LDAP-based Ontology for Information Integration

BTW 2001 Oldenburg, Germany

Lule Ahmedi¹, Pedro José Marrón and Georg Lausen Institut für Informatik Universität Freiburg {ahmedi,pjmarron,lausen}@informatik.uni-freiburg.de

¹work supported by the Deutsche Forschungsgemeinschaft, Aktenzeichen La 598/4-1.

1

Talk Outline

- Introduction
- LDAP Representation Formalism for Ontologies
- What about the integration?
- An Example Ontology
- Conclusion

Introduction

The Problem: Expanding heterogeneous data repositories in Internet

Up to date Solutions:

 $KR meets DB \rightarrow Ontologies.$

all users of a heterogeneous repository

Our Approach:

Directories meet $DB \rightarrow$ Directory-based Ontologies.

Motivation:

- LDAP's popularity since conception of LDAP v3 protocol '97
- LDAP's technical grounds its tight connection to network & distribution channels
- LDAP simple, coherent & uniform model. \triangleright

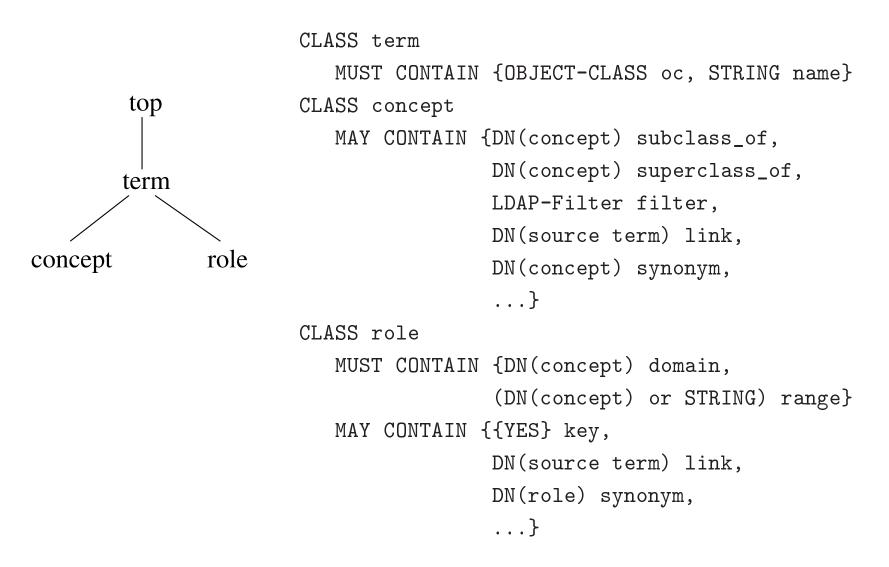
... promises to be able to easily solve many classical integration problems along with the LDAP advantageous features.

LDAP Overview

LDAP stands for "Light Weight Directory Access Protocol".

LDAP server is a ss DB with limited transaction support, composed of:

Directory Schema: is a set of classes Class(AttrName, AttrType) and determines:

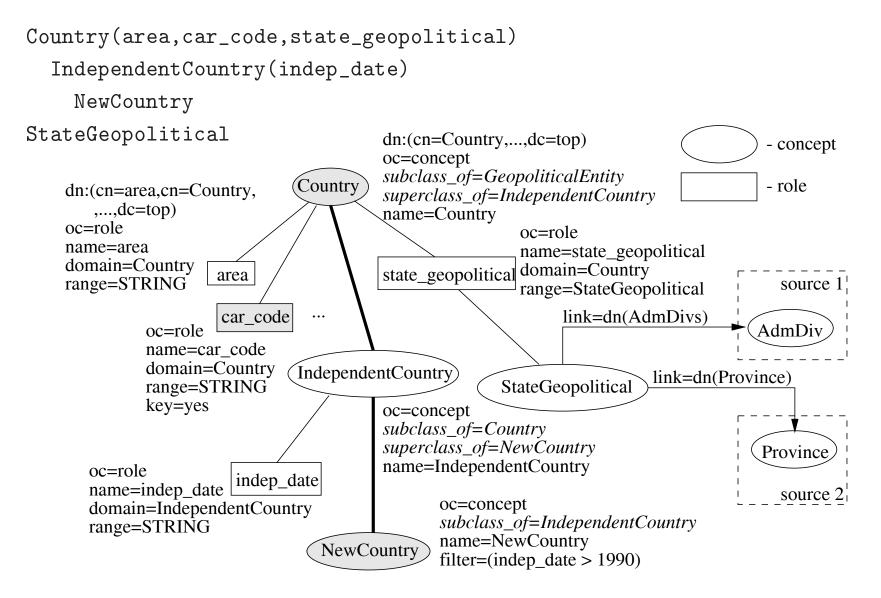

- ▷ how classes (their instances) can be structured on a tree class hierarchy,
- b the attributes that a given class instance must or may contain class content.

Directory Instance: is a set of entries Entry(AttrName, AttrValue)

- \triangleright belonging to at least one class (*oc*),
- \triangleright placed in the instance hierarchy based on their dn, and
- \triangleright having a structure conforming to the schema definition.

We use directory schema primitives (classes & attributes) to define ...

LDAP Representation Formalism for Ontologies



What about the integration?

link attribute.

Specification: $t_o(i) : link = t_s(j).$ Semantic:indicates that a given term in ontology is semantically equivalentwith the term in the LDAP source it references to.

An Example Ontology

Conclusion

- \bigtriangledown Is the only system (to our knowledge) that combines the advantages of:
 - a hierarchical data model, suited in particular for mapping XML documents [YAT, MIX, TSIMMIS, FLORID],
 - ▷ domain ontologies [ONTOBROKER, MOMIS, OBSERVER, SIMS] and
 - ▷ network features of directory services.
- \bigtriangledown Development on it continued for making the following additions:
 - ▷ query rewriting operators,
 - ▷ schematic reconciliation and
 - ▷ ontology partitioning.