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Abstract

Deductive object-oriented frameworks integrate logic rules and inheritance.
There, specific problems arise: Due to the combination of deduction and
inheritance, (a) deduction can take place depending on inherited facts, thus
raising indirect conflicts, and (b) also the class hierarchy and -membership
is subject to deduction. From this point of view, we investigate the applica-
tion of the extension semantics of Default Logic to deductive object-oriented
database languages. By restricting the problem to Horn programs and a
special type of defaults tailored to the semantics of inheritance, a forward-
chaining construction of a Herbrand-style representation of extensions is pos-
sible. This construction is compared with a solution as implemented in the
F-Logic system FLORID which is based on a combination of classical deduc-
tive fixpoints and an inheritance-trigger mechanism.

From the F-Logic point of view, the main contribution of the report is to
investigate the relationship between inheritance-canonic models as defined in
[KLW95] and classical Al frameworks: we show that the semantics which is
defined and implemented for F-Logic coincides with the standard semantics of
Default Logic and Inheritance Networks. In this report, we restrict ourselves
to scalar methods.

A preliminary version of this technical report has been published at 13. Workshop
logische Programmierung - WLP’98, Vienna, October 1998 [MK98].
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1 Introduction

In deductive object-oriented database languages, a class hierarchy and non-
monotonic inheritance is used for modeling an application domain. Facts
can be derived either by classical deduction, or by inheritance: Assume that
an object o is an instance of a class ¢, and it is known that a “typical”
instance of ¢ has a property p. Then, if it can consistently be assumed that
p holds for o, it is added to the model. Exact notions are defined in course
of the paper.

The combination of deductive rules with inheritance is significantly more
complex than pure deduction or pure inheritance concepts (e.g., Descrip-
tion Logics), where efficient implementations exist. In this work, we study
the restricted case where defeasible reasoning is only concerned with in-
heritance. This combination is particularly of interest in deductive object-
oriented databases.

The AI Viewpoint. In the Al community, several frameworks for non-
monotonic reasoning have been presented which implement a notion of de-
faults (for an overview, see [GHR94, Bre91]).

Nonmonotonic reasoning is integrated into logic programming with nega-
tion; such programs are evaluated wrt. well-founded semantics [VGRS88] or
stable semantics [GL88, BF91]; for an overview, see [Dix95]. Moreover, ez-
tended logic programs allow negation in rule heads and provide two types of
negation, i.e., negation by failure and classical, strong negation, evaluated
by extensions of stable and well-founded semantics [Prz91, GL90]. Cir-
cumscription [Lif94] uses the same syntax as first-order logic (and classical
logic programming), augmented with a special predicate abnormal. The in-
tended models are those which minimize the abnormal predicate. In Default
Logic [Rei80, Po094, MT93], defeasible reasoning is expressed by defaults:
a:b/c denotes that, given a, if b can be assumed consistently, we can con-
clude ¢ (precondition:justification/consequence). Default Logic is presented
in more detail in Section 4.1. Inheritance Networks [Tou86, Hor94| provide
a comprehensive framework for specifying typical or atypical properties. An
inheritance network is given as a graph, consisting of defeasible links and
strict links, the former represent defeasible knowledge whereas the latter
represent conditionals. An approach to inheritance in frame systems based
on Circumscription is presented in [Bre87]. As a semantic approach, prefer-
ential models [Sho88, KLM90, Mak94] provide a very general formalization
of nonmonotonic reasoning. Except inheritance networks, the above ap-
proaches are based on first-order syntax. There, deductive rules can be
incorporated into the consequence relation (e.g., defaults without justifica-
tions, rules without the — abnormal-literal). A derived class-membership is
supported (since classes are represented by predicates). In extended logic
programs, Default Logic, and Circumscription, nonmonotonic reasoning is
not restricted to inheritance, but includes general conclusions.



For the above frameworks, due to possible conflicts, credulous and skep-
tical inheritance semantics can be defined. According to [Hor94], for purely
defeasible networks, the complexity depends on the exact definition of the
semantics, ranging from polynomial to NP-complete; for mixed networks,
complexity issues are not yet solved. Default Logic, in general, is not even
semi-decidable; although in the Theorist system [PGA87], default reasoning
has been implemented for empirical studies. Hence, the above approaches
in their full extent are not very useful for practical systems. In [Mor98],
formula-augmented semantic networks (there, formulas can be inherited)
have been successfully used in a commercial application.

The DOOD Situation. On the other hand, in the deductive database
community, nonmonotonic features (except strict negation) are still very
rare. The paradigm of deductive object-oriented database languages concep-
tually includes nonmonotonic inheritance, but this is not actually integrated
into existing languages and implementations. Here, structural inheritance
denotes a refining, but not fully overriding inheritance on the signature level:
if ¢ is a b, and the signature of class b provides a method m which results
in type t, then a also provides m, resulting in a subtype of . In contrast,
value inheritance denotes the concept of nonmonotonic inheritance known
from Al

The early object-oriented logics focussed on complex objects, but still
lacked a class-hierarchy or inheritance. A class hierarchy with only structural
inheritance has been introduced in LOGRES [CCCR"90], IQL [AK92], and
ROL [Liu96].

Nonmonotonic value inheritance can be found in Gulog [DT95]. There,
the class hierarchy and class membership are static, thus, inheritance con-
flicts can be detected a priori. Additionally, consistency wrt. scalar methods
is enforced by the condition that for every ground method definition, there
is at most one rule instance which possibly defines it. Programs satisfy-
ing these conditions are called “well-defined”, resulting in a very restricted
language.

F-Logic [KLW95] supports nonmonotonic value inheritance with over-
riding together with a class hierarchy which can be defined by rules. It has
been successfully applied for Al techniques in [KS97]. In the F-Logic system
FLorip! [FHK97], a Tp-like operator evaluating the classical logic part of
a program, and a trigger mechanism handling nonmonotonic inheritance are
implemented. This semantics is investigated in Section 8.

The paper is structured as follows: Section 2 introduces the concept of
inheritance from the AI point of view and relates it with the requirements
on inheritance in the deductive object-oriented database area. Section 3
presents the syntax and semantics of F-Logic used throughout the paper
and illustrates the problem arising from the combination of inheritance and

available from http://www.informatik.uni-freiburg.de/~dbis/florid.html.



deduction. In Section 4, Default Logic and its semantics is introduced, and a
characterization of inheritance by defaults is given. In Section 5, the global
semantics of default theories via eztensions as given in [Rei80, Poo94, MT93]
is investigated. In Section 6, we adapt the results to default theories con-
sisting of a Horn program and the special “Horn-like” defaults which char-
acterize inheritance, resulting in a Herbrand-style representation of exten-
sions. In Section 7, the consequences of the previous sections for the special
type of defaults needed for inheritance are investigated. In Section 8, we
present the semi-declarative semantics which is defined and implemented for
F-Logic. This semantics is based on logical deduction, inheritance triggers
and inheritance-canonic models. Section 9 shows the relation between the
presented concepts wrt. the problem of inheritance and shows the equiv-
alence and correctness of the F-Logic solution. Section 10 contains some
remarks on set-oriented vs. element-oriented strategies, classifying proper-
ties of extensions, and implementation and complexity issues. In Section 11,
we give some classic examples illustrating our approach and showing how
different modeling concepts can be used to obtain the intended behavior. In
another example, the concept is applied to implement dynamic behaviour,
where the frame problem is solved via inheritance, also leading to an elegant
solution of the ramification problem.

2 Inheritance

The idea of inheritance in an object-oriented setting can informally be de-
scribed as follows: Assume that an object o is an instance of a class ¢, and
it is known that a “typical” instance of ¢ has a property p. Then, if it can
consistently be assumed that p holds for o, it is added to the model.

2.1 Inheritance Networks

For a formal direct characterization of inheritance and for reasoning about
inheritance strategies, Inheritance Networks [Tou86, Hor94] provide an in-
tuitive and expressive graph-based framework. Here, direct means that rea-
soning in Inheritance Networks is done in terms of the network itself as a
“semantical”, path-based approach. This stands in contrast to translational
theories where the consequences of a network are interpreted in some more
standard syntactical nonmonotonic formalism (e.g., Default Logic, Circum-
scription, or Autoepistemic Logic, or the approach discussed in the present
paper). Nevertheless, the concepts are best motivated in this semantical
formalism and have then to be implemented in a target formalism.
Inheritance networks are more general than inheritance in the object-
oriented model: Nodes correspond to individuals (nodes with only outgoing
links) or to properties an individual can have, and links describe the connec-
tions between nodes. Here, defeasible links play the main role: a defeasible
link from an property p to a property ¢ means that a typical object which



satisfies p also satisfies ¢, e.g., “being a bird — flies”. A negative link from
p to g denotes that a typical object which satisfies p does not satisfy ¢; e.g.,
“being a bird /4 swims”. Nevertheless, there are atypical birds, e.g., pen-
guins which do not fly but swim. Links from individuals to properties are
e.g. of the form “tweety — being a bird”.

Strict links are an extension of basic inheritance networks, leading to
mized inheritance networks (cf. [Hor94, Ch. 3]). Strict links denote that
every/no object which satisfies p satisfies g, e.g., “being a penguin = being
a bird”, or “being a penguin 7 being a mammal”.

Mapping an object-oriented model to an inheritance network results in
three types of nodes: objects, classes, and properties. The subclass-relation
is encoded into strict links between classes, the is-a-relation is encoded into
strict links from objects to classes, and inheritable properties are encoded
into defeasible links from classes to properties. Additionally, facts and rules
concerning only a single class or object can be encoded into strict links
between different types of nodes. Thus, the combination of deductive rules
and inheritance results in mixed networks.

The following classics “Nixon Diamond” and “Tweety Triangle” illus-
trate the central concepts in inheritance. The corresponding inheritance
networks are given in Figure 1.

Example 1 (Nixon Diamond) We know that Nixon is a republican and
a quaker. A typical republican’s policy is being a hawk, the typical policy
of a quaker is being a pacifist. Now, there is a direct conflict with Nixons
policy. o

Example 2 (Tweety Triangle) Typical birds fly. Tweety is a bird. Pen-
guins are birds. Tweety is a penguin. Typical penguins do not fly. Here,
since “Tweety is a penguin” is more specific than “Tweety is a bird”, one
should conclude that Tweety does not fly, i.e., it is a typical penguin, but

not a typical bird. 0
hawk <> pacifist lay_eggs «<— bird — fly
T
re‘p. quaker penguin
N\ S ]
Nixon Tweety

Figure 1: Inheritance Networks of Nixon and Tweety

Reasoning in inheritance networks is based on paths in the network. A
path is a sequence of links where only the last link can be a negative link;
every path can be seen as an argument, e.g., in Figure 1, the path Nizon



— republican — hawk is an argument that Nixon is believed to be a political
hawk. On the other hand, the path Nizon — quaker — pacifist is an argument
that he is a pacifist, and not a hawk. The paths Nizon — republican — hawk
and Nizon — quaker — pacifist are said to be in conflict (here, we follow the
notion of a mized conflict, cf. [Hor94, Ch. 3]). Both are equally reasonable,
leading to two different solutions.

In the Tweety example, the path Tweety — penguin — bird — flies is
an argument that Tweety is believed to be able to fly, whereas the path
Tweety — penguin + flies is an argument that it is not. Again, these paths
conflict each other, nevertheless, here, the conclusion that Tweety does not
fly should be preferred since it is grounded on the more specific fact that
Tweety is a penguin. The path Tweety — penguin — bird — flies is said to be
preempted by the path Tweety — penguin + flies, thus it cannot be used for
inference. On the other hand, the path Tweety — penguin — bird — lay_eggs
is not preempted.

The basic concepts of conflict and preemption are conceptionally clear
and well-defined, even in the case of mixed networks.

The semantics of inheritance networks is defined in terms of extensions:
intuitively, an extension is a set ® of paths (arguments) that an ideal rea-
soner might accept — i.e., ® must not contain conflicting or preempted paths
(for formal definitions see [Tou86, Hor94]).

Nevertheless, there are several more involved notions, dealing with the
intuitive “adequacy” of extensions:

Decoupling. Consider the inheritance networks given in Fig. 2 (from
[Tou86]); note that the networks show some similarities with the Nixon
Diamond. Obviously, there is a conflict between the paths n — r + p and n
- q¢ — p, both arguments are equally reasonable.

The left network allows an extension ® containing the paths n — r +
p,a—n—q—-p, and b —n —r+ p: a typical n satisfies » and does not
satisfy p, whereas a is a typical n and satisfies p. The path a —n - ¢ —p
is called decoupled in ®, the conclusions about a are not properly coupled
with those about typical n’s. b is another typical n which satisfies r and
does not satisfy p, although the net gives identical information about a and
b. Here, prohibiting decoupling leads to the intended result that all typical
n’s behave like a typical n should behave.

On the other hand, in the net on the right in Fig. 2, an extension con-
taining the paths n — r + p and @ - n — ¢ — p is reasonable: although the
conflict between n — r + p and n — ¢ — p is solved in favour of r, a which
is a typical n, but does not satisfy r, is believed to satisfy ¢ and p. Here,
the knowledge about typical n’s is in fact disjunctive information which
does not actually need a decision how a typical n should behave, but which
would better be solved for each individual n. In Section 11.1, we show how
disjunctive information is handled in our approach.
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Figure 2: Decoupling

On-path preemption. In [Hor94], on-path preemption is investigated
as an additional mode of preemption: it occurs if a link in the net is a
shortcut for a path, thereby overlooking more specific information which
would preempt the link (example: a direct link Tweety — bird in Figure 1
which would advocate concluding that tweety flies).

When giving a formal characterization, it becomes obvious that several
details of this idea can be understood differently in different application
areas. Using formula-augmented inheritance networks (there, formulas can
be inherited) in a commercial application, Morgenstern [Mor98] advocates
different strategies from the application’s point of view. In fact, it is unlikely
that a uniform inheritance strategy can be given which provides the intended
semantics in all cases.

2.2 Inheritance in the Database Context

By path-based reasoning in inheritance nets, a large part of the conclusions
is of the form “a typical z satisfies p”, or — even more general “typically,
an individual which satisfies p also satisfies ¢”. Only some conclusions are

concerned with individuals, saying “it is reasonable to believe that a satisfies
W

p”.

When applying inheritance concepts in the object-oriented deductive
database area, the focus is not on general nonmonotonic reasoning, but on
its consequences in a given database instance —i.e, on properties of individual
objects. The more general conclusions of the form “a typical x satisfies p”,
or “typically, an individual which satisfies p also satisfies ¢” are then subject
to the application of data mining algorithms on the database instance.

By focussing on objects in a given database instance and their proper-
ties instead of reasoning about abstract typical individuals, some problems
coming with the path-oriented approach of inheritance networks can be cir-
cumvented: conflicts naturally occur when reasoning about properties of
individuals, not when reasoning about typical properties of classes.

Obviously, the problem of decoupling is strongly related with the path-
based approach. It can nearly be ignored in the database setting — moreover,



it even allows for specifying disjunctive information (cf. Section 11.1): For a
class, properties can be defined as inheritable to member objects although
they are conflicting if both of them would actually be inherited — the conflict
(and the decision which alternative should be preferred) can be limited to
the instance level since there is no statement which properties a typical x
should actually have. In Section 11.1, it is shown how the situation given in
Fig. 2 is solved in this way. Similarly, on-path preemption is naturally solved
by the approach which systematically propagates knowledge downwards the
class hierarchy.
For object-oriented databases, the concepts of a class hierarchy and in-
heritable properties induce a special structure of the “network”:
e there are three disjoint types of nodes: objects, classes, and properties,
e the class hierarchy is represented by strict links from (sub)classes and
objects to (super)classes,
e facts are represented by strict links from classes and objects to properties,
and by strict symmetric negative links between conflicting properties,
e inheritable properties are represented by defeasible links from classes to
properties (inheritable to subclasses and objects),
= these are the only defeasible links, thus there are no chains of defeasible
links.
In this model, there is a concise distinction between classes and objects since
a class does not represent simultaneously its typical member (although a
class can be regarded as an object of itself — which is a completely different
notion); thus, conflicts can be handled separately on class level or on object
level.

Remark 1 Consider an inheritance network defining a class hierarchy with
inheritable properties of classes and properties of objects. Let ® be a
decoupling-free extension of the network, containing a path o—c;—...—c,—c—p
(i.e., 0 is a ¢ via several intermediate classes ci,...,¢,, and ¢ provides the
inheritable property p, and o is believed to inherit this property from c).
Then, ® contains also the path ¢;—...—¢,~c—p for every i (which results in
believing that ¢; provides the inheritable property p). O

On the other hand, deductive rules have in general no representation
in inheritance networks?. Thus, inheritance nets are not suitable for for-
malizing inheritance in deductive databases. Instead, some syntax-based
nonmonotonic formalism has to be employed to meet the requirements of
logic programming. For this work, we decided to use Default Logic. The
following effects of deductive rules on inheritance have to be considered:

e conflicts due to deductive closure: before inheriting, the deductive closure
after inheritance has to be checked for conflicts,

“Rules concerning only a single object or class can be encoded by introducing conjunc-
tive properties corresponding to rule bodies.



e derived class hierarchy and class membership: deriving membership in
intermediate classes can lead to preemption.

2.3 The Inheritance Strategy

In inheritance networks, the conclusions are based on reasoning about paths
which cannot be encoded into translational approaches — such as Default
Logic. Thus, a formalization in Default Logic requires a different strategy
which can be expressed by formulas or rules. In this work, we adopt the
inheritance mechanism from object-oriented programming languages: in-
heritance to a class or object takes place from a direct (OO programming:
the minimal) superclass (which in course can inherit from its direct super-
class(es)). With this, the problem of decoupling is solved in a natural way:
a subclass or an object can only inherit properties which are known to be
inheritable in a direct superclass.

Note that, in contrast to class hierarchies in object-oriented program-
ming languages, we do not require unique minimal superclasses.

Remark 2 As long as coupling is required, this localized strategy is equiv-

alent with the path-based concept of inheritance nets:

e every path is equivalent to a sequence of inheritance steps downwards
through the class hierarchy and deductive steps.

e Let a—ci—...—¢;—Cjy1—...—cp—p be a path where @ is an individual, ¢; are
classes, and p is a property, such that the path is preempted by another
path a—c¢i—...—c;# p. Then, p is inherited to all classes from ¢, to ¢;41,

but inheritance stops with the step from c; 11 to ¢;.

e conflicting paths result in a conflict in the uppermost node they have in
common. By changing the modeling, the conflict can be decided either
on the class level in some class they have in common, or on the object
level at the receiving object (cf. Section 11.1). o

3 F-Logic: Language and Basic Concepts

This report has been motivated by the problem of integrating non-monotonic
value inheritance into the deductive object-oriented database language F-
Logic (cf. [KLW95]) and the FLORID prototype ([FLO98]). The characteri-
zation given in Section 8 is implemented in FLORID.

Definition 1 (Syntax of F-Logic) The syntax of F-Logic (without mul-
tivalued methods and schema reasoning) is defined as follows:

e The alphabet consists of a set F of object constructors, playing the role
of function symbols, a set V of variables, and several auxiliary symbols.
Object constructors are denoted by lowercase letters and variables by
uppercase ones.

e id-terms are composed from object constructors and variables. They are
interpreted by elements of the universe.



In the sequel, let O, O4,...,0,, C, D, M, and V denote id-terms.

e An is-a atom is an expression of the form O isa C (object O is a member
of class C), or C':: D (class C is a subclass of class D).3

e The following are object atoms:

— O[M—YV]: applying the scalar method M to O — as an object — results
inV,

— O[Me3V]: O — as a class — provides the inheritable scalar method M.
For a member o isa O, inheritance results in o[M —V]; for a subclass
¢ :: O, inheritance results in c[Me>V].

— Analogously O[M@(Oy,...,0,)—=V] and O[M@(Oy,...,0,)eV] with
n € IN for parameterized methods.

e Formulas are built from atoms using first-order logic connectives.

e An F-Logic rule is a logic rule h < b over atoms.

e An F-Logic program is a set of rules. O

Note that F-Logic does not distinguish between classes, methods, and ob-
jects which uniformly are denoted by id-terms; also variables can occur at
arbitrary positions of an atom.

The semantics of F-Logic extends the semantics of first-order predicate
logic. Formulas are interpreted over a semantic structure. We restrict our
discussion to Herbrand-interpretations where the universe consists of ground
id-terms. An H-structure is a set of ground F-Logic atoms describing an
object world, thus it has to satisfy several closure axioms related to general
object-oriented properties:

Definition 2 (Closure Axioms) A (possibly infinite) set H of ground
atoms is an H-structure if the following conditions hold for arbitrary ground
id-terms w, ug, ..., Uy, and wu,, occurring in H:

e u::u € H (subclass reflexivity),

o if uy it ug € H and ug :: ug € H then uy :: ug € H (subclass transitivity),

o if uy it ug € H and ug :: u; € H then u; = ug € H (subclass acyclicity),

o if uy isa ug € H and uy :: ug € H then uy isa ug € H (instance-subclass
dependency),

* there are no ground id-terms w and u' such that ug|u,~u] € H and
up[um~u'] € H, where ~» stands for — or e+ (uniqueness of scalar meth-
ods).

For a set M of ground atoms, C/( M) denotes the closure of M wrt. the above

axioms, C/(M) = L if the constraint (*) is violated in M.

By Thpr(F'), we denote the F-Logic theory of a set F' of formulas which

means the closure of F' wrt. a complete set of axioms of first-order logic and

3

w.n

we use isa instead of the original “” since is already used for defaults.



the axioms

X1 H X2 y X2 H X3 X1 . X2 , X2 . X1
XX X1 ::X3 X1 :X2
X1 isa X2 , X2 o X3 O[M’\’)V] , O[M’\')VI] , V 7’5 V!
X7 isa X3 false
(again, ~» stands for — or e+.) O

For an H-structure, the truth of atoms and formulas is given in the usual
way [KLW95]. Positive F-Logic programs are evaluated bottom-up by a
Tp-like operator including (7, providing a minimal model semantics:

Definition 3 (Deductive Fixpoint)
For an F-Logic program P and an H-structure #,

Tp(H) :=HU{h| (h <+ by,...,b,) is a ground instance of some rule of P
and b; € H foralli=1,...,n},
Tp(H) =CUH),
T’“(’H) CUTp (T} (H))) ,
B { lim; 00 Th(H) if the sequence TR (H), TH(H),... converges,
L 0therw1se

Note that (/(H) = L can also lead to the result L. o

The above Tp-operator does not deal with inheritance. In [KLW95], inherit-
ance-canonic models are defined, based on inheritance triggers which extend
the above fixpoint semantics with some procedural flavor. This definition is
further investigated in Section 8.

First, we give some introductory examples which show that logical deduction
in combination with inheritance can lead to semantical difficulties and even
contradictions already in simple settings:

Example 3 (Nixon Diamond) Consider the program
P = {quaker[policye+pacifist], republican[policye+hawk],
r_nixon isa quaker, r_nixon isa republican}.

which is the F-Logic representation of the Nixon Diamond given in Exam-
ple 1.

Here, nothing can be derived by classical deduction. Both policies can be
argued to be inherited. Each of them can be inherited without any problem,
making r_nixon[policy—_] defined, “blocking” the other. o

Example 4 (Nixon Family)
Consider again the Nixon-Diamond, augmented by

{W[policy—P] + W[husband—0O],0O[policy—P], mrs_nixon[husband—r_nixon] ,
mrs_nixon isa quaker}

Now, there are the following possibilities:

10



e r_nixon inherits r_nixon[policy—hawk] and from this, classical deduction
derives mrs_nixon[policy—hawk]. In this case, mrs_nixon[policy—pacifist]
must not be inherited — thus, she is an atypical quaker.

e r_nixon inherits r_nixon[policy—pacifist] — in which case classical deduction
derives mrs_nixon[policy— pacifist] which is the same value as she would
(have) inherit(ed) from being a quaker. o

The next example is a slight variation, showing this conflict even stronger:

Example 5 (Extended Nixon Family) Consider the following version
of the Nixon family:

P = {r_nixon isa republican, republican[policye+hawk],
mrs_nixon[policy— pacifist], mrs_nixon[husband—r_nixon],
W(policy—P] <= W[husband—O]AO[policy—P]} .

Here, although there is no direct conflict when inheriting r_nixon[policy—hawk],
the logical consequences require mrs_nixon[policy—hawk], leading to an in-
consistency. Thus, a “responsible” semantics must not inherit in this situa-
tion, though leaving the policy of r_nixon undefined. O

Among the related frameworks, inheritance nets [Hor94] take care about
such indirect conflicts with their notion of mized conflicts. Default Logic
[Po094, MT93] also incorporates this notion within the justifications — a
default only applies if its justification is consistent with the resulting struc-
ture. Circumscription [Lif94] would result in the fact that Nixon is abnormal.
In Gulog [DT95], this program does not satisfy the restrictions for a well-
defined program.

Example 6 Consider the Tweety example in F-Logic:
P = {bird[flye>true; laying_eggse~true|, penguin[flye>false],
penguin :: bird, tweety isa penguin} .
With the above definition, (/(P) = P U {tweety isa bird}. Here, tweety
should inherit tweety[fly—false] from penguin, not tweety[fly—true] from bird
since the potential inheritance of tweety[fly—true] from bird is preempted by
the intermediate class penguin[flye~>false]. On the other hand, the property
[laying_eggse~true] should be inherited from bird to penguin[laying_eggse->true]
and to tweety[laying_eggs—true] (cf. Example 11). o

This example motivates one of the strategies which are applied in the
sequel: properties are inherited stepwise downwards the class hierarchy.
The result of this section is that application of inheritance has to deal
with two kinds of facts:
1. explicit: checking the superclass condition, that inheritance is not pre-
empted, and the requirement that the method to be inherited is not yet
defined,
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2. implicit: there can be facts which would be inconsistent with the inherited
property, although they are not rejected by (1) (cf. Ex. 5).

Here, (2) cannot be provided by a non-defeasible encoding into logic rules.

Instead, in the next sections it is shown that the framework of defaults

covers the meaning of defeasible inheritance and how this can be integrated

with the classical logic programming idea underlying F-Logic and similar

deductive database languages.

4 Default Logic and Inheritance

4.1 Default Logic: The Framework

In Default Logic [Rei80, Poo94, MT93], defeasible reasoning is expressed by
defaults: a default
a ,31, . ,ﬁn
w

consists of a precondition p(d) = «, a justification J(d) = 8= {f1,...,0n}
and a consequence c(d) = w; for a set D of defaults, J(D) := Uycp J(d),
analogous ¢(D). Given «, if # can be assumed consistently, one can conclude
w. If B is true, the default a:8/w is equivalent to the logic rule w < « as
long as only consistent interpretations are considered. A default theory is a
pair A = (D, F) where D is a set of defaults and F is a set of formulas.

By this, application of defaults deals in a general way with the above-
mentioned two kinds of facts:

d =

1. the precondition represents the explicitly required knowledge,
2. the justification lists facts which must be consistent with the knowledge,
but not necessarily must belong to the knowledge.

4.2 Inheritance in Default Logic

In an inheritance framework, the superclass condition belongs to (1); whereas
the checks that inheritance is not preempted and that the inherited value
must be consistent with the knowledge (wrt. the logical rules of the program)
fall under (2).

For characterizing inheritance, only a specialized form of defaults is
needed, called semi-normal defaults. Semi-normal defaults are of the form
a(Z):6(z)/w(z) where the precondition a(Z) is a conjunction of atoms, the
consequence w(z) is also an atomic formula, and Vz : §(z) — w(z) holds.
Translating the path-based concept of inheritance networks, inheritance in
F-Logic syntax can be specified by defaults of the form

OisaC, C[MesV] ,parn(O-Ci—...~Cp—C) -

7ljnh = ﬁbnot_preempted(O*CI*---*Cn*C, M°—>V) ) O[M—>V]
O[M—V]
(analogous for C' :: C')
where ¢pain is a meta-predicate which states that O-Ci—...-C,,—C is a

12



path in the class-hierarchy, and ¢not_preempted (O—Ci—...~Cp~C, Me:V) is
a meta-predicate which states that inheritance of Me+>V along the path
O-Cy—...-Cp~C is not preempted; i.e., that ¢'/[Me+V] is consistent for all
intermediate classes ¢’ on this path.

Due to the fact that variables are also allowed at class and method
positions, every instance of inheritance of an inheritable non-parameterized
scalar method (which are denoted by e+) is an instance of the above default
schema.

Note, that for an H-structure H, o[m—v] can only be assumed consis-
tently if there is no v’ # v such that o[m—v] € H.

By Remark 1, inheritance along a path can be split into a sequence of
smaller steps (until in every step, inheritance takes place from an immediate
superclass) which do not require path-based reasoning:

OisaC, CIMe>V] :
Dinn= VC'((OisaC' ANC":: C) = C'[MesV]) , OIM—=V] .
O[M—V]

(analogous for C” :: C.)

Definition 4 For a given F-Logic program P, by Ap we denote the Horn
default theory (Dp, P) where Dp contains the above default schema D;,j,
for every arity of methods and for inheritance to subclasses. Let nmax be
the maximal arity of a method occurring in P. Then, Dp contains for every
n < Nmax the following default schemata:
OisaC, CIMQ(Oy,...,0,)eV] :
VC'(OisaC' ANC":: C) = C'[MQ(O1,...,0,)V]) , O[MQ(Oq,...,0,)—=V]
OIMQ(Oy,...,0,)—=V]
SC:C, CIMQ(Oy,...,0,)eV] :
VC'((SCisaC' AC" :: C) = C'[MQ(Oy,...,0,)e3V]) , SC[MQ(Oy,...,0,)e3V]
SC[M@Q(Oy,...,0,)eV]

5 Global Semantics of Default Theories

5.1 Extensions

The semantics of a default theory is defined in terms of extensions. In the
following, for a set S of formulas, let Th(S) denote the theory of S.*

Definition 5 (Extension; based on [Po094])
Let A = (D, F) be a default theory. For sets S, T of formulas, let

GD(S,T,D) := {d|d is an instance of a default in D, Th(T) = p(d) , and
Th(S U {3}) is consistent for every 5 € J(d)}

“wrt. the respective framework, e.g., propositional, first-order, or F-Logic.
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(generating defaults). Then, for all sequences Sy = F,S1,Ss,... of sets of
formulas s.t. S = (U;2, Si) and

Si+1 = 8; U C; where C; = C(GD(S, SZ,D)) ,

Th(S) is an extension of A. Since S is needed later on, we call it an eztension
base of A. o

Definition 6 Let D be a set D of defaults and S a set of formulas. Then,

e GD(S,D):=GD(S, S, D) is the set of applicable defaults in S,

e GD'(S,D) :={d € GD(S,D) | c(d) ¢ Th(S)} is the set of applicable
defaults which add knowledge not (yet) contained in S. o

Remark 3 Note that S; = F UU,_y ,Cjand S=FUUZ,Ci=FU
c¢(GD(S,D)) and GD™ (S, D) =0, i.e., for all defaults d which are applicable
in S, the consequence of d is in S. O

In [Mak94], this is termed a quasi-inductive definition: in the step i — i+1,
all 3; are required to be consistent with Th(S) = Th({J;2, S;), thus, assump-
tions about future stages are made (note that in contrast, the evaluation of
a does not use S). Note that, depending on which assumptions are made,
there can be several different extensions (cf. Ex. 3).

In [MT93], an equivalent definition is given in terms of a belief set S and
S-proofs:

Definition 7 (cf. [MT93]) Let (D, F) be a default theory and S a theory.
e An S-proof of a formula ¢ wrt. (D, F) is a finite sequence @1,...,p, = ¢
such that for every 1 <4 < n, one of the following conditions hold:

— i €F,

— (; is provable with first-order logic from ¢, ..., p; 1,

— there is an instance «(¢):01(¢), ..., Bm(¢)/w(c) of a default in D such
that a(¢) = ¢; for some j < i and f(c) is consistent with S for all
1<k<m.

e conseq”¥(F) denotes the set of all formulas having an S-proof wrt.

(D, F).

e Then, a theory S is an extension for (D, F) if S = conseq?*(F). O

In both definitions, S must be guessed to prove that it is an extension, then
it can be checked if S is the result of the fixpoint process (first definition)
or satisfies the given equation (second definition), respectively.

5.2 Forward Chaining Evaluation

Motivated by the fixpoint semantics for positive logic programs, the evalu-
ation of logic programs with inheritance should also be based on a forward-
chaining approach, i.e. without having to guess .S first. From Definition 5, a
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forward-chaining, inflationary strategy can be defined by replacing “Th(S U
{B}) is consistent” with “Th(S; U {#}) is consistent”, i.e. evaluating defaults
against the current belief set. In contrast to Def. 5, in every step, we allow
the application of exactly one default (in Section 10.1.1 it will be proven
that this makes no difference as long as only positive programs and defaults
with positive preconditions are considered).

Definition 8 (Inflationary extension)
Let A = (D, F) be a default theory. Let ADy = () and Sy = F, S1,52,...,5,
be a sequence of sets of formulas such that

Siv1 =S5 U {C(dl)} , ADjy1 = AD; U {dz} where d; € GD+(SZ,D) ,

and GD*(S,,D) = 0 (for the definition of GD™ see Def. 6). Then, with
S = (Uizo,..., Si); Th(S) is called an inflationary extension of A; we call §
an inflationary extension base of A. 0

Remark 4 Note that again, S; = F U UjZO,...,i—l{c(dj)} and S = F U
Ui=o,...n{c(di)} and GD™(S,D) = 0. i

This approach is, e.g., investigated in [MT93, Section 3.7, Def. 3.61]. As
shown there, the above method is complete, but not sound: it generates
theories which are no extensions.

Proposition 1 (Extensions vs. Inflationary Extensions)

Let A = (D, F) be a Default theory.

1. Every extension S of A is also an inflationary extension of A, and

2. Let S be an inflationary extension computed by the algorithm given in
Definition 8. If for every B € J(ADy), B is consistent with S, then S is
an extension of A. o

Proof 1. cf. [MT93, Cor. 3.68 and 3.71, Th. 3.73].
2. cf. [MT93, Th. 3.65]. m

The strategy is inflationary in the sense that a default which has been once
applied is not undone (which would require to undo also all its logical con-
sequences) if in a later step one of its justifications turns out to be wrong
which is exactly the tested criterion in (2) of the above proposition.

Remark 5 There are two alternatives how to deal with this problem: (i)
forbid the application of defaults whose justifications will be falsified later,
or (ii) forbid the application of a default whose logical consequences would
falsify the justifications of another default which has been applied earlier.
As we see, the notion of extensions includes (i) whereas (ii) is much eas-
ier to implement. (i) leads to theories where no further default is applicable
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whereas (ii) can lead to structures where some defaults are still applica-
ble. On the other hand (i) does not guarantee that such a structure exists,
whereas a structure satisfying (ii) always exists.

We will see that (ii) is weaker than (i), but the difference can be con-
trolled in case of inheritance. a]

Example 7

Consider a default theory ({d1,d2}, F') such that GD(F,{d1,d2}) = {d1,d2},
GD(F U C(dl)) = ds, GD(F U C(dQ)) = @, and C(dg) — —|J(d1).

Here, both 73 = Th(F U ¢(dz2)) and To = Th(F U c¢(d1) U c(dy)) are
inflationary extensions. 77 is the only extension. 75 is not an extension
since Ty |= —J(dy), thus, the justification of d; is falsified by application of
ds.

T3 = Th(F U ¢(dy)) is not an inflationary extension (and also not an exten-
sion) since GD* (T3, D) = ds.

The strategy (ii) above would result in 77 and T3 as acceptable structures.

O

Cautious inflationary extensions are defined similar to Definition 8, follow-
ing strategy (ii), i.e., avoiding the falsification of previous justifications:

Definition 9 (Cautious inflationary extension)
Let A = (D, F) be a default theory. For a set S of formulas and a set AD
of ground instances of defaults, let

GD/} (S, D,AD) := {d | d is an instance of a default in D, Th(S) | p(d) ,
and Th(S U ¢(d) U () is consistent
for every 3 € J(AD U {d}) and c(d) ¢ Th(S)} .

Let ADy = 0 and Sy = F,51,S5,...,5, be a sequence of sets of formulas
such that

Sit1=5; U {C(dz)} , ADj 1 = AD; U {dl} where d; € GDT (Su D, ADl) ,

caut
and GD{,,,,(Sy, D, AD,) = . Then, with S = (U, Si), Th(S) is called

a cautious inflationary extension of A; we call S a cautious inflationary
extension base of A. 0

Remark 6 Note that again, S; = F U J;_ _;{c(d;)} and S = F U
Uizo,..yic(di)}, but now GD*(S,D) # 0 is possible, i.e, there can be
applicable defaults d in S such that c¢(d) ¢ S (then, ¢(d) would lead to
falsification of a justification of a previously applied default, thus, d ¢
GD/,..(S,D,ADy)). o

caut

Example 8 The above notions define strictly different notions of exten-
sions. Consider the following default theory:

(D, {p}) where D:{p:_'q’ P } ‘

r,s r,q
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Here, S = {p,r, q} is the only extension, generated by GD({p, r,q},{p}, D) =
{p/r,q}. S is also an inflationary extension and a cautious inflationary ex-
tension.

But, GD({p}, D) does not only contain p/r, ¢ since p : ~q/r,s € GD({p}, D).
Applying p : =q/r, s in {p} leads to S’ = {p,r, s} which is not an extension
since GDV({p,r,s}, D) = {p/r,q}. Subsequent application of {p/r,q} re-
sults in {p,r, s,q} which is an inflationary extension, but the justification
of the previously applied default p : —q/r, s is invalidated. Thus, S’ is a
cautious inflationary extension — with GD™(S’, D) # 0.

There is no extension where —¢ is consistent, and the default p : =q/r, s is
not applied in the construction of any extension. Thus, when the inflationary
strategy chooses to apply the default p : =q/r,s € GD*({p}, D) it runs into
a garden path — it is not possible then to reach a valid extension. O

As in the above example, the cautious strategy can run into garden paths,
i.e., applying defaults such that it is not possible to reach an extension.
Garden paths can only be cured by backtracking.

Proposition 2 (Cautious Inflationary vs. Inflationary Extensions)

Let A = (D, F) be a default theory. Then,

e The computations of cautious inflationary extensions are the mazimal
prefizes of computations of inflationary extensions such that no justifica-
tion of a previously applied default is falsified.

e A cautious inflationary extension S of A is an inflationary extension if

GD*(S,D) = 0.
e If an inflationary extension S satisfies the criterion given in Proposi-
tion 1(2), then S is also a cautious inflationary extension. O

Note that an inflationary extension not necessarily contains a cautious in-
flationary extension:

Example 9 (Cautious Inflationary vs. Inflationary Extensions)
Consider a default theory (D, F') with D = {d;, d2,d3} such that GD(F, D) =
{di}, GD(F U {c(d1)}) = {d2,d3}, GD(F U {c(d1),c(d2)}) = GD(F U
{c(d1),c(ds)}) =0, and F U {c(dy), c(d2)} is consistent with ((d;), whereas
F U {c(d1),c(ds)} is inconsistent with 5(dy).

Then, Th(F U {c(d1),c(d2)}) is an extension (and also a cautious infla-
tionary extension), and Th(F U {c(d1),c(d3)}) is an inflationary extension
which does not satisfy Proposition 1(2) and which does not contain a cau-
tious inflationary extension. 0

Proposition 3 (Extensions vs. Cautious Inflationary Extensions)
Given a default theory A = (D, F), a cautious inflationary extension S of
A is an extension of A if GDT(S, D) = (). o
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Proof By Proposition 2, every cautious inflationary extension S such that
GD™(S,D) = ( is an inflationary extension. Since every cautious inflation-
ary extension satisfies the additional criterion stated in Proposition 1, it is
then an extension of A. -

6 The Horn Case

Given a default theory (D, P) which consists of a set P of Horn formulas
and a set D of semi-normal defaults®, both in Definitions 5 and 8, every S;
and the resulting base S = P U |J;°, C; is Horn. Thus, the semantics can
equivalently be given in a Herbrand style similar to minimal models in logic
programming. In the following, we consider the case of F-Logic programs
and restrict ourselves to finite extensions.

Definition 10 Given an F-Logic program P and an extension base S of Ap
(cf. Def. 4), H :=T¢ () is called the H-eztension of Ap to S (inflationary

H-extensions, or cautious inflationary H-extensions).b 0

The forward-chaining approach of Definition 8 can also be used for comput-

ing the inflationary H-extensions of a program without manipulating sets of
formulas:

Proposition 4 Let P be an F-Logic program with a semi-normal default
theory A = (D, P). For an H-structure H, let

GDY(H, D) :={d | d is a ground instance of a default in D, p(d) C H,
Ther(P U H U {B}) is consistent for every B € J(d),
and c(d) ¢ H} .

Let Ho, Hi, ..., Hy be a sequence of H-structures such that Ho = T (0) and
Hiv1 = Tlg(’HZ U {C(dz)}) , AD;11 = AD; U {dz} where d; € GDJF(H“D) ,
and GD*(H,,D) = 0. If H:=J_,H; # L, then H is an inflationary H-

extension of A. Moreover, every inflationary H-extension can be computed
by such a sequence. 0

Proof The proof uses the fact that H; = T (U;co,. ;i 1{c(d))}).

There is a bijection between computations as in Definition 8 and Proposi-

tion 4 such that for every i, #; = T¢ () and the d; coincide:

i =0: Ho =TE(0) =T¢, (0).

i — i+1: For every instance d of a default in A, p(d) C H; if and only
if T¢ (0) = p(d). Since S; is Horn, this is the case if and only if
Thrr(Si) = p(d).

Srecall that there, for every default d, p(d) is a conjunction of atoms and w(d) is an

atomic formula.
note that by Def. 3, T% includes the closure CZ.
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By induction hypothesis, Ther,(P U H; U {8}) = ThpL(P U T¢ (0) U
{,8}) Since S; = P U Uj:O...i—l{c(di)}7 ThFL(P U ng-l(@) U {,8}) =
Thyr,(S; U {6}), thus, the consistency requirement is identical in both
cases. Hence, GD*(H;, D) = GD™(S;, D), thus, the same d; can be cho-
sen.

Then, #;41 = Tp(H; U {c(di)}) = Tp(TE (Ujeo,.. i1 1c(ds)}) U {e(di)}) =
only if Thpy,(S;11) is consistent.
Since the sequences S; and H; are monotonic, H = T (0). n

The criterion given in Prop. 1(2) carries over to H-extensions:

Proposition 5 Let H be an inflationary H-extension of A computed by the
above algorithm. If for every € J(AD,), B is consistent with H, then H
is an H-extension of A. o

7 Application to Inheritance

For inheritance, only defaults of the form given in D;,; are used. Dj,p
incorporates a design decision which gives a higher priority to preemption
than to refinement. This decision can be argued for or against — for a
discussion which defends our decision, see Section 11.4.

For the forward-chaining strategy, the class hierarchy in S is not com-
pletely known when computing S;. Instead, the fragment already known
in S;_; must be used for checking the consistency of the justifications. In
D;y,p, a justification can be annulled in later steps only when some path is
chosen which is not preempted in S;, but it turns out to be preempted in
later steps. This can be due to one of the following effects:

(P1): for some class c’, which is already known in S; to be an intermediate
class on the path, c'[mesv] turns out to be inconsistent. This can be
solved by fixing c'[me-+v] for all intermediate classes ¢’ (see the remainder
of this Section).

(P2): in a later step, a new intermediate class-membership o isa ¢’ :: ¢ on
this path is derived for which ¢’'[me+v] is inconsistent.

By avoiding (P1) and (P2), cautious computations are obtained. As stated
in Proposition 3, a cautious inflationary extension S is an extension of Ap
only if it is not a garden path, i.e., GD'(S,Dp) = () (cf. Examples 8 and 9).

(P1) can be solved easily, simultaneously solving the problem of decou-
pling by using the observation stated in Remark 1: In every step, inheritance
can only take place from an immediate superclass, fixing c'[me-+v] for all vis-
ited classes ¢’. We restate Remark 1 for defaults in F-Logic:

Proposition 6 Let P be an F-Logic program, S an extension of Ap. Let
d = oisac, c[me>v]: ...[o[m—v] be an instance of an inheritance default of
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the form given in Dp which is applied in the construction of S. Then, there
s a sequence of immediate superclasses o — ¢y — ...— ¢, — ¢ such that for
every i, c;[me>v] € S. (analogous for ¢’ :: c.) o

Proof The justification of d requires that it is consistent with .S to assume
that for all intermediate classes ¢’, c'[me+v] is consistent. Thus, for every
c’, the default ¢’ :: ¢, c[me>v] : .../c’[me+v] is applicable in S. Since S is an
extension, its consequence must be contained in S, i.e., c'[mesv] € S. =

Thus, a step-by-step inheritance strategy downwards the class hierarchy can
be formulated, thereby avoiding (P1):

Definition 11 Let

Dt OisaC, CIMesV] : =3C'(OisaC' AC":: C) , O[M—=V]
inht O[M—V] ’

for an F-Logic program P, let D; be defined like Dp with the schema given
in D;'T'Lh instead of D;,},. 0

Proposition 7 For every F-Logic program P, the following sets coincide:

e the set of inflationary extensions of AJIS, and

e the set of theories which can be computed by prefizes of computations of
inflationary extensions of Ap such that (P1) does not occur. o

Proof Completeness: Every application of a default over n intermediate

classes to a receiving subclass or object can be split into n elementary steps,

of inheritance to an immediate subclass (which is already known at this

stage) or to the target object. In every step, the condition c'[me+v] is fixed

for an intermediate class ¢’. This also excludes (P1).

Correctness: By Proposition 6, c'[mesv] € S for every intermediate class c’.
]

Corollary 1 For every F-Logic program P, the following sets coincide:

e the set of inflationary extensions of AJIS which can be computed such that
(P2) does not occur, and

e the set of extensions of Ap. 0

Thus, by avoiding (P1), DZT; ;, is a valid step to a correct inflationary strategy
for inheritance. Avoiding (P1) does not introduce garden paths.

The inflationary strategy using D;'T'Lh (which is implemented in FLORID)
deviates from the “real” semantics only when after inheritance, a new in-
termediate class-membership is derived which preempts the path (P2).

Proposition 8 (Static Class Hierarchy) For an F-Logic program P with
a static class hierarchy, the set of extensions of Ap and the set of inflation-
ary extensions of AJIS coincide. O
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A non-static class hierarchy, (P2), and garden paths will be considered
in Section 9.2.

Note that D;'T'Lh is designed only for use with the inflationary strategy:
the part of the justification concerning potential intermediate classes has
been dropped (the justification is only checked against the current fragment
of an extension; intermediate classes are precluded by the precondition —
thus, it would be trivial).

Regarding the sets of extensions of Ap and Aﬁ, Aﬁ is too strong. Since
in D;;Lh, the existence of an intermediate subclass is excluded in the justi-
fication, with the non-inflationary strategy, this condition is stated against
the final theory S.

The following example illustrates the relationship between Ap and Alt,
wrt. the inflationary and the non-inflationary strategy:

Example 10
Consider the following program, where an intermediate subclass membership
is derived after inheritance has taken place:
P :={c[mesv] , oisac,
oisac <~ o[m—v], c'iic<oisac}.
The only extension of Ap is
® = Th(P U {o[m—v] ,o0isac’ ,c ::c, c'[mesv]}),

with the extension base S = P U {o[m—v], c'[me>v]} , the set of ground
facts in @ is

facts(®) = {c[me+v] , oisac, o[m—v],o0isac’,c :c, c'[mesv]} .

® is computed by

So =P,

facts(Th(Sp)) = {c[me+v] , oisac} ,

GD(S, Sy, Dp) = {oisa c,c[me>v]: .../ o[m—v]} ,

S1 =P U {o[m—v]} ,

facts(Th(S1)) = {c[me+v] , oisac, o[m—v] ,0isac’,c :c},
GD(S,S1,Dp) =GD(S,Sy,Dp) U {c ::cc[mesv]: .../ c'[mesv]},
So = P U {o[m—v] , c'[me>v]} |

GD*(S2,Dp) =10,

® = Thpr,(S2) .

On the other hand, using D}, GD(S, S, D},) = 0: The default o isa c,c[mesv]:
.../ o[m—v] is not applicable since in Th(S) there is the intermediate class
¢’ between ¢ and o. The default ¢’ :: c,c[mesv]: .../ c'[mesv] is also not
applicable since in Th(Sy), this class does not yet exist.

For the inflationary strategy with DT, the computation sequence is the
same as above: GDT(Sy, D) = {o isa c,c[me3v]: .../ o[m—v]}, since the
intermediate class is not yet known and the justifications are checked against
the current theory. o
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For the same reason, a cautious strategy with D;'T'L ;, makes no sense: it would
prohibit the derivation of (non-preempting) intermediate class-memberships
(cf. (P2)) on a path where inheritance has already taken place.

In the next section, we describe the trigger-based inheritance mechanism
defined for F-Logic [KLW95] which is implemented in the FLORID system.
The mechanism implements exactly the non-cautious inflationary strategy
for D}, (this will be shown in Theorem 1).

8 Inheritance via Inheritance Triggers

The deductive part of F-Logic programs is evaluated wrt. an inflationary
fixpoint semantics (cf. Def. 3), additionally, user-defined stratification is
supported. Non-monotonic inheritance is implemented via a trigger mecha-
nism in a deduction precedes inheritance manner: The evaluation of a pro-
gram is defined by alternatingly computing a classical deductive fixpoint
and carrying out a specified amount of inheritance. The strategy is formally
characterized as follows, based on inheritance triggers:

Definition 12 (Inheritance Triggers) Let H be an H-structure.

e An inheritance trigger in H is a pair (ofc, me+v) such that (offc) € H
and c[me>v] € H, and there is no o # ¢’ # ¢ such that {ofc’, ' :: ¢} CH
(where f# stands for isa or ::).

e An inheritance trigger (o isa ¢, mesv) or (¢’ :: ¢,me>v) is active in H if
there is no v such that o[m—v'] € H or ¢'[mesv'] € H, respectively.

e T(H) denotes the set of active inheritance triggers in H.

e An inheritance trigger (o isa ¢, me>v) or (¢’ :: ¢, me>v) is blocked in H if
o[m—v'] € H or '[me>v'] € H, respectively, for some v’ # v.

Note that this definition depends only on H, not on a program. o

The value of a method is inherited from a class to an object or a subclass
only if no other value for this method can be derived for the object or the
subclass, respectively. Hence, inheritance is done after classical deduction,
leading to an alternating sequence of (deductive) fixpoint computations and
inheritance steps.

Definition 13 (Firing a Trigger) For an H-structure % and an active
trigger ¢t = (o isa ¢, me>v) or t = (¢’ :: ¢, me3v), the H-structure after firing
t, t(H), is defined as H U {o[m—v]} or H U {c/[me>v]}, respectively.

In accordance to [KLW95], for an H-structure H and an active trigger ¢,
TL(H) == T%(t(H)) denotes the one step inheritance transformation.” g

Proposition 9 (Correctness of one-step-inheritance) Let P be a pro-
gram and H an H-structure which is a model of P (i.e., H |= h < b for
every rule in P). For every t € T(H), if IL(H) = T¥(t(H)) is consistent,
then it is also a model of P. o

"note that by Def. 3, T% includes the closure CZ.
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Note that the notion of a model of an F-Logic program does not require
closure wrt. inheritance (e.g., in Ex. 5 there exists no model which is closed
wrt. inheritance).

In [KLW95], inheritance-canonic models of F-Logic programs are defined.
The original definition is given for transfinite sequences:

Definition 14 (Inheritance-Canonic Model [KLW95]) For an F-Logic
program P, an H-structure M # 1 is an inheritance-canonic model if there
is a (possibly transfinite) sequence My, My, ..., M, such that
(i) Mo=Tg(0) and M, =M,
(ii) M, has no active triggers,
(iii) if v is a non-limit ordinal, then M, = Z%(M.,_1) for some active trigger
tin M, 1, and
(iv) if v is a limit ordinal, then My = ;.. M. o

Obviously, an F-Logic program P can have several inheritance-canonic mod-
els. For relating the concept of inheritance-canonic models, we reformulate
the definition for finite computations.

Definition 15 (Inheritance-Canonic Model) (Finite variant)

For an F-Logic program P, a sequence My, My,..., M, of H-structures is
an Zp-sequence if Mo = T#(0) and for all 4, there is a t; € T(M;) such that
M1 = TE(M,).

An H-structure M is an inheritance-canonic model of P if there is an Zp-
sequence My, My,..., M # 1 such that M has no active triggers. o

Proposition 10 Let P be an F-Logic program. Then,

e For finite computations, Definitions 14 and 15 coincide.
e I[f Mo, Mq,..., M, is a Ip-sequence, then every M; is a model of P. g

For computing inheritance-canonic models, the process is stopped if there
are no more active triggers. With this, the computation does not stop “in
time”, but often gets trapped in an inconsistency (which corresponds to a
default whose precondition is satisfied and the method to be inherited is
yet undefined, but the result of inheritance is inconsistent). In such cases,
the final consistent H-structure is of interest. So, we suggest to extend the
F-Logic terminology [KLW95] by the following definition:

Definition 16 (Final Consistent Inheritance-Canonic Models)

For an F-Logic program P, an H-structure # is a final consistent inherit-
ance-canonic model of P if there exists an Zp-sequence My, M, ..., H such
that Zh(H) = L for every t € T(H).

Let Sz(P) be the set of final consistent inheritance-canonic models of P. g

Corollary 2 For an F-Logic program P, every inheritance-canonic model
s a final consistent inheritance-canonic model of P. O
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In general, for a final consistent inheritance-canonic model H, T(#) is not
empty, but firing any of these triggers leads to an inconsistency, i.e., ZL(H) =
1 for every t € T(H).

The following example illustrates the trigger mechanism and the propagation
of properties through a class hierarchy, considering possible preemption:

Example 11 (Inheritance in a Class Hierarchy) Consider the program
from Example 6:
P = {bird[laying_eggse~true;flye>true], penguin[flye+false],
penguin :: bird, tweety isa penguin},
Starting with Sy = P
tweety isa penguin, penguin[flyesfalse] :

GD(Sy, Ap) :{ -3 C'(tweety isa C' A C' :: penguin) , tweety[fly—false] ,
tweety[fly—false]

—3 C'(penguin :: C' A C" :: bird) , penguin[laying_eggse-~true]
penguin[laying_eggsetrue]

penguin :: bird, bird[laying_eggse>true] : }

Note that there is no applicable default inheriting bird[laying_eggse-true]
directly to tweety since there is the intermediate class penguin. Applying
the first default, S1 = P U {tweety[fly—false]} and

penguin :: bird, bird[laying_eggse>true] :
GD(Sl’ AP) = { -3 C’'(penguin :: C' A C' :: bird) , penguin[Iaying_eggso—)true]} .
penguin[laying_eggse-true]
Applying this default,
So = P U {tweety[fly—false]} U {penguin[laying_eggse+true]} and

tweety isa penguin, penguin[laying_eggsestrue] :
GD(SQ, AP) = { -3 C’(tweety isa C' A C' :: penguin) , tweety[laying_eggsﬂtrue]} .
tweety[laying_eggs—true]
Finally,
S3 = P U {tweety[fly—false;laying_eggs—true]} U {penguin[laying_eggse->true]} .

is an extension base.
Analogously, for H-structures, starting with o = T3(P) = P,

T (Ho) = {(tweety isa penguin,flye+false), (penguin :: bird,laying_eggse-true) }
By firing the first one, we get #; = T%(S1) and
T (H1) = {(penguin :: bird,laying_eggse-true) } ,
resulting in Ho = T¥(S2) with
T (H2) = {(tweety isa penguin,laying_eggse-+true)}
and Hgz = TH(S3). o
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9 Comparison

In this section, the relationships between the concepts of extensions, in-
flationary (H-)extensions, and inheritance-canonic H-structures are investi-
gated, and criteria for isolating one class from the other are given.

In anticipation of the results of this section, these concepts compare as shown

in Figure 3.
Inflationary
Prop. 2 (E—)extensmns of A\p Prop. 7 (P1)
—7 U/ AN
Cautious inflationary # Prop. 1(2) Inflationary
(H-)extensions of Ap (H-)extensions of A}

Cor. 3 (P2)
\ Prop. 3 = C
QQ)
Theorem 5 :\ (H-)Extensions of Ap
Theorem 6 / \ (\Th' 1(2)
U e

%3
J/ Theorein 4/

AN yProp. 12 (P2)

N

Inflationary
(H-)extensions of A}

Th. 3

N

= Prop. 11; Th. 1(1)

Final consistent — Final consistent
inheritance-canonic - inheritance-canonic
models of P* Prop. 13 models of P

(M; < M, denotes that every structure/theory in My can be extended to
one in M;.)

Figure 3: Comparison of the concepts

9.1 Inheritance-Canonic Models and Inflationary H-Extensions

The computation of inheritance-canonic models implements the process de-
scribed in Proposition 4 for computing inflationary H-extensions of the de-
fault theory AJIS:

Proposition 11
Let P be an F-Logic program. Then, the following sets coincide:
e the set of Ip-sequences (cf. Definition 15) My, My, ..., M,, such that
M, # L, and
e the set of prefivzes Ho,Hi,...,Hn of sequences of H-structures as de-
scribed in Proposition 4 for Alt (computation of inflationary H-extensions).
[m]

Proof by induction on the length of the sequence:
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i = 1: There is exactly one sequence of length 1: Ho = TE(0) = M,.
1 — i+1: Consider a sequence Hg, Hi, ..., H; 1 of length ¢.
D: Let
(o isa ¢, c[me>v]) :
d:= (-3C"(0isa C' AC"::¢) , olm—v]) € GD"(H;1,AF) .
o[m—v]

Then,
e {oisac,cimesv]} C H; 4,
e Thypp(PUH; 1 U{=3C (oisa C' A C":: ¢)}) is consistent,
e Thpr(P U®H; 1 U{o[m—wv]}) is consistent, and
e om—v| & H, 1,
thus, ¢(d) := (o isa ¢, me+>v) € T(H,;-1) and firing it results in the consis-
tent H-structure T%(H;-1 U {o[m—v]}). Let d € GD*(H;-1,A}) be the
ground default which is applied in the step from H; to H; = T (H;-1 U
{o[m—wv]}). Then H; = Ifg(d) (Hi-1) is a valid inheritance step.
Thus, the continuation Hgy, H1, ..., H; 1, H; wrt. Proposition 4 is an Zp-
sequence.

: Let t = (o isa c,me3v) € T(H;q) s.b. My :=Th(Hi) = TE(E(Hin)) #
L. Then,
e {oisac,cimesv]} C H; 4,

N

e there is no intermediate class ¢’ # ¢ such that {oisa ¢, :: ¢} C H;q,
thus, Thyp, (P U H; U {=3C"(oisa C" A C" :: ¢)}) is consistent,

e there is no v’ such that o[m—v'] € H;_1, and

e since T¥(t(Hi-1)) # L, Thyr(P U H;-1 U {o[m—v]}) is also consistent.

Thus, the corresponding ground instance [0/O, ¢/c,m/M,v/V] of the de-

fault schema D}, is in GD"(H;1,A}), and we have H;1 U {c(d)} =

t(Hi1) and M; = TE(H;1 U {c(d)}). Hence, the continued Zp-sequence

Ho, Hi,- .., Hi1, M, is also a prefix of a computation as given in Prop. 4.
(both directions analogous for inheritance to subclasses.) m

Theorem 1 (Zp-sequences and inflationary H-Extensions)

Let P be an F-Logic program. Then,

1. the set St(P) of final consistent inheritance-canonic models of P is the
set of inflationary H-extensions of A}t.

2. A final consistent inheritance-canonic model H € Sz(P) is an H-extension
of Ap if and only if there is an Ip-sequence My, M1,..., H such that
(P2) does not occur. o

Proof 1. The inclusion is shown in both directions:
C: Let H € Sz(P). By Definition 16, there are no triggers in T(#) whose
firing leads to a consistent H-structure. This condition is equivalent with
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GD"(H,Dp) = 0. Thus, by the equivalence given in Proposition 11, H
is an inflationary H-extension of Ap.

D: follows immediately from Proposition 11 and the stopping criteria of both
characterizations.

2. Follows from (1), Proposition 11, and Corollary 1. m

With this, Proposition 8 can be extended to final consistent inheritance-
canonic models:

Theorem 2 (Static Class Hierarchy) For an F-Logic program P with a

static class hierarchy, i.e. no isa -atom or :: -atom occurs in any non-fact
rule head, the set of final consistent inheritance-canonic models of P and
the set of H-extensions of Ap coincide. O

9.2 Cautious Inflationary Extensions for Inheritance

The relationship between extensions and inflationary extensions has been
clarified by Proposition 1(2), giving a criterion for identifying inflationary
extensions which are no extensions: an inflationary extension S is an exten-
sion if every justification of every default which is applied in the computa-
tion of S is consistent with Th(S). By the concept of cautious inflationary
extensions this property has been enforced allowing a forward-chaining con-
struction.

For defaults of the form D;,;, occuring in the default theory of an F-Logic
program, the only justification which can be invalidated by later steps is that
the path which has been used for inheritance turns out to be preempted.
In Section 7, we have split this requirement into two parts: (P1) for the
subclasses known at the time where the default has been applied, and (P2)
for intermediate class-memberships which are derived in subsequent steps.

(P1) has been solved by using the revised default schema D;;h with the
inflationary strategy (cf. Proposition 7).

In presence of a non-static class hierarchy, (P2) can be termed as postemp-
tion®:

Example 12 Consider the following program which inserts a postempting
intermediate class-membership after inheritance has taken place:

P = {cll[mesvl], xisa cl1, cl2 :: cl1, cl2[me+>v2], xisa cl2 « x[m—v1]} .
The only computation sequence is

Ty: {xisacll, cl2 :: cll, cll[me+v1], cl2[me+v2]}

Inh.:{x isa cl1, cl2 :: cI1, cll[me+v1], cl2[me+v2], x[m—v1]}

Tg: {xisacll, cl2 :: cll, x isa cl2, cll[me+vl], cl2[me+v2], xim—vl]} ,

8in contrast to preemption, where inheritance is not applied due to an already known
intermediate class.
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which yields an inflationary H-extension where postemption occurs: inheri-
tance from cll to x is postempted by the intermediate class cl2 although it
has been justified (i.e., the trigger has been active). There is no “justified”
model since inheritance is postempted exactly if it takes place. Note that
this is not a logical inconsistency as in Ex. 5 which would prohibit inher-
itance. Here, P has no extension; a similar cyclic inheritance network is
given in [Hor94, Sec. 2.3.1] as an example for a network which does not have
a (credulous) extension. O

Cautious inflationary computations can be enforced by augmenting the con-
sequence of D;'T'Lh such that it forces all newly derived intermediate class-
memberships to provide the appropriate inheritable method:

Definition 17 Let

+ ._ OisaC,C[MesV] : -3C"(0isaC' ANC':: C) , O[M—V]

inh VC'(OisaC'AC":: C) — C'[MesV]) , O[M—V]
For an F-Logic program P, let D} be defined like Dp with D7 , instead of
Dinp. u

Note that the consequence in Dj , is no longer a set of atoms, thus, the
generated extension bases also contain universal Horn formulas of the form
VC'((Oisa C'" A C" :: C) — C'[Me3V]) which represent explicit knowledge
about (potential) intermediate classes where inheritance has taken place.
For an extension base S of A}, let strip(S) denote S without these formulas.
These formulas are only needed in course of the computation for avoiding
preemption — facts induced by S and strip(S) are the same:

Extending Proposition 7, A% also avoids the invalidation of a justifica-
tion by (P2):

Proposition 12
Let P be an F-Logic program. Then, the following sets coincide:

e the set of Th(strip(S)) such that S is an inflationary extension base of

A}, and
e the set of theories which can be computed by prefizes of computations of
inflationary extensions of AJIS such that (P2) does not occur. o

Corollary 3 Let P be an F-Logic program. Then, the following sets coin-
cide also with the sets given in Proposition 12:

e the set of theories which can be computed by prefizes of computations of
inflationary extensions of Ap such that neither (P1) nor (P2) occur, and
e the set of cautious inflationary extensions of Ap, o

Proof follows immediately from Prop. 7 and Prop. 2(1). m
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Note that the above theories can contain garden paths by avoiding (P2).
Here, the criterion of Proposition 3 can be applied. D} , turns out to be a
good approximation for computing extensions:

Theorem 3

Let P be an F-Logic program. Then, the following sets coincide:

e the set of Th(strip(S)) such that S is an inflationary extension base of
A% and GD™ (strip(S), Dp) =0, and

e the set of extensions of Ap. o

Proof follows from Proposition 12/Corollary 3 and Proposition 3. m

The proof can alternatively be given directly, using the concepts instead of
propositions and corollaries:

Proof The proof is divided into two parts, each for inclusion in one direc-

tion:

1. For every extension base S of Ap, there is an (inflationary) extension
base S’ of A% such that S = strip(S’):
By [MT93, Cor. 3.71], every extension base S of Ap is generated by a
sequence of applications of defaults which satisfies criterion Prop. 1(2),
i.e., which is a cautious sequence. Let S’ be the extension base which is
generated by the corresponding sequence using A%,. Then, strip(S’) = S.

2. Let S’ be an extension of A% such that GD ¥ (strip(S’), Dp) = 0. Then,
strip(S’) is an extension base of Ap:
S’ is generated by a sequence of applications of defaults using A%,. Let S
be the set of formulas which is generated by the corresponding sequence
using Ap. Then, by construction of A%, S = strip(S’) is a cautious
inflationary extension base of Ap. By assumption, GD* (S, Dp) = 0,
thus, by Proposition 3, S = strip(S’) is an extension base of Ap. m

Remark 7 Consider again part (2) of the above proof. In contrast, as-
sume GD™(strip(S’), Dp) # (. By assumption, GDT(S’, Dp) = 0, thus,
for every d € GD™ (strip(S’), Dp), Th(strip(S’) U ¢(d)) is consistent, but
Th(S” U ¢(d)) is inconsistent. This inconsistency must be due to the addi-
tional knowledge which is added for the justifications of previously applied
defaults, i.e., an intermediate class would be inserted where inheritance has
already taken place. 0

Since the consequences in Dj, , are no longer sets of atoms, D} , cannot be
directly translated to H-extensions and inheritance-canonic models. In the
following section, these notions are integrated by extending the program P
appropriately.
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9.3 Inheritance-Canonic Models and Cautious Extensions

The intended semantics of an F-Logic program P are the H-extensions of
Ap. Thus, the set of Zp-sequences has to be restricted to sequences which
are (P2)-free, i.e., where no postemption occurs, resulting in H-extensions
or at least in cautious inflationary H-extensions.

The universal Horn formulas added to the consequence in the step from
D;;h to D} , can be implemented by adding a rule

r(t) == C[mesv] «—of C, C:c

to the program whenever an inheritance trigger ¢ = (ofic, ne>v) is fired.
This requires only a slight modification in the concept of Zp-sequences:

Definition 18

For an F-Logic program P, a sequence My, Mq,..., M, of H-structures is
an Zj,-sequence if My = T#(() and for all 4, there is a t; € T(M;) such that
M1 =Tp  (M;) # L where Py = P and Pip1 = P Ur(t;).

Let S7(P) be the set of H-structures H such that there exists an Z}-sequence
Mo, Mq,..., M, =H, and If)nw(t)(?-[) = 1 for every t € T(H). o
Proposition 13 (Zp- and Z}-sequences)

Let P be an F-Logic program. Then,

1. for every I} -sequence Moy, My,..., My, every M; is a model of P,

2. every Lj-sequence is (P2)-free, and

3. every Iyp-sequence is a prefiz of an Lp-sequence. o

Proof

L M; =Tp (M) = Tg (ti(M;1)) where P, = P Ur({t; | 0 <j <i}).

2. The construction of the P; guarantees that (P2) cannot occur.

3. By induction: In every step, if %, (t;(M; 1)) is consistent, then If;i(./\/li—l) =
Tg (ti(Mi1)) = TE(ti(M;1)) = Tp(M; 1), thus, the step M; 1 — M;
is also an Zp-step. -

Theorem 4 Let P be an F-Logic program. Then,

S7(P)={ strip(s) | S 15 an inflationary extension base of Ap} .

Proof Analogous to Theorem 1(1). n

Theorem 5 (Z}-sequences and cautious H-Extensions)
Let P be an F-Logic program. Then, S;(P) is the set of cautious inflationary
H-extensions of Ap. o

Proof Follows from Proposition 12/Corollary 3. Alternatively, one could
use the same inductive argumentation as in the proofs of Propositions 11
and 4 by investigating the Tp-rounds. m
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There is still the discrepancy between S;(P) (corresponding to cautious
inflationary extensions) and (H-)extensions due to garden paths (cf. Propo-
sition 3):

Theorem 6 (Z}-sequences and H-Extensions)

Let P be an F-Logic program. Then, the following statements are equivalent:
o H e SiP) and IL(H) = L for every t € T(H),

e H is an H-extension of Ap. o

Proof Here, we use the fact that every H € S;(P) is computed by aug-
menting the program by r(t) for every fired trigger ¢t. The cautionsness of
these rules avoids that garden paths are postempted by introducing inter-
mediate classes which have not been known when the respective default d
had been applied: the firing of any trigger which would cause the garden
path to be postempted leads to an inconsistency due to 7(d).

Thus, if there is a trigger ¢’ in H which would be applicable consistently
wrt. the original program P, then ¢’ would postempt some garden path, i.e.,
‘H is not a valid H-extension. If no such trigger exists, there are no garden
paths, and H is an H-extension. Formally, if Zh(H) = L for every ¢ € T(H),
then GD*(S, Dp) = () and the claim follows from Proposition 3. n

This is all we can do. When applying a default, it is in general not decidable
if it is a garden path. Thus, the only way to compute the extensions is to
compute S;(P) and to discard those H-structures which contain garden
paths by the above criterion.

A First Conclusion With the strategies of Zp- and Zp-sequences, the
semantics of cautions and non-cautious inflationary extensions can be im-
plemented in F-Logic in a forward-chaining way. Inflationary means that
no application of a default is undone.

10 Miscellaneous

10.1 Element-oriented vs. Set-oriented Application

Comparing Definitions 5 and 8, one sees that in the first case, all applicable
defaults are applied in a step where in the latter case, an individual default
is chosen. Sections 6 and 8 follow the latter strategy. In this section, we
investigate the situation where an arbitrary subset of applicable defaults is
applied or an arbitrary set of active triggers is fired, respectively.

10.1.1 Default Theories

Proposition 14 Let A = (D, F) be a Default theory. Let F = Sj, 5], ...,
7', and S" as in Definition 8 (inflationary extensions), except that

i1 =S;Uc(D;), AD},, = AD; U D; where D; C GD*(S},D) .

Then, the set of Th(S’) which are computed by the above sequences is a
superset of the set of inflationary extensions of A. O
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Proof For a given sequence Sy, S1, ... and dg,dy, ... resulting in S, choose
D; = {d;}. m

Example 13 There are Th(S’) as above which are no inflationary exten-
sions: Let GDV(P,D) = {dy,d2} such that Th(F U c(dy) U c(dq)) is
consistent, but Th(F U ¢(dy)) U {J(d2)} and Th(F U c(d2)) U {J(d1)}
both are inconsistent. Then, Th(F U c¢(d;)) and Th(F U ¢(dy)) are the
only inflationary extensions. On the other hand, with Dy = {di,ds},
Th(S") = Th(F U ¢(di) U ¢(dz)) which is not an inflationary extension.
Th(S’) does not satisfy the criterion given in Prop. 1(2), thus it is not an
extension of A. O

There are computation sequences (yielding S’ as above) which can be
obtained by set-oriented application, but not by element-wise application,
but all these do not satisfy the criterion given in Prop. 1(2):

Proposition 15

Let A= (D,F), F =S|,5],... ,S;I, and S’ as in Proposition 14.

Then, the set of Th(S") which are computed by the above sequences and
satisfy the criterion given in Proposition 1(2) coincides with the set of in-
flationary extensions of A which satisfy this criterion. O

Proof The inclusion from unary sets to arbitrary sets is trivial. For the
other direction, let S, = F,S{,... be such a sequence with Dy, D1, ... and
d;i ;- -.,d;, an enumeration of D;.

Then, the sequence Spp = F,..., S0k, 51,05+ -+,91,k,,--. Obtained by appli-

cation of {doo}, ..., {dok,}:{d10},---,{d1k }+-.. is a possible computation

sequence which satisfies the given criterion:

e obviously, Si,j =Fu {C(di/’jl) | (i,,j,) < (Z,])}, thus, Sz',() = SZI, Si,j =
Si,() U {C(di,j/) | jl < j}, and S = 9.

e d;; is applicable in S;q for all j: Since d;; € D;, Th(S]) = p(d; ;) and
Th(S]) U {B} is consistent for every 8 € J(d;;). Since S;; O Sijp C
S', Th(S;;) 2 Th(S;p) and Th(S;;) = p(di;). Moreover, since the
computation of S’ satisfies the criterion given in Prop. 1(2), Th(S" U {8})
is consistent for every 5 € J(d; ;), this also holds for Th(S; ; U {}) since
Si; €S

e Since AD; = AD;, and S = §', Th(S’) satisfies the criterion given in
Prop. 1(2). n

Thus, if the criterion given in Prop. 1(2) is tested after the computation,
applying one default at a time or applying arbitrary defaults at a time
yields the same set of acceptable structures. Moreover, application of only
one default leads to less results which have to be rejected by this criterion.
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10.1.2 The Horn Case: Positive Programs and Positive Precon-
ditions

In the Horn case, Herbrand structures are considered instead of general

theories, hence, there is no explicit knowledge about negative literals. For an

applicable rule or default whose applicability depends on a negative atom, it

is possible that it is not applicable in a later stage of the computation, thus,

the results of the previous section in general do not hold. In this section, we

consider positive F-Logic programs P and the corresponding default theory
Ap.

Proposition 16 Let P be an F-Logic program with a semi-normal default
theory A. Let Hy, MY, ... ,7—[;7, be defined as in Proposition 4, except that

i =TEH; U{c(D;)}), AD;,, = AD; U D; where D; C GD"(H},D) .

Then, the following set coincide:

e the set of H' which are computed by the above sequences and satisfy the
criterion given in Prop. 5, and
e the set of inflationary H-extensions of A which satisfy this criterion. o

Proof The proof is analogous to Proposition 15. m

Corollary 4 For an F-Logic program P with the default theory Alt, the set
of H' which are computed by the above sequences and are (P2)-free coincides
with the set of inflationary H-extensions of Alt which are (P2)-free. o

Proof The corollary is the specialization of Proposition 16 for AJIS. The
claim follows then from Proposition 5 and Corollary 1. m

Thus, also in this case, it is sufficient to apply one ground instance of an
applicable default at a time.

10.1.3 Inheritance via Inheritance Triggers

The same coincidence still holds when application of defaults in H-structures
is formalized by triggers:

Proposition 17 For an F-Logic program P, let Jp-sequences be defined like
ZIp-sequences (cf. Definition 15), except that for all i, there is a T; C T(M;)
such that M1 = I]}(Mz)

Then, the set of Ip-sequences which are (P2)-free coincides with the set of
Jp-sequences which are (P2)-free. o

Proof Again, the proof is analogous to Proposition 15. ™

Since Z}-sequences enforce (P2)-freeness (by augmenting the logic program
accordingly), the above proposition yields the following (cf. Theorem 5):
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Corollary 5 For an F-Logic program P, let Jpj-sequences be defined like
T} -sequences (cf. Definition 18), except that for all i, there is a T; C T(M;)
such that M1 = IEH(Mi).

Then, S%(P) is the set of cautious inflationary H-extensions of Ap and
for every " € S4(P), if Ip(H) = L for every t € T(H), then H is an
H-extension of Ap. o

Thus, for positive F-Logic programs, it is sufficient to consider only strategies
which apply one trigger at a time.

For regarding negation in logic programs in combination with default
reasoning, one has to define a semantics combining stratified, well-founded,
or stable semantics with defaults. In the current system, a user-stratified
semantics is implemented. In [MLL97], a well-founded evaluation of F-Logic
programs has been presented.

10.2 Classification of H-extensions.

Often the semantics of nonmonotonic frameworks is classified by regarding
several structures which are regarded as models of a given input F: the
sceptical (conservative) perspective accepts only facts which are true in all
models, the credulous (liberal, brave) perspective accepts all facts which are
true in some model, and the choice perspective simply yields (nondetermin-
istically) one of the models (cf. [McD82]).

It is well-known that under most approaches (including circumscription
and normal Default Logic), the union of two models is inconsistent, i.e.
the credulous semantics yields inconsistent structures. This also holds for
logic programming with inheritance (cf. Example 1). In case of logic pro-
gramming without negation and with inheritance, the sceptical perspective
always yields a model (this is not the case when negation is allowed). The
choice perspective always yields a model, but is nondeterministic.

In the above approach, Zp- and Z5-sequences are representatives of the
choice strategy. By exploring the state space of Zp-sequences systemati-
cally, i.e. computing Sz(P), sceptical and credulous semantics can also be
implemented.

Instead of comparing all elements of Sz(P), a localized sceptical or cred-
ulous strategy can be implemented by comparing possible inheritance steps:

Definition 19 (Credulous and Skeptical Firing)

e A trigger t € T(H) is credulously applicable in H if the subsequent de-
ductive fixpoint T (¢(#)) is consistent (i.e., no scalar method is assigned
two different values).

e A trigger t € T(H) is skeptically applicable in # if the subsequent de-
ductive fixpoint T (¢(#)) is consistent and there is no trigger which is
active in H and blocked in T (t(H)).
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For comparing transitions and computations, the degree of credulity, skep-
ticism, abnormality, and undefinedness can be measured as the number of
blocked triggers or non-fired active triggers: for an H-structure H and an
Ip-sequence Ho, Hi, - - -,

cr(Hpi1) :=cr(Hy)+|{t | t € T(H,), t is blocked in Hyy1}
sc(Hpt1) :=sc(Hp)+|{t | t € T(Hy), t is still active in Hp41}

Additionally, the number of “abnormal” objects wrt. inheritance, i.e. objects
whose properties differ from those of a typical object of their class can be
used for comparison:

ab(H) :=[{(0,m,v") | o[m—v'] € H and there is a trigger
(oisa ¢c,me>v) in H s.t. v' £ v},
un(H) :=[{(o,m,v) | there is a ¢ s.t. (o0 isa ¢, me+v) € T(H)}| . O

Intuitively, this means that for everything that is not explicitly known to
be abnormal, the default value holds. Note that there actually are H € St
with un(H) > 0 (cf. Example 5).

If a trigger is postempted by introducing an intermediate class with a
different value of an inheritable method (cf. Example 12), the intermedi-
ate class comes up with a blocked trigger for every member object. Thus,
postemption is in general expensive wrt. credulity and abnormality.

10.3 Implementation

In the current FLORID implementation, indirect conflicts due to multiple
assignment of scalar methods are handled differently: By equating two ob-
jects if they are results of the same scalar method application to an object,
there is no notion of inconsistency. The semantics is defined to be the set
of states which are reachable this way where no more inheritance triggers
are active. Additionally, a strategy is implemented in an internal version of
FLORID where all active triggers are fired.

As long as no object creation takes place, every T/ computation is poly-
nomial. Since the number of potential triggers is also polynomial, an H-
extension H € Sz(P) (or Sz«(P)) can be computed in polynomial time.
With object creation, the computations can become infinite.

By implementing defaults a:b/c as general triggers which are active in an
H-structure X if H = a and TP (H U b) # L, the approach can be extended
to defaults where the justifications are conjunctions of atoms.

11 Examples

The examples in this section show that the class hierarchy and the han-
dling of class information must be carefully designed to cover the intended
meaning. With an appropriate design, various application semantics can
be encoded into the behavior of inheritance. The last example shows how
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the inheritance mechanism can be “misused” to implement a state sequence
with a built-in frame semantics.

11.1 Disjunctive Information

Consider again the Nixon Diamond (cf. Examples 1 and 3) and the Nixon
Family (cf. Ex. 5). Here, the fact that Nixon is a quaker and a republican
represents disjunctive information. In the diamond, both policies can be
inherited. In the Nixon Family, inheriting policy — hawk turns out to be
inconsistent, thus, policy — pacifist is inherited.

As an abstraction of this case, a class Republican Quaker can be intro-
duced.

hawk <———=——=> pacifist hawk <——=F———> pacifist

| | |

rep. quaker rep. rep.quaker quaker
rep.quaker
r_nixon x_ample

Figure 4: Inheritance Networks for Republican Quakers

e In the first version, Republican Quaker is introduced as a subclass of
Republican and Quaker (cf. on the left of Figure 4, similar to the network
given in Fig. 2):

P = {quaker[policye+pacifist], republican[policye+hawk],

rep_quaker :: republican, rep_quaker :: quaker,

r_nixon isa rep_quaker, x_ample isa rep_quaker}.
Here, Ty () = P, the method rep_quaker[policye+_ | is still undefined.
In the first inheritance step, either the value rep_quaker[policye+>hawk] or
rep_quaker[policye+pacifist] is inherited — defining the inheritable policy
for all republican quakers, solving this conflict on class level — which is
clearly not the intended semantics: Then, both r_nixon and x_ample must
inherit the same policy.
Moreover, if rep_quaker[policye+hawk] is inherited and r_nixon[policy—hawk]
would be inconsistent as in the Nixon Family, r_nixon cannot inherit
policy—pacifist since inheritance from quaker to r_nixon is preempted by
rep_quaker.

e The second version introduces Republican Quaker as the conjunction of
being a Republican and a Quaker, but not as a subclass of them (cf. on
the right of Figure 4; this way of modeling disjunctive information has
first been published in [Kan97]):
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P = {quaker[policy e pacifist], republican[policy e+ hawk],

O isa quaker < O isa rep_quaker,

O isa republican < O isa rep_quaker,

r_nixon isa rep_quaker, x_ample isa rep_quaker}.
Here, TE(0) = P U {r_nixon isa quaker, r_nixon isa republican,

x_ample isa quaker,x_ample isa republican} .

Thus, in the inheritance step, both policies can be inherited individually
by r_nixon and x_ample.

11.2 Conflict Detection on the Class Level

Consider the following example, taken from [Hor94] for illustrating mized
preemption; the inheritance net is depicted in Fig. 5.

born_in_usa

/\

born_in_penn born_in_germany

\/

sp_penn_dutch

hermann

Figure 5: Mixed Preemption

Here, Hermann is a native speaker of Pennsylvania Dutch, thus, also a
native speaker of German (g). Typically, native speakers of Pennsylvania
Dutch (pd) are born in Pennsylvania (p), thus, born in the USA (u). On
the other hand, native speakers of German are typically not born in the
USA. The concept of mized preemption interprets the combination of the
defeasible link pd—p and the strict link p—u as a unit, thus, being more
specific than pd—g and ¢ + u. Consequently, Hermann is believed to be born
in the USA.

In the F-Logic equivalent the class hierarchy must be accordingly designed:

P = {hermann isa native_sp_penn_dutch,
native_sp_penn_dutch :: native_sp_german,
native_sp_penn_dutch[born_statee+pennsylvanial,
native_sp_german[born_countrye>germany],
O[born_country—usa] <— O[born_state—pennsylvania]}.

Here, T%%(0) = P U {hermann isa native_sp_german}. Active triggers are

(hermann isa native_sp_penn_dutch, born_statee>pennsylvania) and
(native_sp_penn_dutch :: native_sp_german, born_countryesgerman) .
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Thus, inheritance could result in native_sp_penn_dutch[born_countrye-germany]|,
which is obviously wrong — here, the conflict (which preempts the path Her-
mann — Pennsylvania Dutch — German — Germany) is semantically located
on the class level.

In P it has been forgotten to define native_sp_penn_dutch[born_countrye-_],
either by a fact, or by a rule. The clean alternative is, to lift the above rule
to the class level:

P':= P U {C[born_countryesusa] < C[born_states+pennsylvania]}.

Now, T%,(0) = P’ U {native_sp_penn_dutch[born_countrye+usa]} and the ac-
tive triggers are
(hermann isa native_sp_penn_dutch, born_statee>pennsylvania) and
(hermann isa native_sp_penn_dutch, born_countryesusa) .
After inheritance (one or two steps, depending on the chosen trigger and
strategy), the intended model containing hermann[born_countryesusa] is ob-
tained.

11.3 Generalizations as Classes

Another problem occurs, when clichés (and chains of clichés) are used: in
this case, there is no strict inclusion between the classes of objects actually
satisfying these properties, but only a strict inclusion of objects belonging
to classes which are believed to satisfy these properties. Here, also a classic
example is given in [Hor94]?. The network is given in Figure 6.

useful

lawyer —— ambitious —— accomplished

Figure 6: Chains of clichés

Here, y is a lawyer. Lawyers are supposed to be both ambitious and
socially useless. People who are ambitious tend to be accomplished. Most
accomplished people are socially useful. Here, obviously, this is not a class
hierarchy (then, it would simply be inconsistent): e.g., ambitious people are
not necessary accomplished.

Note that this network mainly consists of a chain of defeasible links,
representing clichés. As stated in Section 2.2, this chain cannot be mapped
immediately to a network as required in the database setting.

there, with a footnote that “this node labelling is adapted from an earlier example of
Ginsberg’s (personal communication), which displayed a similar attitude toward lawyers”.
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On the other hand, the clichés apply stepwise on an abstract level: the
class of lawyers is a subclass of the people who are supposed to be ambitious
(due to their profession) — most of them actually are ambitious. People who
are supposed to be ambitious are a subclass of people who are potentially
accomplished — again, most of these actually are accomplished. Most ac-
complished people are socially useful; as a hypothesis this can be assumed
also for people who are assumed to be accomplished.

Only the dotted lines in the net, i.e, that y is not ambitious but accom-
plished represent hard facts about y.

In the net, without the dashed lines, the path y — lowyer — ... — useful
is preempted by the path lawyer + useful. With the dashed lines, the path y
— accomplished — useful is not preempted, thus it is simply in conflict with
y — lawyer + useful.

In the F-Logic representation, the focus is on the classes of people who
are supposed to satisfy some property:

P = {y isa lawyer, lawyer[usefule->no]

lawyer :: supp_amb , supp_amb[ambitiouse+yes] ,
supp-amb :: supp_acc, supp-acc[accomplishede->yes] ,
supp-acc[usefuleyes]} .

With this class hierarchy, the following facts are inherited:

supp_-amb[accomplishede+yes; usefulesyes]| ,

lawyer[accomplishede+yes; ambitiouse+yes]| ,

y[useful—no; accomplished—yes; ambitious—vyes] .

For P’ = P U {y[accomplished—yes; ambitious—no]} , the following facts
are inherited:

supp_amb[accomplishede+yes; usefulesyes],

lawyer[accomplishede+yes; ambitiouse+yes],

y[useful—no] ,
which is still not the intended result!

As in the previous example, the modeling is insufficient: there is only a
class of people who are supposed to be accomplished. Since y is a member
of this class only in virtue of being a lawyer, inheritance is still preempted.
The modeling simply neglects the fact that there is another class of people
who actually are accomplished, and that most of those people actually are
socially useful:

For
P" = P"U {0 isa actually_acc + O[accomplished—true] ,

actually_acc[usefule+yes]} |
T#,(0) = P U {y isa actually_acc} and the triggers
(y isa lawyer, usefule>no) and
(y isa actually_acc, usefulesyes) .
are both active. Thus, both results are possible.
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11.4 Playing with Preemption and Unsupported Conclusions

D;y,p gives a higher priority to preemption than to refinement. This conflict
can theoretically occur when an inheritance default D;,; is applied on a
path which later — enabled only after application of this default — is refined
by introducing alternative intermediate subclasses such that a preempted
and a non-preempted refined path emerge. We decided not to accept the
refinement in this case.

We present two slightly different versions of such (theoretical) scenarios
for arguing that our “restrictive” strategy is reasonable. Both are versions
of a diamond:

c[me+>v]

TN

¢'[me>w] ¢’ [me+v]

\/

o

Example 14 (Preemption or no Preemption) Consider the following
program P where a conclusion by inheritance (a) preempts itself and (b)
bypasses this preemption by itself:

P ={c[mesv],c ::c,c'[mesw],c" ::c,o0isac,

oisac’ < o[m—v], oisac’ < o[m—v] } .
Here, Sy =P, and
facts(Th(Sp)) = {c[me+v] , ¢’ ::c, c'[mesw],c" ::c,o0isac},

thus, inheritance of c[me+v] along o — ¢ to o and along ¢’ — ¢ to ¢” seems
reasonable. But, then,

S1 = P U {c"[me>v] , o[m—v]} ,
facts(Th(S1)) = facts(Th(Sp)) U {c’[me>v] , o[m—v]} U {oisac ,o0isac"} .

There, (a) the path o — ¢ is preempted by ¢'[mesw], which is an argument
against inheritance. On the other hand, this preemption is bypassed by the
path o — ¢"[me»v] — v, thus, in S; there is a path from c to o which is not
preempted. But, this path exists only when inheritance is already assumed
to be possible.

An argument for accepting Th(S}) as an extension would be to say that
o — c’'[mes>v] — v is a refinement of the preempted path o - c. But, we argue,
that Th(S}) is not a valid extension, this decision is additionally motivated
by the next example which is a slight variation. O

Example 15 (Unsupported Conclusions) Consider the following pro-
gram P where a conclusion by inheritance exists only due to itself:

P={c[mesv],c :ic,c'[mesw],c" ::c,oisac ,oisac’ < o[m—v]}.
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Here, one could argue that
® = Th(P U {c"[me>v], oisac,oisac’ ,oisac’ , o[m—v]})

is an extension of Ap:

SO :Pa
facts(Th(Sp)) = {c[me+v] , ¢’ ::c, c'[mesw], " ::c,o0isac,oisac’}.

With the same argumentation as in the previous example, accepting a path
which only exists in the resulting theory, inheritance of o[m—v] along o -

¢” - c is not preempted, (obviously, c[me+v] can be inherited along ¢’ - ¢
to ¢”), thus,

Sq = So U {c"[me>v] , o[m—v]} ,
facts(Th(S1)) = facts(Th(Sp)) U {c"[me+v] , o[m—v]} U {oisac’} .

Here, accepting ® = Th(S) as an extension is very unintuitive. 0

11.5 Application: Modeling Dynamics with Inheritance Triggers

The trigger mechanism can be used to insert atoms into the database after a
deductive fixpoint has been reached by specifying a suitable class hierarchy.
With this, a state-by-state evaluation of a logic program can be enforced,
defining the state sequence via a sequence of deductive fixpoint computa-
tions.

Inheritance can be used to implement a solution of the frame problem
in an elegant way: Every state is made a class, and each of its immediate
successors (for linear time: its unique successor) is a subclass of it. By
controlling the evolution of the class hierarchy, it is possible to compute
the changes performed in a transition, then making the successor state a
subclass of the current state (as a class) and inheriting the frame knowledge
in a single step without explicit deduction.

To provide the frame semantics, every method application which is de-
fined in some state has to be determined in the subsequent state either by
the action performed in a transition and possible ramification effects, or it
is inherited in the subsequent inheritance step.

Example 16 This example makes use of path expressions and object cre-
ation in F-Logic: if m and o are id-terms, the path expression o.m, denotes
the object resulting from applying m to o (if this object does not already
exist, it is created when some object atom (0.m)]...] is defined).

Consider the following classical example for ramification: When pulling
the plug from a filled tub, not only the plug is pulled in the next state, but
additionally, the tub runs empty.

We start with a set of facts describing state 1 with a filled tub:

Ho = {xisa tub, (x.1)[fillede>true], (x.1)[pluge+in], (state.l)[activee+true]} .

The state sequence is formalized by
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(0.S+1) :: O.S « (state.S)[activee>true] .
The immediate effect of pulling the plug is axiomatized by
(0.S+1)[pluge+out] < (O.S)[pull_plug—true], O isa tub .
The effect of a pulled plug on a tub is axiomatized by a local rule (ramifi-
cation):
(0.9)[fillede~false] «— (O.S)[plugerout] .
Additionally we assume that in state 2, the plug gets pulled:
(x.2)[pull_plug—true] < (state.2)[activeetrue] .
The first application of T computes the first state
H1 = {xisa tub, (state.l)[activee>true], (x.1)[fillede+true], (x.1)[pluge=+in],
(state.2) :: (state.l), (x.2) = (x.1)} .
the other methods on z are undefined. The subsequent inheritance step fires
all active triggers, leading to
H,, = Hy U {(state.2)[activeestrue], (x.2)[fillede>true], (x.2)[pluge+in]} .
The next application of T} derives
Ho = Hb U {(x.2)[pull_plug—true], (x.3)[pluge+out],
(state.3) :: (state.2), (x.3) :: (x.2)} .
Here, (x.3)[pluge+out] blocks inheritance of (x.3)[pluge+in] from x.2. By the
ramification rule, it is clear that in the next T step, (x.3)[fillede+false] is
derived. Thus, for obtaining a consistent state, (x.2)[fillede>true] must not
be inherited to x.3. With this, the only credulous inheritance step leads to
HYy = Ha U {(state.3)[activeestrue]} ,
and with the subsequent T step:
Hs = Hi U {(x.3)[fillede>false], (state.3) :: (state.2), (x.3) :: (x.2)} . o

In [MSL97], it has been shown how the one-trigger-at-a-time strategy can be
used to provide an effective stratification in an operational way. There, the
method has been used for modeling and implementing dynamics in deductive
object-oriented databases.

12 Conclusion

We have shown how inheritance can be integrated into a deductive object-
oriented database language. By considering the Horn fragment (i.e., logic
programming rules) and restricting the use of defaults to the object-oriented
notion of inheritance, we could tailor the semantics to the requirements in
this area. Given a program P, the presented algorithm computes those
Herbrand-like structures which represent the extensions of the default the-
ories corresponding to P in a forward-chaining way.

Regarding the F-Logic project, we have shown that the semi-declarative
semantics which is defined for F-Logic and implemented in the FLORID sys-
tem [FHK'97] coincides with the standard semantics of Default Logic and
Inheritance Networks.
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