelog database D�k� at state k � IN� is a
nite set of facts of the form

�k� p�x�� � � � � xn� where p is an n�ary relation symbol and xi are constants from
the underlying domain	 If k � �� or is understood from the context� we simply
write D	
A Statelog rule r is an expression of the form

�S!k��H � �S!k��B�� � � � � �S!kn�Bn

where the head H is a Datalog atom� Bi are Datalog literals �atoms A or negated
atoms �A�� and ki � IN�	 The leap li �� k��ki of Bi is the distance between the
state referred to in the head and the state for Bi in the body	 If several literals

��

share the same state term �S!k� � then �S!k� can be �factored out�� e	g	� the
body �S�B�� �S!��B�� �S!��B� may be abbreviated as �S�B�� �S!��B�� B�	
We require that Statelog rules are progressive� since the current state cannot

be de
ned in terms of future states� nor should it be possible to change past
states� A rule r is called progressive� if k�
 ki for all i � �� � � � � n	 If k� � ki for
all i � �� � � � � n� then r is called local and corresponds to the usual query rules	
On the other hand� if k� � � and ki � � for all i
 �� r is called
�progressive
and denotes a transition rule	 A Statelog program is a
nite set of progressive
Statelog rules	

	�� Semantics

Every Statelog program may be conceived as a standard logic program by view�
ing the Statelog atom �S!k� p�t�� � � � � tn� as syntactic sugar for p�S!k� t�� � � � � tn�	

�

In this way� notions �e	g	� local strati�cation� and declarative semantics �e	g	� per�
fect model MP � developed for deductive rules can be applied directly to Statelog	
Here� we adopt the state�strati�ed semantics	 as the canonical model of a

Statelog program P with database D	 P is called state�strati
ed� if there are no
negative cyclic rule dependencies within a single state �LHL���	 More precisely�
state�strati
cation is based on the extended dependency graph GP of P 	 Its nodes

are the rules of P 	 Given two rules r�� r� there is an edge �r�
l�
� �
��r�� � GP if the

relation symbol in the head of r� occurs positively �negatively� in the body of
r�	 Here� l is the leap of the corresponding literal in r�	 P is state�strati�ed
if GP contains no local cycle C �i	e	� where

P

r�
l��� 	
� r
��C

l � �� involving a

negative edge	 This notion is closely related to XY�strati�cation �Zan��� and
ELS�strati�cation �KRS���	 Together with the requirement of progressiveness�
state�strati
cation implies local strati
cation �Lud����

Theorem �
State�Strati�cation�
Let P be a constant�free and progressive Statelog program� Then

P is state�strati�ed � P is locally strati�ed� �

Thus� if P is locally strati
ed� there exists a unique perfect model MP�D �Prz����
for any Statelog database D �� D��� �	

Example � Consider the following progressive Statelog program� which deletes
all employees E from a department D which is deleted�

r� � �S� del�emp�E�Sal�D� � �S� del�dept�D� �� emp�E�Sal�D� �
r� � �S!�� emp�E�Sal�D� � �S� emp�E�Sal�D�� � del�emp�E�Sal�D� �

On occurrence of a delete event to dept� r� checks whether there is an employee
E working at department D� and if so� this employee is put in a special delta
relation del�emp �cf	 Section �	��	 r� is a frame rule specifying that only those

� Here� p denotes any type of relation 	base� control� ����� see Section ����
� See Section � for a model�theoretic Kripke�style semantics�

��

tuples are copied to the instance of emp at the next state which are not in
del�emp	 Thus� logically� no real deletion occurs but a smaller �copy� of the old
database state is created	 Note that although the program is not strati
ed� it is

state�strati
ed since the negative cycle r�
�
� r�

���
� r� is not local �i	e	� does not

occur within a single state�	 �

Note that state�strati
cation does not imply local strati
cation for non�
progressive rules �hence the progressiveness requirement in Theorem ���

Example �
Non�Progressive Rules� The program

P � �S� p � �S!�� � p�

is state�strati
ed since it contains no local cycle	 However� the truth�value of
�n� p depends negatively on the unfounded sequence �n!�� � �n!�� � � � �� so P is
not locally strati
ed� in the well�founded model� p is unde�ned	 �

	�	 Composite Events

Although the Statelog language is surprisingly simple� various kinds of composite
events and consumption modes can be expressed� as shown in �MZ��� using a
closely related variant of Datalog�S	 Assume� for instance� that we want to detect
the composite event

E�X�Y � �� �F �X� �G�Y ���

i	e	� F �X� followed by G�Y � for some �external or internal� events F and G	
Under an unrestricted context� this can be expressed by temporal reduction rules
�similar to �LS���Cho��b���

�S� detd�F �X�� �S�F �X��
�S!�� detd�F �X�� �S� detd�F �X��
�S!�� detd�E�X�Y �� �S� detd�F �X�� �S!��G�Y ��

Auxiliary relations detd�R store detected events	 Using slight modi
cations of
these rules� di
erent event consumption modes can be accomplished�

If one adds the goal �F � � to the second rule� only the most recent occur�
rences of F are used� thereby modeling event consumption with recent context	
Note that in this variant the most recent occurrence of F can take part in several
occurrences of E	 However� if �F � � and �E� � � are added to the second rule�
then every occurrence of E consumes all constituent events� so F can take part
only in one occurrence of E	

Under the chronicle context� events are processed in a
rst�in�
rst�out man�
ner� and thus make use of a queue in an essential way	 Therefore� one can show
�see �Lud���� that composite events with chronicle contexts are not expressible
in pure Statelog and require appropriate extensions �e	g	� timestamping as in
�MZ����	

��

	�
 Formal Results

Using Statelog as a uni
ed logical language for active and deductive rules allows
to study abstract rule properties like termination� expressive power� and com�
plexity �see also Section �	��	 Here� we only sketch the main results� see �LLM���
and �Lud��� for details	
For notational convenience� we do not distinguish between base relations and

external events below� but assume w	l	o	g	 that a Statelog databaseD�k� includes
the set of external events occurring in state k as a set of facts	

Termination� We say that a Statelog program P terminates for D� if the
sequence of database states induced by P and D becomes stationary�more
precisely� if for some n� and all n
 n�� MP�D�n� � MP�D�n!�� � where the
snapshot MP�D�n� at state n of the perfect modelMP�D is de
ned as

MP�D�n� �� fp�"x� jMP�D j� �n� p�"x�g �

If P terminates for D� thenMP�D�#� is used as a generic notation for the unique

nal state� otherwise� we agree to setMP�D�#� �� �	
Let TermP�D denote the set of pairs �P�D� such that P terminates for D�

Term�D�P and Term�D�P denote the set of Statelog programs which terminate
for some and all databases D� respectively	 Then one can show �Lud����

Theorem �
Termination�
� Term�D�P and Term�D�P are undecidable�
�� TermP�D is PSPACE�complete �with n � jDj��
�� TermP�D can be decided using a Statelog program P � which �i� terminates

for all D
 and �ii� is e�ectively constructible from P � �

Note that �� � means� in a sense� that Statelog programs allow to �speak� about
their termination behavior at run�time �i	e	� for given D�	 However� since testing
for termination may be prohibitively expensive� it is desirable to identify e�cient
classes of terminating programs�
One such class is G�Statelog �guarded Statelog� where each update rule is

required to have a positive occurrence of an external event in the body� thereby
guaranteeing that such rules can be applied only once at the beginning of a
transaction	 Another more powerful class is ��Statelog ���monotonic Statelog��
here� the basic idea is to enforce termination by preventing oscillation of updates
�i	e	� repeated insertion and deletion of the same tuple�	 Since Statelog programs
operate on
nite structures� the corresponding constructions guarantee termina�
tion in PTIME	

Di�erent Rule Semantics in Statelog� As shown above and in Section ��
Statelog allows to handle typical features of active rules at the right end of the
spectrum in Figure �� like composite event detection and �re�active programming
of updates	 Moreover� several of the more declarative languages in the middle
and further to the left of the spectrum turn out to be special cases of Statelog
rules�

��

� Production rules � Let I�Datalog and P�Datalog denote the in�ationary and
nonin�ationary �or partial� semantics for Datalog�� respectively	

� Deductive rules � The declarative semantics for Datalog� programs are de�
noted by S�Datalog �strati
ed Datalog� andWF�Datalog �well�founded Dat�
alog�� respectively	

These semantics have a very natural representation in Statelog �Lud���� see
Figure �� Observe that the nonin�ationary P�Datalog semantics only transfers
those tuples to the new state� which are derived anew	 In contrast� the in�a�
tionary I�Datalog semantics propagates all previously derived tuples through all
states	 S�Datalog rules can be represented directly by local state�strati
ed rules	
Finally� one way to represent the alternating
xpoint computation �VG��� of
WF�Datalog is as shown in Figure �� this encoding yields a terminating pro�
gram i
 the well�founded model is total� however� using a �doubled� encoding�
it is easy to obtain a program which explicitly computes the true� false� and
unde
ned atoms and always terminates	

H � B��C �

�������������
������������

P�Datalog �
S��
H �
S
B�
S
�C

I�Datalog �
S��
H �
S
B�
S
�C

S��
H �
S
H

S�Datalog �
S
H �
S
B�
S
�C

WF�Datalog �
S��
H �
S��
B�
S
�C

Fig� �� Encoding schema for di�erent rule semantics

Expressive Power and Complexity� With every Statelog program P one
can associate di
erent database mappings� The most important one describes
the transaction expressiveness� i	e	� the mapping � �

P � D���
� MP�D�#� from
the initial database state to the
nal state	

A natural question is� What kind of database mappings can be expressed
using Statelog wrt	 transactions$ For languages involving intermediate states
like XY�Datalog and Statelog� one can also consider transition expressiveness�
i	e	� the class of database mappings from one state to the immediate successor
state	

Figure � summarizes the main results wrt	 transition and transaction ex�
pressiveness� In the middle� well�known classes of database transformations are
depicted �cf	 �AHV����	 To the left and right� the equivalent �wrt	 transitions
and transactions� respectively� Statelog variants are depicted�

��

Transition Expressiveness Transaction Expressiveness

WF�Statelog

fGj�jNFj�g�Statelog

XY�Datalog

fPjIg�Statelog

All

While

Fixpoint

S�Datalog

FO

�FO

Datalog

pos�FO

Conjunctive

�

fPjNFjWFj�g�Statelog
XY�Datalog

fIj�g�Statelog

G�Statelog

�

�

�

�

�

�

�

�

�

Data Complexity�

	DB�PSPACE

DB�PTIME

Fig� �� Summary of expressiveness results
Lud��

WF�Statelog is a Statelog variant where rules need not be strati
ed� but
may involve well�founded negation� G�� ��� NF�� P�� I�� and ��Statelog denote
guarded� ��monotonic� normal form� nonin�ationary� in�ationary� and unre�
stricted Statelog� respectively �LLM���Lud���	 In NF�Statelog� for example� rules
may only be ��progressive or local	 The expressiveness results in Figure � can
be established using rewritings into NF�Statelog and the above encodings of
di
erent Datalog� semantics	 The nice match between Statelog classes and the
known query classes also yields the corresponding complexity results� Statelog
transitions are always evaluable in PTIME� whereas transactions may require
PSPACE in general	 An e�cient �i	e	� PTIME�evaluable� class of transactions
is given by ��Statelog� a class of terminating Statelog programs which�unlike
in�ationary languages�allows both insertions and deletions	

� Nested Transactions in Statelog

The Statelog programs considered so far de
ne a single transaction from the
current state to the new
nal state for any given database �which includes a set
of external events�	 External events occurring subsequently correspond to new
facts being added and initiate the next transaction	 Thus� the Statelog execution

��

model depicted in Figure � corresponds to a �at transaction model	 In the se�
quel� we show how Statelog can be extended to model nested transactions	 With
nested transactions� Statelog provides a uni
ed framework for modeling several
advanced concepts in active databases� e	g	� sophisticated coupling modes� event
consumption policies� and trigger
ring policies	
The following example� adapted from �MW���Che���� motivates why struc�

turing capabilities and a re
ned transaction model may be useful�

Example 	
To Hire or Not to Hire�
Consider relation emp from Example �	 We want to hire an employee only if
the average salary after the update does not exceed a certain limit	 Such a
�post�conditional� update may be expressed in �at Statelog as follows�

�S� ins�emp�E�Sal�D�� �S!�� checksal�D� ��S� �hire if possible�E�Sal�D��

�S� check ok ��S� checksal�D�� avg�D� AvgSal�� AvgSal � ������

�S!�� del�emp�E�Sal�D� ��S� �hire if possible�E�Sal�D�� �S!�� � check ok�

On occurrence of the external event �hire if possible�E�Sal�D�� employee E is
preliminarily inserted and the new average salary is checked in �S!�� 	 If it
exceeds the admissible amount� the insertion is undone by the last rule	 �

The above program speci
es the desired transaction� yet there are some potential
pitfalls and drawbacks with this solution�

� Undoing the e
ect of changes �here� the compensation of insertions by corre�
sponding deletions� has to be programmed by the rule designer	 However� it
is often desirable to automatically propagate the failure of a subtransaction
like checksal	

� There is no structure which allows grouping of semantically closely related
rules	

� The e
ects of ephemeral changes �Zan���� i	e	� changes whose e
ect is undone
later within the same transaction� and hypothetical changes are visible to
other rules� since there is no encapsulation of e
ects of semantically related
rules	 E	g	� if �hire if possible����� occurs in �S� � the delete request ins�emp
may trigger other active rules� although in �S!�� the update is revoked	 This
may lead to unjusti
ed �re�actions by other rules� similar to those described
in �Zan���	

To avoid these problems� the transaction concept considered so far has to be
re
ned� First� speci
c system�de
ned rules can be used to automatically undo
the e
ect of failed transactions	 Moreover� the second and third item can be
resolved by grouping rules into certain modules which encapsulate rule e
ects	
In principle� a �at transaction model would be su�cient here	 However� it is
often natural and more adequate to model certain tasks as subtransactions which

	 For simplicity� we view the predicate holding the average salary avg�D�AvgSal� of a
department D as a built�in�

��

are nested within the calling transaction� For example� hire�E�Sal�D� may be a
subtransaction of a top�level transaction main� the salary check in turn may be
a subtransaction of hire �see Example ��	

�� Hierarchical State Space

In order to model nested transactions and handle the problems described above�
�LML��� propose the concept of Statelog procedures	 A Statelog procedure � is
a named and possibly parameterized set of Statelog user rules	 In this sense� the
�at Statelog programs considered so far can be seen as parameterless anony�
mous Statelog procedures	 When � is called at run�time� it de
nes a transaction
T� by issuing primitive updates �through delta relations� and�or calling other
procedures which in turn may de
ne subtransactions� etc	 T� either terminates
successfully �indicated by a special predicate committed���� or aborts	 When �
calls another procedure 	� a subtransaction T� is started whose results are either
incorporated into T�� if T� commits� or discarded otherwise	 From the point of
view of the calling transaction T�� the subtransaction T� is atomic� therefore
requests derived directly within T� and those submitted by T� should be indis�
tinguishable	 This is achieved by certain system�de
ned rules	

The behavior of 	 is encapsulated� since deltas de
ned by T� are only visible
within T�� but not in other �concurrent� transactions	 Subtransactions execute
in isolation and in an all�or�nothing manner� i	e	� no results of T� will be visible
in T� if T� aborts	 Note that this does not mean that T� also aborts�on the
contrary� � can detect the failure of T� �via aborted�	� and issue alternative or
compensating actions� or retry the execution of 	 later	

In order to model the isolated execution of a Statelog procedure � as a
�sub�transaction T�� a unique name space for each �parameterized� invocation
of ��"x� has to be introduced	 This is accomplished by extended state terms and
frame terms	 The latter provide the transaction frame in which � executes	

The execution of Statelog procedures as nested transactions induces a hier�
archical structure of the state space instead of the linear structure considered
before �cf	 Figure ��	 Every state term encodes the complete transaction hierar�
chy from the top�level transaction down to the current transaction	 States on the
same level are grouped into transaction frames	 The model�theoretic foundation
of this concept is given by Kripke structures with di
erent accessibility relations�
see Section �	

Given a
xed set
 of procedure names of a Statelog program� the set of
state identi�ers S� and frame identi�ers F� are de
ned as the least sets such
that

� ��� � F� �

� �f�n� � S�� if �f � � F� and n � IN��

� �s���"x�� � F� � if �s� � S�� � �
 � and "x � U�	�

 U� ��
S

i�IN
U i�

��

�������

������n

�����

���

���

���

���
 � � �
�

�������

������m

�������

������m��

�����

�����������

����������k

���������

Fig� �� States and frames

Here� the arity of � matches that of "x � x�� � � � � xk� and U is the underlying
domain	 State terms and frame terms are de
ned similarly but may also involve
variables	 State and frame identi
ers induce a hierarchically structured state
space� The initial frame ��� denotes the top�level transaction� its initial state is
����� 	 Let �s� denote the current state	 Then for a procedure call ��"x�� the frame
of the subtransaction induced by the execution of ��"x� is �f � � �s���"x�� and the

rst state of the transaction is �f��� � �s���"x���� 	 The successor state of �f�n�
�on the same level� is �f��n!��� 	 The grouping of states into a frame �f � � F�

is de
ned as

�f � �� f �f�n� j n � IN� g �

which implies that every state �f�n� belongs to exactly one frame �f � 	 Using this
representation� the frames �s���"x�� and �s�	�"y�� induced by di�erent parallel
procedure calls of � and 	 in the same state �s� can be uniquely identi
ed �if the
name of the procedure is the same� at least the parameters are di
erent�	 Sim�
ilarly� frames of transactions induced by the same procedure call from di�erent
states� �s����"x�� and �s����"x�� � can also be distinguished	 The constructor �	� is
left�associative� e	g	� �s�����s����� � ���s������s������ 	

�� Signature

In order to model the speci
c features of active rules� we introduce several types
of relations �their precise semantics and interplay will be speci
ed by system�
de
ned Statelog rules below�� The set of relation symbols of a given schema R
is given as the disjoint union of the following sets�

R � edb�R� %� idb�R� %���R� %���R� %� ��R� %� prot�R� %�
�R� %� ctl�R��

��

Base and Derived Relations� The extensional database edb�R� comprises
the base relations which are stored in the database	 In user�de
ned rules� edb�
relations may only occur in the body� they are updated via delta relations from
��R�	 In contrast� derived relations belong to the intensional database idb�R�
and de
ne views	 Thus� idb�relations may occur in rule heads and bodies but
may not be changed directly	 Typically� idb�relations are not materialized but
computed on demand	

External Events and Actions� Relations from��R� represent external events
of interest which are monitored by the ADB	 Consequently� external events can
only occur in rule bodies	 External actions are de
ned by the relations from
��R� and represent requests to execute certain actions outside the ADB system	
Relation symbols denoting external events and actions are pre
xed with the
symbols ��� and ���� respectively	

Delta Relations� For every base relation p � edb�R� there are delta relations
del�p� ins�p � ��R�	 Delta relations �or just deltas� denote update requests to
delete or insert the corresponding tuples into p� respectively	 For simplicity� we
write mod�p�x�y� instead of del�p�x�� ins�p�y�	

Procedure Calls�
�R� denotes the set of procedure names	 A procedure �
with parameters "x is �called� by deriving ��"x� in the head of a rule	

Protocol Relations� For every base relation p � edb�R� there are protocol
relations deld�p� insd�p � prot�R� �for inserted and deleted� resp	� which store
the accumulated net e�ect of a sequence of updates	 They can be used for sev�
eral purposes� e	g	� to enforce termination� as an auxiliary store for aborting
transactions� or for returning the net e
ect of a subtransaction �Lud���	
Note that from the above�mentioned relations� only those from idb�R�� ��R��

�R�� and ��R� are user�de
nable� the relations from edb�R� and prot�R� are
maintained by the system	

Control Relations� ctl�R� contains special control relations like BOT� EOT�
running� and abort for transaction control� and auxiliary relations for the detec�
tion of composite events	 Additionally� aborted���"x� or committed���"x� indicate
if a subtransaction has been aborted or committed	

�� User�De�ned vs� System�De�ned Rules

In the Statelog core language there is no distinction between user�de
ned and
system�de
ned rules �e	g	� the program given in Example � explicitly contains
the frame rule r��	 However� an ADB system should provide the user with a
prede
ned intuitive programming �environment� which takes care of low�level

��

aspects of the execution model like frame rules and transaction control	 In par�
ticular� one may hide the explicit handling of states from the user by forcing
her to use only local rules	 If the user really needs to refer to di
erent states�
syntactic sugaring in the form of prede
ned operators can be used �Example ��	

�	 User�De�ned Rules

We require that all user�de�ned Statelog rules are local� thus� state terms may
be omitted	 Moreover� only relations from idb�R�� ��R��
�R�� ��R� and cer�
tain distinguished relations from ctl�R� are allowed to occur in rule heads of a
user program	 For example� the usual integrity constraints from databases like
functional� join� and inclusion dependencies can be encoded in the form of de�
nials� i	e	� as a set of local rules s	t	 abort is derived by these rules if an integrity
violation is detected	

Programs and Procedures� A Statelog program is a
nite collection of
Statelog procedures	 A Statelog procedure � is an expression of the form

proc ��X�� � � � � Xn� fH� � B� � � � � � Hk � Bk g

where X�� � � � � Xn are the parameters of � which may occur in the Statelog user
rules Hi � Bi	 Every program contains a distinguished procedure main	

As in the case of �at Statelog� the meaning of rules is given by the declarative
semantics of their representation as a logic program	 Especially� if rules are locally
strati
ed� a unique perfect model exists	��

Depending on the relation symbol in the head of a rule� the following cases
can be distinguished�

Views� p� "X� � � � � if p � idb�R�

Change Requests� ins�p� "X� � � � � if ins�p � ��R�

del�p� "X�� � � � if del�p � ��R�

Procedure Calls� �� "X� � � � � if � �
�R�

External Actions� �a� "X� � � � � if �a � ��R�

Transaction Control� abort � � � �

External events are allowed only in the body of rules of main� whereas actions
may occur in all procedures� but are only allowed in rule heads	 Since edb�
relations are not directly user�de
nable� all changes to base relations have to be
accomplished through insert and delete requests	 The materialization of these
requests is implemented by frame rules as described below	

�� A logic programming semantics for Statelog with nested transactions is presented
in
LML��
� Note that in order to guarantee local strati�cation� also dependencies
through subtransactions have to be considered�

��

Visibility of User�De�ned Rules� Let P ��� denote the �user�de
ned� rules
of a procedure �	 Apart from P ���� the visible user�de
ned rules P ��S���"x�� � in
frame �S���"x�� include idb�relations of the calling transaction�

De�nition � The set of visible rules P ��F � � of a frame is de
ned as

P ���� � �� P �main�
P ��F�n���"x�� � �� P ��� � fp�� � ��� B � P ��F � � j p � idb�R�g

for all n � IN�� � �
�R��
�

Thus� idb�relations are communicated to subtransactions by passing their de
n�
ing rules� whereas edb�relations are communicated to subtransactions by copying
their extensions into the initial state of a subtransaction	

�
 System�De�ned Rules

System�de
ned frame and procedure rules implement the intended semantics of
request relations� protocol relations� and procedure calls	 All changes are encap�
sulated within the current transaction frame and invisible everywhere else until
the transaction commits	 State terms are used in the speci
cation of transitions
and transaction management	

Starting a Transaction� If one or more external events �e�"x� occur� the
beginning of a transaction is signaled�

�S�BOT� �S��e� "X��

We assume that all external events which are detected within a certain time
interval are raised only in the initial state of the top�level transaction �which
coincides with the
nal state of the previous transaction�	 All events occurring
subsequently are associated with the next initial state	

Frame Rules specify the correct handling of update requests and transitions	
For all p � edb�R�� there are the following frame rules�

�S!�� p� "X�� �S� ins�p� "X���EOT�
�S!�� p� "X�� �S� p� "X��� del�p� "X���EOT�

Thus� updates to base relations are executed immediately in the transition to
the successor state� unless the end of transaction is detected	 Clearly� instead
of this immediate coupling between condition evaluation and action execution�
one could also specify deferred execution	 Then a di
erent set of frame rules
accumulates delete requests and executes all of them at the end of transaction	
Frame rules also propagate the edb to the subsequent transaction�

�S!�� p� "X�� �S� ins�p� "X��BOT�
�S!�� p� "X�� �S� p� "X��� del�p� "X��BOT�

��

Protocol relations insd�p� deld�p � prot�R� store the accumulated net e�ect of
changes during a transaction�

�S!�� insd�p� "X�� �S� ins�p� "X���EOT�
�S!�� insd�p� "X�� �S� insd�p� "X��� del�p� "X���EOT�
�S!�� deld�p� "X�� �S� del�p� "X���EOT�
�S!�� deld�p� "X�� �S� deld�p� "X��� ins�p� "X���EOT�

While there are pending change requests� a transaction is running�

�S� running� �S� ins�p� "X��� p� "X��
�S� running� �S� del�p� "X�� p� "X��

A
xpoint is reached when there are no more changes� so EOT is signaled�

�S� EOT� �S� BOT�� running�
�S!�� EOT� �S� running�� abort� �S!�� � running�

The internal event abort terminates a transaction prematurely�

�S� EOT� �S� abort�

Apart from user�de
ned aborts� a transaction aborts if inconsistent requests are
raised�

�S� abort� �S� ins�p� "X�� del�p� "X��

Other con�ict resolution policies can also be easily speci
ed� For example� if
the previous rule is omitted� the above frame rules give priority to insertions
whenever insertions and deletions occur simultaneously	 Similarly� if one adds
the goal � del�p� "X� to the above frame rules with ins�p� "X� in the body� then
deletions will have higher priority	

Procedure Rules implement the semantics of procedure calls� i	e	� the execu�
tion of subtransactions	
For all � �
�R�� p � edb�R�� there are the following rules�
A procedure call creates the initial state of a new frame� signals BOT and

initializes the edb�relations�

�S��� "X���� BOT� �S� �� "X��
�S��� "X���� p� "Y �� �S� p� "Y �� �� "X��

The processing of the results is implemented by rules checking the successful
termination of the subtransactions and evaluating their protocol relations	 Since
these contain the changes made by the subtransactions� their extensions are
copied into the request relations of the parent transaction�

�S� ins�p� "Y � � �S� �� "X�� �S��� "X��N � insd�p� "Y ��EOT�� abort�
�S� del�p� "Y �� �S� �� "X�� �S��� "X��N � deld�p� "Y ��EOT�� abort�

��

Thus� update requests reported to the parent by � are indistinguishable from
those derived directly �provided � commits� i	e	� EOT � �abort holds�	
Parent transactions also perform some bookkeeping about committed and

aborted subtransactions�

�S� committed��� "X�� �S� �� "X�� �S��� "X��N � EOT�� abort�
�S� aborted��� "X� � �S� �� "X�� �S��� "X��N � EOT� abort�

The user can formulate application�speci
c aspects of transaction management�
e	g	� that the parent transaction should abort� if the child aborts�

abort� �� "X�� aborted��� "X��

Serial Conjunction� It is sometimes convenient� especially in the context of
procedures and nested transactions� to provide the user with a special connective
��� denoting a serial version of conjunction	�� To this end� we de
ne

A� � 	 	 	 �An � B� � 	 	 	 �Bm

as a shorthand notation for the Statelog rule

�S!m�A�� � � � � �S!m!n�An� �S� running� � � � � �S!m!n� running�
�S�B�� � � � � �S!m�Bm�

For example� a rule of the form A� � A� � B� where A� and A� are primitive
actions �like ins�p� del�p� or procedure calls� informally means� �if B is true
 then
do A� followed by A��	 Conversely� the rule A � B� � B� intuitively says� �if
B� was previously true
 and B� holds now
 then do A�	

�� Examples

Example

Hypothetical Updates� In order to implement a hypothetical
deletion of an employee� we can use the rule

del�emp�E�Sal�D� � ins�emp�E�Sal�D� ��hyp del emp�E�� emp�E�Sal�D��

When �hyp del emp�E� occurs� employee E is removed from the database and im�
mediately inserted afterwards	 If we want to determine if E is an �indispensable�
employee� i	e	� one whose deletion would result in an unpopulated department�
we can use the rule�

ins�indispensable�E� ���hyp del emp�E�� emp�E�Sal�D�� � � emp� � �D��

The hierarchical transaction model allows a �exible treatment of several inter�
esting features of databases� like the following�

�� The symbol ��� is borrowed from
BK��
� where it denotes a similar connective�

��

� Static integrity constraints can be implemented by aborting transactions
�Example ��	

� Checking the admissibility of changes and blocking inadmissible ones� for
any fact p�"x� that should be guaranteed� derive ins�p�"x�	 Every request to
delete it causes an inconsistency	

� Ephemeral updates� every transaction can try some updates� check their
results and decide whether it should commit or abort �Example ��	

� Hypothetical updates� every transaction can work on relations which are
deleted before committing without having any e
ect at commit�time	 By
this it can create a hypothetical scenario� check the outcome and report the
consequences	 This can be used to evaluate several alternatives in parallel	

Finally� we are su�ciently equipped to revisit Example � in the extended frame�
work	 Observe that the problems of the �at approach mentioned at the beginning
of Section � are resolved here�

Example �
To Hire or Not to Hire� Cont�d�
We specify the hire and checksal transactions by procedures�

proc main fhire�E�Sal�D� ��hire if possible�E�Sal�D�g�

proc hire�E�Sal�D� fins�emp�E�Sal�D� � checksal�D� � BOT	
abort�aborted�checksal�D�g�

proc checksal�D� fabort�avg�D�AvgSal�
�����g�

Whenever �hire if possible occurs� a subtransaction hire�� � �� is initiated	 At the
beginning of transaction �and only then�� hire adds the new employee followed
by a call to checksal	 If checksal aborts then hire also aborts� resulting in an
unchanged database	 Otherwise hire commits and the insertion is realized	 The
following signatures are de
ned�

edb�R� � fempg� ��R� � fins�emp� del�empg�
prot�R� � finsd�emp� deld�empg�
�R� � fmain� hire� checksalg�
ctl�R� � fBOT� running�EOT� abort� aborted�checksal� aborted�hireg�

Figure � depicts the state space which is created when hire�john�
�����d�� is
called �and eventually aborted� since the average after the hypothetical update
exceeds ������	
Frames are represented by shadowed boxes� states are represented by ordinary

boxes	 In all states� the upper entry denotes the state term� the data below the

rst horizontal line are facts which are derived by frame rules or local rules� and
the data below the second line �if it exists� are facts which are derived from
results of subtransactions	 �

Example �
The Christmas�Problem�
Consider a relation emp�E� BirthDay� Sal� with the obvious meaning	 We want
to implement the following� informally given procedure� Every employee shall be
given a salary raise by �� at her birthday� on Christmas every employee shall
get an extra �
���	 This is accomplished in �at Statelog as follows �LHL����

��

� � � ���n���
���n�
hire�john�������d��� running
aborted�hire�john�������d��

���n��� � � �

���

���n	hire�john�������d��	�

BOT�
�ins�emp�john�������d��
 checksal�d����
ins�emp�john�������d��� running	

���n	hire�john�������d��	�

emp �john�������d��� insd�emp �john�������d���
checksal�d��
aborted�checksal�d��� abort� EOT

���n�hire�john�������d���

���n	hire�john�������d��	�	
checksal�d��	�

BOT� avg�d��������� abort� EOT

���n�hire�john�������d��	�	checksal�d���

Fig�
� Frames and Database States

�S!�� mod�emp�E�Bday�Sal�Sal�� �
�S� �daily� date�Day�� Day
Bday� emp�E�Bday�Sal�� Sal��
 Sal�������

�S!�� mod�emp�E�Bday�Sal�Sal�� �
�S� �daily� date�Day�� xmas�Day�� emp�E�Bday�Sal�� Sal��
 Sal������

These rules work
ne unless there is some employee whose birthday is on Christ�
mas� Then two inconsistent modify�requests are generated� and the subsequent
state is not well�de
ned	 In a �at model� the problem could be solved by complete
case splitting or by a rule using three states �however� this raises the problem
that the intermediate state should not trigger other rules�	 In the structured
model� the sequential composition inc xmas � inc bday can be used by the top�
level transaction incsal to specify the order of execution�

proc main fincsal�Day� � �daily� date�Day�g�

proc incsal�Day� finc xmas�Day� � inc bday�Day� �BOTg�

proc inc xmas�Day� fmod�emp�E�Bday�Sal�Sal�� �
BOT�xmas�Day��emp�E�Bday�Sal�� Sal��
 Sal�����g�

proc inc bday�Day� fmod�emp�E�Bday�Sal�Sal�� �
BOT� Day
Bday� emp�E�Bday�Sal�� Sal��
 Sal�����g�

If inc xmas�Day�� inc bday�Day� were replaced by the simultaneous conjunction
inc xmas�Day� � inc bday�Day�� then two con�icting requests would be derived and
the transaction would be aborted automatically by the corresponding system�
de
ned rules	 �

Using the nested transaction model� di
erent rule schemata for modeling
certain coupling modes� event consumption policies� and trigger
ring policies
can be de
ned� thereby providing a concise� formal speci
cation of these features	

��

Example �
Control Features� Instead�triggers can be modeled by replacing
a procedure call ��"x� by another call ��"x�� when a call ��"x� is derived� it is
discarded immediately� and the call ��"x� is derived instead	 The procedure rules
from Section �	� are modi
ed� for every � �
�R�� as follows�

�S��� "X���� BOT� �S� �� "X��� discard��� "X��
�S��� "X���� p� "Y �� �S� p� "Y �� �� "X��� discard��� "X��

Now the instead�trigger 	��"x� instead of ��"x�� is expressed by the �local� rule

�� "X�� discard��� "X�� �� "X��

Before� and after�triggers can be modeled as specialized instances of instead�
triggers based on serial conjunction� Consider a trigger of the form 	before ��"x�
do ��"x��	 This can be accomplised by the following rules ��� contains the same
rules as ���

� �� "X�� discard��� "X�� ��"x��
proc � �� "X� f�� "X�� ��� "X�� BOTg�

Other control features which can be handled include di
erent event consump�
tion modes �see Section �	�� and deferred �instead of immediate� coupling �cf	
Section �	��	 �

�� Operational Semantics

The above rule system de
nes a partial order on state identi
ers� Within a
frame� �f�n� � �f�m� if n � m� additionally� �f�n� � �f�n���k� � �f��n!��� for
� �
�R� and all k � IN	 With the additional requirement on user�de
ned rules
that there are no negative dependencies from relations of ��R� to any other
relation of the same state� � can serve as a base for computing the individual
database states as follows�

�	 compute �f�i� �edb�R� � prot�R�� from �f��i&��� �edb�R� � ��R� � prot�R���
�	 compute �f�i� �idb�R� � ��R� �
�R���
�	 compute f�f�i���"x��IN� j �f�i���"x� holdsg recursively�
�	 add the resulting requests from
f�f�i���"x��n� prot�R� j �f�i���"x� and �f�i���"x��n�EOT holdsg to �f�i� ��R��

�	 extend �f�i� �idb�R����R��
�R��� based on the additions to �f�i� ��R� from
step � ��add�only�� since these relations do not depend negatively on ��R���

�	 compute f�f�i���"x��IN� j �f�i���"x� has been derived in the previous stepg�
�	 iterate steps �&� until a
xpoint is reached�
�	 if not �f�i�EOT� proceed with step � for �i!�� 	

Note that with the above schema� �f�i� �edb�R��prot �R�� are computed once in
the
rst step	 Therefore� the database in the initial state �f�i���"x���� of subframes
is identical for all subframes �f�i���"x�� � independent from the iteration step in
which the procedure call has been derived	

��

� � �

� � � � � �

� � �

R R R

R R R

R R R

Q	��

Q	��

S	��

S	��

Fig� �� Hierarchical Kripke Structure

� Kripke�Style Semantics

A conceptual model for Statelog with nested transactions is established using a
Kripke�style semantics� thereby providing states as �
rst�class citizens� of the
logical framework	 State identi
ers are mapped to states of a Kripke structure
which formalizes the relationships between individual states in terms of accessi�
bility relations	 The Kripke semantics yields an abstract and natural model of
the hierarchical state space and can serve as a basis for the speci
cation and
veri
cation of properties of a database system	 We show that the rules given in
the previous section �where states are �rei
ed�� i	e	� encoded into the language�
are correct wrt	 the abstract Kripke semantics	

De�nition �
Statelog Kripke Structure� A Statelog Kripke structure over
a given Statelog signature R is a tuple K � �G�U �R�Q�S�M�P�� �cf	 Figure ��
where

G is a set of states�
U is the universe�
R � G �G is an accessibility relation modeling the temporal successor relation	
Q�S � G�
�R��U��G are two labeled accessibility relations between states

representing the procedure�call and �return relation� respectively	
M is a function which maps every state to a
rst�order interpretation over R

with universe U �
P is a function which maps every g � G to a set of local rules �the rules visible

in g�	 �

Here� the Statelog Kripke frame �G�R�Q�S� models the relationships between
states and frames� Every computation path �g�� g�� � � �� in a Statelog Kripke struc�
ture s	t	R�gi� gi��� for all i corresponds to a frame in the hierarchical state space
�note thatR�g� g� denotes that a subtransaction has reached a
xpoint� i	e	� then�
M�g� j� EOT holds�	 Q denotes the frame�subframe�relation� i	e	� Q�g� ��"x�� g��
means that the
rst state of the subtransaction induced by a call of procedure
� with arguments "x is g�	 S�g�� ��"x�� g� means that g� is the
nal state of the
subtransaction induced by a call of procedure � with arguments "x in g	 Thus�
results of subtransactions are communicated along S	

��

The following characterization covers the intended semantics of the Statelog
frame rules�

De�nition � A Statelog Kripke structure K � �G�U �R�Q�S�M�P� over a
signature R is a model of a Statelog program P over R and an initial database
D if

� U is the active domain of P and D	
� There is a g� � G s	t	 M�g��jedb
R� � D� andM�g��jprot
R� � �� and there
is no g s	t	 Q�g� � g�� or R�g� g�� �existence of an initial state�	

� External events are only mapped to the initial state of transactions on the
highest hierarchical level� i	e	� M�g�j�
R� �� � only if R��g�� g� and g � g�
orM�g� j� EOT	��

� The relation R models the temporal successor relation� i	e	�

R�g� h�� P�h� � P�g�

and the following relationship between edb�R� and ��R� in g and edb�R�
and prot�R� in h holds�

R�g� h�� for all p � edb�R� �
M�h��p� � �M�g��p� �M�g��ins�p�� nM�g��del�p� and
M�h��insd�p� � �M�g��insd�p� �M�g��ins�p�� nM�g��del�p� and
M�h��deld�p� � �M�g��deld�p� �M�g��del�p�� nM�g��ins�p�

and R is total� i	e	� for every g � G there is a g� � G s	t	 R�g� g��	
� Q models the subtransaction calls� for all g � G� � �
�R�� "u � U� �

M�g� j� ��"u� � there is an h s	t	 Q�g� ��"u�� h� �

and Q�g� ��"u�� h� implies that M�h� j� BOT� M�h�jedb
R� � M�g�jedb
R��
M�h�jprot
R� � �� and

P�h� � P ��� � fp�� � ��� B � P�g� j p � idb�R�g �

� S models the return�from�subtransaction relation�
for all g� g�� h� � G� � �
�R�� "u � U��

Q�g� ��"u�� g�� and R��g�� h�� andM�h�� j� EOT � S�h�� ��"u�� g� �

� For every g � G�

M�g� �MP
g��M�g�jedb
R��prot
R���
R� � C�g��

where C�g� is the set of requests which are contributed to g by subtransac�
tions �and communicated along S�� given as

C�g��ins�p� �� f"u j there are g� � G� � �
�R�� "v � U� s	t	 S�g�� ��"v�� g� and
M�g�� j� � abort and "u �M�g���insd�p�g

C�g��del�p� �� f"u j there are g� � G� � �
�R�� "v � U� s	t	 S�g�� ��"v�� g� and
M�g�� j� � abort and "u �M�g���deld�p�g �

�

�� as usual� R� denotes the transitive closure of R�

��

Proposition � In every Statelog Kripke structure which is a model of a Statelog
program P
 the following holds�

� The temporal successor relation R is deterministic modulo external events�
for all g� h� h� � G�

R�g� h� and R�g� h���M�h�jRn�
R� �M�h��jRn�
R� �

� For every g � G in a non�top level frame �i�e�
 on a level where there are
no external events� s�t� M�g� j� BOT
 there is a unique computation path
�g�� g�� � � � � gn� with gi j� �EOT for all i � n and gn j� EOT�

� for every Statelog program P
 database D
 and sequence E�� E�� E�� � � � of sets
of external events
 there is a unique Kripke model of P with an initial state
M�g�� � Mmain�D � E�� and a top�level computation path �g�� g�� � � �� s�t�
M�gi� j� EOT � i � ff�� f�� � � �g �fi denotes the i�th �nal state� see
Section ��
�� in this case� M�gfi� j� Ei� �

S�� can also be regarded as a relation describing the e
ects of subtransactions�
For � �
�R� and "u � U��

��"u��g� �� h � G s	t	 �h� g� � S���"u��

is the result of executing ��"u� in state g	 The relationship between M�g� and
M���"u��g�� is important for expressing �correctness� properties of subtransac�
tions	 With this� C�g� can be characterized in terms of the e
ects of the sub�
transactions which are issued in g�

C�g��ins�p� � f"u j there is a � �
�R�� "v � U� s	t	 "v �M�g���� and
M���"y��g�� j� � abort and "u �M���"y��g���insd�p�g �

C�g��del�p� � f"u j there is a � �
�R�� "v � U� s	t	 "v �M�g���� and
M���"y��g�� j� � abort and "u �M���"y��g���deld�p�g �

Equipped with a notion of states� computation sequences� and subtransactions�
the semantics of the individual subsets of a Statelog signature �cf	 Section �	��
can be described in terms of state transitions and �sub�transactions�

Theorem 	
Adequacy� Statelog Kripke structures are an adequate model of
the intended semantics of nested transactions based on the elementary actions
ins and del�

� R models the temporal successor relation�
� edb�relations are changed exactly via requests� for all p � edb�R�
 g� h �
G� if �g� h� � R
 then

M�h��p� � �M�g��p� nM�g��del�p�� �M�g��ins�p� �

� In all states
 the protocol relations contain the non�revoked changes of the
corresponding subtransactions� For all �g� h� � QR� and all p � edb�R��

M�h��p� � �M�g��p� �M�h��insd�p�� nM�h��deld�p� �

��

� Q models the subtransaction calls�
� In the initial states of subtransactions
 the edb is the same as in the
calling state and the protocol relations �procedure knowledge� are empty�

� The de�nition of the IDB in a subtransaction contains the de�nition of
the IDB in the calling transaction�

� S models the return�from�subtransaction relation�
� For all g� h � G
 if S�h� � g� and M�h� �j� abort
 then for all p � edb�R��

M�g��ins�p� �M�h��insd�p� and M�g��del�p� �M�h��deld�p� �

� Internal semantics of states �Perfect model of P�g���
� Insert�delete requests are derived by user�de�ned rules or contributed by
subtransactions�

� IDB and subtransaction calls are derived by user�de�ned rules� �

The declarative semantics of the perfect model of a Statelog program and the
operational semantics given in Section �	� for computing a Statelog model state�
by�state coincide with the presented Kripke semantics�

Theorem

Equivalence� Fix a Statelog program P
 an initial database D

and a sequence E � �E�� E�� � � �� of sets of external events� For every Statelog
Kripke structure K � �G�U �R�Q�S�M�P� which is a model of P
 there is a
partial mapping � � S� � G such that�

� dom��� � f�s� j MP�D�E j� �s� running � EOTg
 i�e�
 the 	used� states�
� For all literals L over R
 M���s�� j� L i� MP�D�E j� �s�L�
� For every n � IN�� �f�n� � dom���� P����f�n� �� � P ��f � �� �

	 Summary and Conclusion

Active rules extend the traditional passive database technology and are a pow�
erful programming paradigm with a large number of application areas	 While an
increasing number of systems becomes available and active rule programming is
carried out in real world applications� theoretical foundations of active rules are
still rare	 In the
rst part of the paper� we have introduced the basics of active
rules and related them to production rules and deductive rules� respectively	 Af�
ter discussing a number of formal approaches to active rules� we have elaborated
on a state�oriented logical framework which integrates active and deductive rules	
The underlying core language Statelog precisely speci
es the meaning of a set
of active rules and allows to investigate fundamental properties like termination
and expressive power �LLM���Lud���	 Although the basic execution model of
�at Statelog is relatively straightforward and corresponds to �at transactions
dealing only with immediate and deferred coupling on the statement�level� it
captures many essential features of active rules including composite events	 It
can be shown �Lud��� that some features like chronicle contexts of composite
events cannot be expressed directly� but require certain extensions like event

��

queues or timestamping� as presented in �MZ���	 While the proposed frame�
work enjoys the desirable feature of a deterministic semantics� it is sometimes
useful to consider nondeterministic extensions� in particular to model existing
nondeterministic systems	 A possible extension is to use the choice construct of
�SZ��� which can be integrated seamlessly with a state�oriented language like
Statelog or XY�Datalog �see e	g	� �GGSZ����	 Finally� we have shown how the
�at transaction model can be extended to handle nested transactions using a
hierarchical state space	 In this extended framework� low�level procedural con�
structs like before� and instead�triggers can be formalized in an intuitive way	 Fi�
nally� a model�theoretic semantics based on labeled Kripke�structures has been
developed for Statelog with nested transactions� which provides a conceptual�
implementation�independent model for active rule behavior	

References

ABW��
 K� R� Apt� H� Blair� and A� Walker� Towards a Theory of Declarative
Knowledge� In J� Minker� editor� Foundations of Deductive Databases and
Logic Programming� pp� ������� Morgan Kaufmann� �����

AHV��
 S� Abiteboul� R� Hull� and V� Vianu� Foundations of Databases� Addison
Wesley� �����

AS��
 S� Abiteboul and E� Simon� Fundamental Properties of Deterministic and
Nondeterministic Extensions of Datalog� Theoretical Computer Science�
��	����������� �����

AV��
 S� Abiteboul and V� Vianu� Datalog Extensions for Database Queries and
Updates� Journal of Computer and System Sciences� ��	���������� �����

AWH��
 A� Aiken� J� Widom� and J� M� Hellerstein� Static Analysis Techniques for
Predicting the Behavior of Active Database Rules� ACM Transactions on
Database Systems �TODS�� ��	�������� March �����

BCP��
 E� Baralis� S� Ceri� and S� Paraboschi� Improving Rule Analysis by Means
of Triggering and Activation Graphs� In Sellis
Sel��
� pp� ��������

BFKM��
 L� Brownston� R� Farrel� E� Kant� and N� Martin� Programming Expert
Systems in OPS�� An Introduction to Rule�Based Programming� Addison�
Wesley� �����

BFP���
 M� L� Barja� A� A� A� Fernandes� N� W� Paton� M� H� Williams� A� Dinn� and
A� I� Abdelmoty� Design and implementation of ROCK ROLL� a deduc�
tive object�oriented database system� Information Systems� ��	�����������
�����

BGP��
 C� Baral� M� Gelfond� and A� Provetti� Representing Actions� Laws� Obser�
vations and Hypotheses� Journal of Logic Programming� ��	�������������
�����

BH��
 M� Berndtsson and J� Hansson� editors� �st Intl	 Workshop on Active and
Real�Time Database Systems �ARTDB�� Workshops in Computing� Sk�ovde�
����� Springer�

BK��
 A� J� Bonner and M� Kifer� An Overview of Transaction Logic� Theoretical
Computer Science� ���	����������� �����

BL��
 C� Baral and J� Lobo� Formal Characterization of Active Databases� In
Pedreschi and Zaniolo
PZ��
� pp� ��������

��

BLT��
 C� Baral� J� Lobo� and G� Trajcevski� Formal Characterization of Active
Databases� Part II� In F� Bry� K� Ramamohanarao� and R� Ramakrish�
nan� editors� Intl	 Conference on Deductive and Object�Oriented Databases
�DOOD�� number ���� in LNCS� pp� �������� Montreux� Switzerland� �����
Springer�

BW��
 E� Baralis and J� Widom� An Algebraic Approach to Rule Analysis in
Expert Database Systems� In Intl	 Conference on Very Large Data Bases�
pp� �������� Santiago� Chile� �����

CFPT��
 S� Ceri� P� Fraternali� S� Paraboschi� and L� Tanca� Active Rule Manage�
ment in Chimera� In Widom and Ceri
WC��a
� chapter �� pp� ��������

Cha��
 S� Chakravarthy� editor� Bulletin of the Technical Committee on Data En�
gineering� Special Issue on Active Databases� volume ��	����� IEEE Com�
puter Society� �����

Che��
 W� Chen� Programming with Logical Queries� Bulk Updates and Hypothet�
ical Reasoning� In B� Thalheim� editor� Workshop Semantics in Databases�
Prague� January ����� Technische Universit�at Cottbus�

Cho��a
 J� Chomicki� Depth�Bounded Bottom�Up Evaluation of Logic Programs�
Journal of Logic Programming� ��	�������� October �����

Cho��b
 J� Chomicki� E�cient Checking of Temporal Integrity Constraints Us�
ing Bounded History Encoding� ACM Transactions on Database Systems
�TODS�� ��	����������� �����

CKAK��
 S� Chakravarthy� V� Krishnaprasad� E� Anwar� and S��K� Kim� Composite
Events for Active Databases� Semantics� Contexts and Detection� In J� B�
Bocca� M� Jarke� and C� Zaniolo� editors� Intl	 Conference on Very Large
Data Bases� pp� �������� Santiago de Chile� �����

CM��
 S� Chakravarthy and D� Mishra� Snoop� An Expressive Event Speci�cation
Language for Active Databases� Data
 Knowledge Engineering� ��������
�����

CPM��
 R� Cochrane� H� Pirahesh� and N� Mattos� Integrating Triggers and Declar�
ative Constraints in SQL Database Sytems� In Intl	 Conference on Very
Large Data Bases� pp� �������� Mumbai 	Bombay�� India� �����

Day��
 U� Dayal� Ten Years of Activity in Active Database Systems� What HaveWe
Accomplished! In M� Berndtsson and J� Hansson� editors� �st Intl	 Work�
shop on Active and Real�Time Database Systems �ARTDB�� Workshops in
Computing� pp� ����� Sk�ovde� ����� Springer�

DGG��
 K� R� Dittrich� S� Gatziu� and A� Geppert� The Active Database Manage�
ment System Manifesto� A Rulebase of ADBMS Features� In Sellis
Sel��
�
pp� �����

DHW��
 U� Dayal� E� Hanson� and J� Widom� Active Database Systems� In W� Kim�
editor� Modern Database Systems� The Object Model� Interoperability� and
Beyond� chapter ��� pp� �������� ACM Press� �����

FT��
 P� Fraternali and L� Tanca� A Structured Approach for the De�nition of the
Semantics of Active Databases� ACM Transactions on Database Systems�
��	����������� �����

FWP��
 A� A� A� Fernandes� M� H� Williams� and N� W� Paton� A Logic�Based In�
tegration of Active and Deductive Databases� New Generation Computing�
��	����������� �����

GB��
 A� Geppert and M� Berndtsson� editors� Proc	 of the �nd Intl	 Workshop on
Rules in Database Systems �RIDS�� number ���� in LNCS� Sk�ovde� Sweden�
�����

��

GGSZ��
 F� Giannotti� S� Greco� D� Sacc"a� and C� Zaniolo� Programming with Non�
Determinism in Deductive Databases� Annals of Mathematics and Arti�cial
Intelligence� ��	I�II��������� �����

GL��
 M� Gelfond and V� Lifschitz� The Stable Model Semantics for Logic Pro�
gramming� In R� Kowalski and K� Bowen� editors� Intl	 Conference on Logic
Programming �ICLP�� pp� ���������� �����

GL��
 M� Gelfond and V� Lifschitz� Representing Action and Change by Logic
Programs� Journal of Logic Programming� ����������� �����

GMS��
 G� Gottlob� G� Moerkotte� and V� S� Subrahmanian� The PARK Semantics
for Active Rules� In P� M� G� Apers� M� Bouzeghoub� and G� Gardarin�
editors� Intl	 Conference on Extending Database Technology� number ����
in LNCS� Avignon� France� ����� Springer�

ISO��
 ISO�ANSI Working draft� SQL�� ����� ISO#IEC JTC �#SC ��#WG ��

KC��
 S��K� Kim and S� Chakravarthy� A Con�uent Rule Execution Model for Ac�

tive Databases� Technical Report UF�CIS�TR�������� University of Florida�
����� http�##www�cis�u��edu#$sharma�

KdMS��
 G� Kiernan� C� de Maindreville� and E� Simon� Making Deductive Database
a Practical Technology� a step forward� In ACM Intl	 Conference on Man�
agement of Data �SIGMOD�� pp� �������� �����

KLS��
 M� Kramer� G� Lausen� and G� Saake� Updates in a Rule�Based Language
for Objects� In Intl	 Conference on Very Large Data Bases �VLDB�� pp�
�������� Vancouver� �����

Kow��
 R� A� Kowalski� Database Updates in the Event Calculus� Journal of Logic
Programming� ��	� ����������� �����

KRS��
 D� B� Kemp� K� Ramamohanarao� and P� J� Stuckey� ELS Programs and
the E�cient Evaluation of Non�Strati�ed Programs by Transformation to
ELS� In Ling et al�
LMV��
� pp� �������

KU��
 A� P� Karadimce and S� D� Urban� Re�ned Triggering Graphs� A Logic�
Based Approach to Termination Analysis in an Active Object�oriented
Database� In �
th International Conference on Data Engineering �ICDE��
pp� �������� �����

LHL��
 B� Lud�ascher� U� Hamann� and G� Lausen� A Logical Framework for Active
Rules� In Proc	 �th Intl	 Conference on Management of Data �COMAD��
pp� �������� Pune� India� ����� Tata McGraw�Hill�

LLM��
 G� Lausen� B� Lud�ascher� and W� May� On Logical Foundations of Active
Databases� In J� Chomicki and G� Saake� editors� Logics for Databases and
Information Systems� chapter ��� pp� �������� Kluwer Academic Publish�
ers� �����

LML��
 B� Lud�ascher� W� May� and G� Lausen� Nested Transactions in a Logical
Language for Active Rules� In Pedreschi and Zaniolo
PZ��
� pp� ��������

LMV��
 T� W� Ling� A� O� Mendelzon� and L� Vieille� editors� Intl	 Conference on
Deductive and Object�Oriented Databases �DOOD�� number ���� in LNCS�
Singapore� ����� Springer�

LS��
 U� W� Lipeck and G� Saake� Monitoring Dynamic Integrity Constraints
Based on Temporal Logic� Information Systems� pp� �������� �����

Lud��
 B� Lud�ascher� Integration of Active and Deductive Database Rules� PhD the�
sis� Institut f�ur Informatik� Universit�at Freiburg� ����� in�x�Verlag� Sankt
Augustin� ����� ISBN ��������������

Min��
 J� Minker� Logic and Databases� a �� Year Retrospective� In Pedreschi and
Zaniolo
PZ��
� pp� �����

��

MW��
 S� Manchanda and D� S� Warren� A Logic�Based Language for Database
Updates� In J� Minker� editor� Foundations of Deductive Databases and
Logic Programming� pp� �������� Morgan�Kaufmann� Los Altos� CA� �����

MZ��
 I� Motakis and C� Zaniolo� Composite Temporal Events in Active Database
Rules� A Logic�Oriented Approach� In Ling et al�
LMV��
� pp� ������

MZ��
 I� Motakis and C� Zaniolo� Temporal Aggregation in Active Database Rules�
In ACM Intl	 Conference on Management of Data �SIGMOD�� pp� ��������
Tucson� Arizona� �����

NT��
 S� Naqvi and S� Tsur� A Logical Language for Data and Knowledge Bases�
Computer Science Press� New York� �����

PCFW��
 N� W� Paton� J� Campin� A� A� A� Fernandes� and M� H� Williams� Formal
Speci�cation of Active Database Functionality� A Survey� In Sellis
Sel��
�
pp� ������

PDW���
 N� W� Paton� O� D%&az� M� H� Williams� J� Campin� A� Dinn� and A� Jaime�
Dimensions of Active Behaviour� In Paton and Williams
PW��
� pp� ������

Prz��
 T� C� Przymusinski� On the Declarative Semantics of Deductive Databases
and Logic Programs� In J� Minker� editor� Foundations of Deductive
Databases and Logic Programming� pp� �������� Morgan Kaufmann� �����

PV��
 P� Picouet and V� Vianu� Semantics and Expressiveness Issues in Ac�
tive Databases� In ACM Symposium on Principles of Database Systems
�PODS�� �����

PV��
 P� Picouet and V� Vianu� Expressiveness and Complexity of Active
Databases� In F� Afrati and P� Kolaitis� editors� �th Intl	 Conference on
Database Theory �ICDT�� number ���� in LNCS� pp� �������� Delphi�
Greece� ����� Springer�

PW��
 N� W� Paton and M� H� Williams� editors� �st Intl	 Workshop on Rules in
Database Systems �RIDS�� Workshops in Computing� Edinburgh� Scotland�
����� Springer�

PZ��
 D� Pedreschi and C� Zaniolo� editors� Intl	 Workshop on Logic in Databases
�LID�� number ���� in LNCS� San Miniato� Italy� ����� Springer�

RH��
 K� Ramamohanarao and J� Harland� An Introduction to Deductive
Database Languages and Systems� The VLDB Journal� �	����������� April
�����

Sel��
 T� K� Sellis� editor�
nd Intl	 Workshop on Rules in Database Systems
�RIDS�� number ��� in LNCS� Athens� Greece� ����� Springer�

Sin��
 M� P� Singh� Semantical Considerations on Work�ows� An Algebra for
Intertask Dependencies� In Intl	 Workshop on Database Programming Lan�
guages� electronic Workshops in Computing� Gubbio� Italy� ����� Springer�

SK��
 E� Simon and J� Kiernan� The A�RDL System� InWidom and Ceri
WC��a
�
chapter �� pp� ��������

SP��
 P� Sampaio and N� Paton� Deductive Object�Oriented Database Systems�
A Survey� In Geppert and Berndtsson
GB��
� pp� �����

SSW��
 K� F� Sagonas� T� Swift� and D� S� Warren� XSB as an E�cient Deduc�
tive Database Engin� In ACM Intl	 Conference on Management of Data
�SIGMOD�� pp� �������� �����

SZ��
 S� Sacc"a and C� Zaniolo� Stable Models and Non�Determinism in Logic
Programs with Negation� In Proc	 of the �th ACM Symposium on Principles
of Database Systems� pp� �������� �����

VG��
 A� Van Gelder� The Alternating Fixpoint of Logic Programs with Negation�
In ACM Symposium on Principles of Database Systems �PODS�� pp� �����
�����

��

Via��
 V� Vianu� Rule�Based Languages� Annals of Mathematics and Arti�cial
Intelligence� ��	I�II���������� �����

WC��
 J� Widom and S� Chakravarthy� editors� �th Intl	 Workshop on Research
Issues in Data Engineering �RIDE�� IEEE Computer Society Press� �����

WC��a
 J� Widom and S� Ceri� editors� Active Database Systems� Triggers and Rules
for Advanced Database Processing� Morgan Kaufmann� �����

WC��b
 J� Widom and S� Ceri� Introduction to Active Database Systems� In Active
Database Systems� Triggers and Rules for Advanced Database Processing

WC��a
� chapter �� pp� �����

WF��
 C��A� Wichert and B� Freitag� Capturing Database Dynamics by Deferred
Updates� In Intl	 Conference on Logic Programming �ICLP�� Leuven� Bel�
gium� ����� MIT Press�

Wid��
 J� Widom� Deductive and Active Databases� Two Paradigms or Ends of a
Spectrum� In Paton and Williams
PW��
�

Zan��
 C� Zaniolo� A Uni�ed Semantics for Active and Deductive Databases� In
Paton and Williams
PW��
� pp� ��������

Zan��
 C� Zaniolo� Active Database Rules with Transaction Conscious Stable
Model Semantics� In Ling et al�
LMV��
� pp� ������

ZH��
 Y� Zhou and M� Hsu� A Theory for Rule Triggering Systems� In Intl	 Conf	
on Extending Database Technology� pp� �������� �����

��

