INFORMED SEARCH AND
EXPLORATION

In which we see how information about the state space can prevent algorithms
fromblundering about in the dark.

Chapter 3 showed that uninformed search strategies can find solutions to problems by system-
atically generating new states and testing them against the goal. Unfortunately, these strate-
gies are incredibly inefficient in most cases. This chapter shows how an informed search
Strategy —one that uses problem-specific knowledge—can find solutions more efficiently.
Section 4.1 describes informed versions of the algorithmsin Chapter 3, and Section 4.2 ex-
plains how the necessary problem-specificinformation can be obtained. Sections 4.3 and 4.4
cover algorithms that perform purely local sear ch in the state space, evaluating and modify-
ing one or more current states rather than systematically exploring pathsfrom an initial state.
These agorithms are suitable for problems in which the path cost is irrelevant and al that
matters is the solution state itself. The family of local-search agorithms includes methods
inspired by statistical physics (Smulated annealing) and evolutionary biology (genetical-
gorithms).Finally, Section 4.5 investigatesonline sear ch, in which the agent isfaced with a
state space that is completely unknown.

IForVEDSEARCH T hiS Section shows how an infor med sear ch strategy--onethat uses problem-specificknowl-
edge beyond the definition of the problem itself —can find solutions more efficiently than an
uninformed strategy.

BEST-FIRST SEARCH The genera approach we will consider is called best-first search. Best-first search is
an instance of the general TREE-SEARCH or GRAPH-SEARCH agorithm in which anodeis
EVALUATION selected for expansion based on an evaluation function, f (n). Traditionally, the node with

the lowest evaluationis selected for expansion, because the evaluation measures distance to
the goal. Best-first search can be implemented within our general search framework via a
priority queue, a data structure that will maintain the fringein ascending order of f -values.
The name " best-first search” is a venerable but inaccurate one. After al, if we could
really expand the best nodefirst, it would not be asearch at al; it would bea straight march to

Section4.1. Informed (Heuristic) Search Strategies 95

thegod. All wecan do is choose the node that appears to be best according to the evaluation
function. If the evaluation function is exactly accurate, then this will indeed be the best
node; in redity, theevaluation function will sometimesbe off, and can lead the search astray.
Nevertheless, we will stick with the name " best-first search,” because " seemingly-best-first
search” is alittle awkward.
There is awhole family of BEST-FIRST-SEARCH algorithmswith different evaluation
HELRISTIC functions.' A key component of these algorithmsis a heuristic function,? denoted h(n):

h(n) = estimated cost of the cheapest path from node » to agoal node.

For example, in Romania, one might estimate the cost of the cheapest path from Arad to
Bucharest via the straight-linedistancefrom Arad to Bucharest.

Heuristic functions are the most common form in which additional knowledge of the
problem isimparted to the search agorithm. We will study heuristicsin more depth in Sec-
tion 4.2. For now, we will consider them to be arbitrary problem-specific functions, with one
congraint: if nisagoal node, then h(n)=0. Theremainder of this section covers two ways
to use heuristicinformation to guide search.

Greedy best-first search

gALeEDY BESTARST Greedy best-first search® tries to expand the node that is closest to the goal, on the grounds
that thisis likely to lead to a solution quickly. Thus, it evaluates nodes by using just the
heurigtic function: f (n)= A(n).
Let us see how this works for route-finding problems in Romania, using the straight-
DTRAIGHT-LINE line distance heuristic, which we will call hgrp. If the god is Bucharest, we will need to
know the straight-linedistancesto Bucharest, which are shown in Figure 4.1. For example,
hsrp(In(Arad)) =366. Notice that the values of hg;,p cannot be computed from the prob-
lem descriptionitself. Moreover, it takes a certain amount of experienceto know that h gz,p
iscorrelated with actua road distancesand is, therefore, auseful heuristic.

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
lasi 226 Vadui 199
Lugoj 244 Zerind 374
Figure4.1 Vauesof hgrp—straight-line distancestoBucharest.

1 Exercise4.3 asks you to show that thisfamily includes several familiar uninformed algorithms.
= = heuristicfunction h(r) takesa node as input, but it depends only on the state at that node.

3 OQur first edition called this greedy search; other authors have called it best-first search. Our more general
usage of thelatter term follows Pearl (1984).

Chapter 4. Informed Search and Exploration

(@) Theinitial gate

(c) After expanding Sibiu

(d) After expanding Fagaras

253 0

Figure4.2 Stagesin agreedy best-first search for Bucharest using the straight-linedis-
tanceheuristic hgr,p. Nodesarelabeled with their h-values.

Figure 4.2 shows the progress of a greedy best-first search using ~szp to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu, because it
is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will
be Fagaras, because it is closest. Fagaras in turn generates Bucharest, which is the godl.
For this particular problem, greedy best-first search using hsr,p finds a solution without ever
expanding a node that is not on the solution path; hence, its search cost is minimd. It is
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer
than the path through Rimnicu Vilceaand Pitesti. This shows why the algorithm is called
"greedy” —at each step it tries to get asclose to thegod asit can.

Minimizing A(n) is susceptible to false starts. Consider the problem of getting from
lasi to Fagaras. The heuristic suggests that Neamt be expanded first, because it is closest

Section4.1.

Informed (Heuristic) Search Strategies 97

A SEARCH

ADMISSIBLE
HEURISTIC

to Fagaras, but it is adead end. The solution is to go first to Vadui—a step that is actually
farther from the goa according to the heuristic—and then to continue to Urziceni, Bucharest,
and Fagaras. In this case, then, the heuristic causes unnecessary nodes to be expanded. Fur-
thermore, if we are not careful to detect repeated states, the solution will never be found—the
search will oscillate between Neamt and lasi.

Greedy best-first search resembles depth-first search in the way it prefers to follow a
single path al the way to the goal, but will back up when it hits a dead end. It suffers from
the same defects as depth-first search—it is not optimal, and it isincomplete (because it can
start down an infinite path and never return to try other possibilities). The worst-case time
and space complexity is O(b™), where m is the maximum depth of the search space. With a
good heuristic function, however, the complexity can be reduced substantially. The amount
of the reduction depends on the particular problem and on the quality of the heuristic.

A* search: Minimizingthetotal estimated solution cost

The most widely-known form of best-first search is called A* search (pronounced "A-star
search™). It evaluates nodes by combining g(n), the cost to reach the node, and 4(n), the cost
to get from the node to the goal:

Since g(n) gives the path cost from the start node to node n, and h(n) is the estirnated cost
of the cheapest path from n to the goal, we have

f (n) = estimated cost of the cheapest solution through n

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) t h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function £(n) satisfiescertain conditions, A searchis
both complete and optimal.

The optimality of A* is straightforward to analyze if it is used with TREE-SEARCH.
In this case, A* is optimal if A(n) is an admissible heuristic—that is, provided that A (n)
never overestimatesthe cost to reach the goal. Admissible heuristics are by nature optimistic,
because they think the cost of solving the problem islessthanit actually is. Since g(n) isthe
exact cost to reach n, we have as immediate consequence that f (n)never overestimates the
true cost of a solution through n.

An obvious example of an admissible heuristic is the straight-line distance hsy,p that
we used in getting to Bucharest. Straight-line distanceis admissible because the shortest path
between any two pointsis a straight line, so the straight line cannot be an overestimate. In
Figure 4.3, we show the progress of an A* tree search for Bucharest. The vaues of g are
computed from the step costs in Figure 3.2, and the values of h g p are givenin Figure 4.1.
Noticein particular that Bucharest first appears on the fringe at step (€), but it is not selected
for expansion because its f-cost (450) is higher than that of Pitesti (417). Another way to
say thisis that there might be a solution through Pitesti whose cost is as low as 417, so the
algorithm will not settle for a solution that costs 450. From this example, we can extract
a general proof that A* using TREE-SEARCH is optimal if h(n) is admissible. Suppose a

98

Chapter 4. Informed Search and Exploration

() Theinitial state
366=0+366

(b) After expanding Arad

393=140+253

(c) After expanding Sibiu

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilce

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

418=418+0 615=455+160 607=414+193

Figure4.3 Stagesinan A* searchfor Bucharest. Nodes arelabeled withf = g + h. The
h values are the straight-linedistancesto Bucharest taken from Figure 4.1.

Section 4.1.

Informed (Heuristic) Search Strategies 99

CONSISTENCY
MONOTONICITY

TRIANGLE
INEQUALITY

suboptimal goal node G5 appears on thefringe, and | et the cost of the optimal solution be C* .
Then, because G is suboptimal and because ~2(G2) =0 (truefor any goal node), we know

f(Ga) = g(G2) T h(Ga) = g(G2) > C*
Now consider afringe node n that is on an optimal solution path—for example, Pitesti in the

example of the preceding paragraph. (There must always be such a nodeif a solution exists.)

If h(n) does not overestimate the cost of completing the solution path, then we know that
f(n)=g(n) T h(n) < C*.

Now we have shown that f (n) < C* < f (G3), so G2 will not be expanded and A* must

return an optimal solution.

If we use the GRAPH-SEARCH algorithm of Figure 3.19 instead of TREE-SEARCH,
then this proof breaks down. Suboptimal solutions can be returned because GRAPH-SEARCH
can discard the optimal path to a repeated state if it is not the first one generated. (See
Exercise 4.4.) There are two ways to fix this problem. The first solution is to extend
GRAPH-SEARCH s0 that it discards the more expensive of any two paths found to the same
node. (Seethe discussion in Section 3.5.) The extrabookkeeping is messy, but it does guar-
antee optimality. The second solution isto ensurethat the optimal path to any repeated stateis
always thefirst one followed —asis the case with uniform-cost search. This property holds if
weimpose an extrarequirement on i (n), namely the requirement of consistency (also called
monotonicity). A heuristic A{n) isconsistent if, for every node n and every successor i of
N generated by any action a, the estimated cost of reaching the goal from nis no greater than
the step cost of getting to n’ plus the estimated cost of reaching the goal from n':

h(n) < c(n,a,n’) t h(n') .

Thisisaform of the general triangleinequality, which stipulates that each side of a triangle
cannot be longer than the sum of the other two sides. Here, the triangleisformed by n, n',
and thegoal closest to n. It isfairly easy to show (Exercise4.7) that every consistent heuristic
isalso admissible. The most important consequence of consistency isthefollowing: A* using
GRAPH-SEARCH isoptimal if h(n) is consistent.

Although consistency is a stricter requirement than admissibility, one has to work quite
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics
we discussin this chapter are also consistent. Consider, for example, hg;,p. We know that
the genera triangle inequality is satisfied when each side is measured by the straight-line
distance, and that the straight-line distance between n and i is no greater than c(n,a,n’).
Hence, hgy,p isaconsistent heuristic.

Another important consequence of consistency is the following: If h(rn) is consistent,
then the values off (n)along any path are nondecueasing. The proof follows directly from
the definition of consistency. Suppose »’ is asuccessor of n;then g(n’) =g(n) c(n,a,n’)
for some a, and we have

J(n') = g(n") F h(n') = g(n) T e(n,a,n) F h(n') > g(n) F h(n) = f(n).
It follows that the sequence of nodes expanded by A* using GRAPH-SEARCH isin nonde-

creasing order of f (n).Hence, thefirst goal node selected for expansion must be an optimal
solution, since al later nodes will be at least as expensive.

100

Chapter 4. Informed Search and Exploration

CONTOURS

PRUNING

Figure44 Map of Romaniashowing contours at f = 380, f = 400 and f = 420, with
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the
contour value.

The fact that f-costs are nondecreasing along any path also means that we can draw
contour sin the state space, just like the contoursin a topographic map. Figure 4.4 shows an
example. Inside the contour labeled 400, al nodeshave f (n)less than or equal to 400, and so
on. Then, because A* expands the fringe node of lowest f-cost, we can see that an A* search
fans out from the start node, adding nodesin concentric bands of increasing f -cost.

With uniform-cost search (A* search using h(n) = 0), the bands will be *circular"
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C* isthe cost of the
optimal solution path, then we can say the following:

o A* expands all nodes with f (n) < C*.
¢ A* might then expand some of the nodesright on the " goal contour" (wheref (n)= C%)
before selecting a goa node.

Intuitively, it is obvious that the first solution found must be an optimal one, because goal
nodes in all subsequent contours will have higher f-cost, and thus higher g-cost (because all
goa nodes have h(n) = 0). Intuitively, it is also obvious that A* search is complete. As we
add bands of increasing f, we must eventually reach a band where f is equal to the cost of
the path to agoal state.*

Notice that A* expands no nodes with f(n)> C*—for example, Timisoara is not
expanded in Figure 4.3 even though it is a child of the root. We say that the subtree below
Timisoarais pruned; because h g1, p isadmissible, thealgorithm can safely ignorethissubtree

4 Completeness requires that there be only finitely many nodes with cost less than or equa to C™, a condition
that istrueif al step costsexceed somefinite e andif bisfinite.

Section 4.1. Informed (Heuristic) Search Strategies 101

while still guaranteeing optimality. The concept of pruning— eliminatingpossibilities from
consideration without having to examine them—is important for many areas of Al.

One final observation is that among optimal algorithms of this type— algorithms that
extend search pathsfrom the roat—A* is optimally efficient for any given heuristic function.
That is, no other optimal agorithm is guaranteed to expand fewer nodes than A* (except
possibly through tie-breaking among nodes with f(n)=C*). Thisis because any algorithm
that does not expand all nodes with f(n) < C* runs therisk of missing the optimal solution.

That A* search is complete, optimal, and optimally efficient among all such algorithms
is rather satisfying. Unfortunately, it does not mean that A* isthe answer to all our searching
needs. The catch is that, for most problems, the number of nodes within the goal contour
search spaceis still exponential in the length of the solution. Although the proof of the result
is beyond the scope of this book, it has been shown that exponential growth will occur unless
the error in the heuristic function grows no faster than the logarithm of the actual path cost.
In mathematical notation, the condition for subexponential growth is that

where h{ n)isthetrue cost of getting from ntothegoal. For aimost all heuristics in practical
use, the error is at least proportional to the path cost, and the resulting exponential growth
eventually overtakes any computer. For thisreason, it is often impractical to insist on finding
an optimal solution. One can use variants of A* that find suboptimal solutions quickly, or one
can sometimes design heuristics that are more accurate, but not strictly admissible. In any
case, the use of a good heuristic still provides enormous savings compared to the use of an
uninformed search. In Section 4.2, we will look at the question of designing good heuristics.
Computation timeis not, however, A*’s main drawback. Because it keeps all generated
nodes in memory (as do al GRAPH-SEARCH algorithms), A* usually runs out of space long
before it runs out of time. For this reason, A* is not practical for many large-scale prob-
lems. Recently developed algorithms have overcome the space problem without sacrificing
optimality or completeness, at a small cost in execution time. These are discussed next.

Memory-bounded heuristic search

Thesimplest way to reduce memory requirements for A* isto adapt theidea of iterative deep-
ening to the heuristic search context, resulting in theiterative-deepening A" (IDA*)algorithm.
The main difference between IDA* and standard iterative deepening is that the cutoff used
is the f-cost (g+ h) rather than the depth; at each iteration, the cutoff value is the small-
est f-cost of any node that exceeded the cutoff on the previous iteration. IDA* is practical
for many problems with unit step costs and avoids the substantial overhead associated with
keeping asorted queue of nodes. Unfortunately, it suffersfrom the same difficultieswith real-
valued costs as does the iterative version of uniform-cost search described in Exercise 3.11.

This section briefly examines two more recent memory-bounded algorithms, called RBFS
and MA*.
RECURSIVE

BEST-FIRST SEARCH Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to
mimic the operation of standard best-first search, but using only linear space. Thealgorithmis

shownin Figure4.5. Itsstructureissimilar to that of arecursive depth-first search, but rather

102

Chapter 4. Informed Search and Exploration

function RECURSIVE-BEST-FIRST-SEARCH(problem) returnsasolution, or failure
RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), o)

function RBFS(problem, node, f-limit) returnsasolution, or failureand anew f-cost limit
if GOAL-TEST[problem[(STATE[node]) then return node
successors « EXPAND(node, problem)
if successorsisempty thenreturn failure, co
for each sin successorsdo
fIs] < max(g(s) + h(s), f[node])
r epeat
best « the lowest f-valuenodein successors
iff [best] > f-limit then return failure, f[best]
alternative « the second-lowest f -valueamong successors
result,f [best]«— RBFS(problem, best, min(f-limit, alternative))
if result # failure thenreturn result

Figure4.5 Thealgorithmfor recursivebest-first search.

than continuing indefinitely down the current path, it keeps track of the f-value of the best
alternative path availablefrom any ancestor of the current node. If the current node exceeds
thislimit, the recursion unwinds back to the alternativepath. Astherecursion unwinds, RBFS
replacesthe f-value of each node along the path with the best f-value of its children. In this
way, RBFS remembers the f -value of the best leaf in the forgotten subtree and can therefore
decide whether it’s worth reexpanding the subtree at some later time. Figure 4.6 shows how
RBFS reaches Bucharest.

RBFS is somewhat more efficient than IDA*, but still suffers from excessive node re-
generation. In the example in Figure 4.6, RBFS first follows the path via Rimnicu Vilcea,
then "' changesits mind™ and tries Fagaras, and then changesits mind back again. These mind
changes occur because every time the current best path is extended, there is a good chance
that its f -valuewill increase—h is usually less optimistic for nodes closer to the goal. When
this happens, particularly in large search spaces, the second-best path might become the best
path, so the search hasto backtrack tofollow it. Each mind change correspondsto an iteration
of IDA*,and could reguire many reexpansionsof forgotten nodes to recreate the best path and
extend it one more node.

Like A*, RBFSis an optimal algorithm if the heuristic function ~(r) is admissible. Its
space complexity islinear in the depth of the deepest optimal solution, but its time complexity
israther difficult to characterize: it depends both on the accuracy of the heuristic function and
on how often the best path changes as nodes are expanded. Both IDA* and RBFS are subject to
the potentially exponential increase in complexity associated with searching on graphs (see
Section 3.5), because they cannot check for repeated states other than those on the current
path. Thus, they may explore the same state many times.

IDA* and RBFS suffer from using too little memory. Between iterations, IDA* retains
only a single number: the current f -cost limit. RBFS retains more information in memory,

Section4.1. Informed (Heuristic) Search Strategies 103

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

(b) After unwinding back to Sihiu
and expanding Fagaras

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

Figure4.6 Stagesin an RBFS search for the shortest route to Bucharest. The f-limit
valuefor each recursive call is shown on top of each current node. (&) The path viaRimnicu
Vilceais followed until the current best leaf (Pitesti) has a value that is worse than the best
aternativepath (Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten
subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, reveding a best
leaf value of 450. (c) The recursionunwinds and the best leaf value of theforgottensubtree
(450) is backed up to Fagaras; then Rirnnicu Vilceais expanded. This time, because the best
aternativepath (through Timisoara)costs at |east 447, the expansioncontinuesto Bucharest.

but it usesonly linear space: even if more memory were available, RBFS has no way to make
use d it.
It seems sensible, therefore, to use all available memory. Two agorithms that do this
A are MA* (memory-bounded A*) and SMA* (simplified MA*). We will describe SMA*, which

SMA*

104

Chapter 4. Informed Search and Exploration

THRASHING

SPACE

OBJECT-LEVEL
SPACE

STATE

is—well —smpler. SMA* proceeds just like A*, expanding the best leaf until memory isfull.
At this point, it cannot add a new node to the search tree without dropping an old one. SMA*
always drops the worst leaf node—the one with the highest f-value. Like RBFS, SMA*
then backs up the value of the forgotten node to its parent. In this way, the ancestor of a
forgotten subtree knows the quality of the best path in that subtree. With this information,
SMA* regenerates the subtree only when all other paths have been shown to ook worse than
the path it hasforgotten. Another way of saying thisisthat, if al the descendants of a node n
are forgotten, then we will not know which way to go from n, but we will still have an idea
of how worthwhileit isto go anywhere from n.

The complete algorithm is too complicated to reproduce here,” but thereis one subtlety
worth mentioning. We said that SMA* expands the best |eaf and del etes the worst leaf. What
if all the leaf nodes have the same f -value? Then the algorithm might select the same node
for deletion and expansion. SMA* solvesthis problem by expanding the newest best |eaf and
deleting the oldest worst leaf. These can bethe same node only if thereisonly oneleaf; in that
case, the current search tree must be a single path from root to leaf that fillsall of memory.
If theleaf is not a goal node, then even if it is on an optimal solution path, that solution is
not reachable with the available memory. Therefore, the node can be discarded exactly as if
it had no successors.

SMA* is complete if there is any reachable solution—that is, if d, the depth of the
shallowest goal node, is less than the memory size (expressed in nodes). It isoptimal if any
optimal solution is reachable; otherwise it returns the best reachable solution. In practical
terms, SMA* might well be the best general-purpose algorithm for finding optimal solutions,
particularly when the state space is a graph, step costs are not uniform, and node generation
is expensive compared to the additional overhead of maintaining the open and closed lists.

On very hard problems, however, it will often be the case that SMA* isforced to switch
back and forth continually between a set of candidate solution paths, only a small subset of
which can fit in memory. (This resembles the problem of thrashingin disk paging systems.)
Then theextratime required for repeated regeneration of the same nodes meansthat problems
that would be practically solvable by A*, given unlimited memory, become intractable for
SMA*. That is to say, memory limitations can make a problemintractable from the point of
view of computation time. Although there is no theory to explain the tradeoff between time
and memory, it seems that this is an inescapable problem. The only way out is to drop the
optimality requirement.

Learningto search better

We have presented several fixed strategies— breadth-first, greedy best-first, and so on—that
have been designed by computer scientists. Could an agent learn how to search better? The
answer isyes, and the method rests on an important concept called the metalevel statespace.
Each state in ametalevel state space captures theinternal (computational) state of a program
that is searching in an object-level state space such as Romania. For example, the internal
state of the A* algorithm consists of the current search tree. Each actionin the metalevel state

5 A rough sketch appeared in thefirst edition of this book.

Section 4.2.

Heuristic Functions 105

space is a computation step that alters the internal state; for example, each computation step
in A* expands a leaf node and adds its successors to the tree. Thus, Figure 4.3, which shows
a sequence of larger and larger search trees, can be seen as depicting a path in the metalevel
state space where each state on the pathis an object-level search tree.

Now, the path in Figure 4.3 hasfive steps, including one step, the expansion of Fagaras,
that is not especialy helpful. For harder problems, there will be many such missteps, and a
metalevel lear ning algorithm can learn from these experiences to avoid exploring unpromis-
ing subtrees. The techniques used for thiskind of learning are described in Chapter 21. The
goal of learning isto minimize the total cost of problem solving, trading off computational
expense and path cost.

In this section, we will look at heuristics for the 8-puzzle, in order to shed light on the nature
of heuristicsin general.

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Sec-
tion 3.2, the object of the puzzleisto dide thetiles horizontally or vertically into the empty
space until the configuration matches the goal configuration (Figure 4.7).

Start State Goal State |

Figure4.7 A typical instanceof the 8-puzzle. The sClution j& 26 steps leng: l

The average solution cost for arandomly generated %-puzzlenstance is about 22 steps.
The branching factor is about 3. (When theempty tileisin the middle, there are four possible
moves, whenitisin acorner there are two; and whenit isalong an edgethere are three.) This
means that an exhaustive search to depth 22 would look at about 322 ~ 3.1x 10'0 states. By
keeping track of repeated states, we could cut thisdown by afactor of about 170,000, because
there are only 9!/2 = 181,440 distinct states that are reachable. (See Exercise 3.4.) Thisis
a manageable number, but the corresponding number for the 15-puzzleis roughly 103, so
the next order of businessis to find a good heuristic function. If we want to find the shortest
solutions by using A*, we need a heuristic function that never overestimates the number of
steps to the goal. There is along history of such heuristics for the 15-puzzle; here are two
commonly-used candidates:

106

Chapter 4. Informed Search and Exploration

MANHATTAN
DISTANCE

EFFECTIVE
BRANGHING FACTOR

DOMINATION

e h; = the number of misplaced tiles. For Figure 4.7, al o the eight tiles are out of
position, so the start state would have h; = 8. hy isan admissible heuristic, becauseit
isclear that any tilethat is out of place must be moved at least once.

e hos = the sum of the distances o the tiles from their goal positions. Because tiles
cannot move along diagonals, the distance we will count is the sum of the horizontal
and vertical distances. Thisis sometimes called the city block distance or Manhattan
distance. hy is also admissible, because al any move can do is move one tile one step
closer to thegoal. Tiles1 to 8in the start state give a Manhattan distance of

ho=3+14+24+2+24+34+3+2=18.
As wewould hope, neither of these overestimates the true solution cost, which is 26.

Theeffect of heuristicaccuracy on performance

One way to characterizethe quality of a heurigtic is the effective branching factor b*. If the
total number of nodes generated by A* for a particular problemis N, and the solution depth
isd, then b isthe branching factor that a uniform tree of depth d would have to havein order
to contain N+ 1 nodes. Thus,

N+ti=1+p +@*)2+...+ 07,

For example, if A* findsa solution at depth 5 using 52 nodes, then the effective branching
factoris 1.92. The effective branching factor can vary across problem instances, but usualy
itisfairly constant for sufficiently hard problems. Therefore, experimental measurements of
b* on asmall set of problems can provide a good guide to the heuristic's overall usefulness.
A well-designed heuristic would have avalueof b* closeto 1, alowing fairly large problems
to be solved.

To test the heuristic functions h; and hy, we generated 1200 random problems with
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative
deepening search and with A* tree search using both ; and he. Figure 4.8 gives the average
number of nodes generated by each strategy and the effective branching factor. The results
suggest that ho isbetter than k1, and isfar better than using iterative deepening search. On our
solutions with length 14, A* with hs is 30,000 times more efficient than uninformed iterative
deepening search.

One might ask whether hs isalways better than k1. The answer isyes. Itiseasy to see
from the definitions of the two heuristics that, for any node n, 2z(n) > hy(). We thus say
that h, dominatesh;. Domination trandates directly into efficiency: A* using 42 will never
expand more nodes than A* using h; (except possibly for some nodes with f(n) =C¥) . The
argument is simple. Recall the observation on page 100 that every node with f(n) < C* will
surely be expanded. Thisis the same as saying that every node with 2(r) < C* — g(n) will
surely be expanded. But because f is at least as big as ;1 for al nodes, every node that is
surely expanded by A* search with Az will also surely be expanded with h1, and h; might
also cause other nodes to be expanded as well. Hence, it is always better to use a heuristic
function with higher values, provided it does not overestimate and that the computation time
for the heuristicis not too large.

Section 4.2. Heuristic Functions 107
Search Cost Effective Branching Factor
d IDS A(h1) A (ho) IDS Af(hy) Af(ho)
2 10 6 6 245 179 179
4 112 13 12 287 148 145
6 680 20 18 2.73 134 1.30
8 6384 39 25 2.80 133 124
10 47127 93 39 2.19 1.38 122
12 || 3644035 227 73 278 142 124
14 - 539 113 - 144 123
- 1301 211 - 1.45 125
- 3056 363 - 1.46 1.26
= 7276 676 - 147 127
- 18094 1219 - 148 128
ig _ 39135 1641 _ 1.48 1.26
20 Ejgure 4.8 Comparison of the search costs and effective branching factors for the
22 ITER ATIVE-DEEPENING-SEARCH and A* algorithms with h,, he. Data are averaged over
24 {100 instances of the & puzzle, for varioussolution lengths.

RELAXED PROBLEM

I nventing admissibleheuristicfunctions

We have seen that both h; (misplaced tiles) and ©» (Manhattan distance) are fairly good
heuristics for the 8-puzzle and that h. is better. How might one have come up with h9? Isit
possiblefor acomputer to invent such a heuristic mechanicaly?

hy and ho are estimates of the remaining path length for the 8-puzzle, but they are
also perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the
puzzle were changed so that atile could move anywhere, instead of just to the adjacent empty
square, then h; would give the exact number of stepsin the shortest solution. Similarly, if
atile could move one squarein any direction, even onto an occupied square, then ko would
givethe exact number of stepsin the shortest solution. A problem with fewer restrictionson
theactionsis called areaxed problem. The cost of an optimal solution to a relaxedproblem
is an admissible heuristic for the original problem. The heuristic is admissible because
the optimal solution in the original problem is, by definition, also a solution in the relaxed
problem and therefore must be at least as expensive as the optimal solution in the relaxed
problem. Becausethe derived heuristic is an exact cost for the relaxed problem, it must obey
thetriangle inequality and is therefore consistent (see page 99).

If a problem definitionis written down in a formal language, it is possible to construct
relaxed problems automatically.® For example, if the 8-puzzle actions are described as

A tile can move from square A to square B if
A ishorizontally or vertically adjacent to B and B is blank,

8 In Chapters 8 and 11, we will describe formal languages suitable for this task; with formal descriptions that
can be manipulated, the construction of relaxed problems can be automated. For now, we will use English.

108

Chapter 4. Informed Search and Exploration

SUBPROBLEM

PATTERN DATABASES

we can generate three relaxed problems by removing one or both of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can movefrom square A to square B if B is blank.
(c) A tilecan move from square A to square B.

From (a), we can derive hy (Manhattan distance). The reasoning is that h, would be the
proper score if we moved each tilein turn to its destination. The heuristic derived from (b) is
discussed in Exercise 4.9. From (c), we can derive hy (misplaced tiles), because it would be
the proper scoreif tiles could moveto their intended destination in one step. Noticethat itis
crucial that the relaxed problems generated by thistechnique can be solved essentially without
search, because the relaxed rules alow the problem to be decomposed into eight independent
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding
heuristic will be expensive to obtain.”

A program called ABSOLVER can generate heuristics automatically from problem def-
initions, using the *'relaxed problem™ method and various other techniques (Prieditis, 1993).
ABSOLVER generated a new heuristic for the 8-puzzle better than any preexisting heuristic
and found the first useful heuristic for the famous Rubik's cube puzzle.

One problem with generating new heuristic functions is that one often fails to get one
"clearly best" heuristic. If a collection of admissible heuristics 2y ... by, is avalable for a
problem, and none of them dominates any of the others, which should we choose? Asit turns
out, we need not make a choice. We can have the best of al worlds, by defining

h(n) = max{hi(N),..,hm(n)}.

This composite heuristic uses whichever function is most accurate on the node in question.
Because the component heuristics are admissible, hisadmissible; it isalso easy to prove that
his consistent. Furthermore, h dominates all of its component heuristics.

Admissible heuristics can also be derived from the solution cost of a subproblem of
a given problem. For example, Figure 4.9 shows a subproblem of the 8-puzzle instance
in Figure 4.7. The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions.
Clearly, the cost of the optimal solution of this subproblem is alower bound on the cost of
the complete problem. It turns out to be substantially more accurate than Manhattan distance
in some cases.

Theidea behind pattern databasesis to store these exact solution costsfor every pos-
sible subproblem instance—in our example, every possible configuration of thefour tilesand
the blank. (Notice that the locations of the other four tiles are irrelevant for the purposes of
solving the subproblem, but moves of those tiles do count towardsthe cost.) Then, we com-
pute an admissible heuristic % p s for each complete state encountered during a search simply
by looking up the corresponding subproblem configuration in the database. The database
itself is constructed by searching backwards from the goal state and recording the cost of
each new pattern encountered; the expense of this search is amortized over many subsequent
problem instances.

™ Note that a perfect heuristic can be obtained simply by allowing h to run a full breadth-first search ""on the
dy." Thus, thereis a tradeoff between accuracy and computation timefor heuristic functions.

Section 4.2.

Heuristic Functions 109

DATABASES

I Start Sate God State

Figure4.9 A subproblemd the 8-puzzleingtance given in Figure4.7. The task isto get
tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to the
other tiles.

The choice of 1-2-3-4 isfairly arbitrary; we could also construct databases for 5-6-7-8,
and for 2-4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics
can becombined, asexplained earlier, by taking the maximum value. A combined heuristic of
thiskind is much more accurate than the Manhattan distance; the number of nodes generated
when solving random 15-puzzles can be reduced by afactor of 1000.

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the
5-6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves—it is
unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But
what if we don't count those moves? That is, we record niat the total cost of solving the
1-2-3-4 subproblem, but just the number of movesinvolving 1-2-3-4. Then it is easy to see
that the sum of the two costsis till alower bound on the cost of solving the entire problem.
Thisis the idea behind digoint pattern databases. Using such databases, it is possible to
solve random 15-puzzles in afew milliseconds— the numbes of nodes generated is reduced
by afactor of 10,000 compared with using Manhattan distance. For 24-puzzles, aspeedup of
roughly a million can be obtained.

Disjoint pattern databases work for dliding-tile puzzles because the problem can be
divided up in such away that each move affects only one subproblem—becauseonly onetile
ismoved at atime. For a problem such as Rubik’s cube, this kind of subdivision cannot be
done because each move affects8 or 9 of the 26 cubies. Currently, it isnot clear how to define
digoint databases for such problems.

L earning heuristicsfrom experience

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the
state at node n. How could an agent construct such afunction? One solution was givenin the
preceding section— namely, to devise relaxed problemsfor which an optimal solution can be
found easily. Another solution isto learn from experience. “Experience” here means solving
lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides ex-

110

Chapter 4. Informed Search and Exploration

FEATURES

amples from which /() can be learned. Each example consists of a statefrom the solution
path and the actual cost of the solution from that point. From these examples, an inductive
lear ning algorithm can be used to construct afunction £(») that can (with luck) predict solu-
tion costs for other states that arise during search. Techniquesfor doing just this using neural
nets, decision trees, and other methods are demonstrated in Chapter 18. (The reinforcement
learning methods described in Chapter 21 are aso applicable.)

Inductive learning methods work best when supplied with features of a state that are
relevant to its evaluation, rather than with just the raw state description. For example, the
feature " number of misplaced tiles” might be helpful in predicting the actual distance of a
state from the goal. Let's call this feature z;(n) . We could take 100 randomly generated
8-puzzle configurationsand gather statistics on their actual solution costs. We might find that
when zy(n) is 5, the average solution cost is around 14, and so on. Given these data, the
value of z; can be used to predict A(n). Of course, we can use several features. A second
feature z5(n) might be “number of pairs of adjacent tiles that are also adjacent in the goal
state.” How should z(n) and z2(n) be combined to predict ~(r)? A common approach is
to use alinear combination:

h(n) = c1z1(n) + coma(n)

The constants ¢; and ¢, are adjusted to give the best fit to the actual data on solution costs.
Presumably, ¢; should be positiveand ¢, should be negative.

4.3 LocAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS

LOCAL SEARCH
CURRENT STATE

OPTIMIZATION
PROBLEMS
OBJECTIVE
FUNCTION

The search algorithms that we have seen so far are designed to explore search spaces sys-
tematically. This systematicity is achieved by keeping one or more pathsin memory and by
recording which alternatives have been explored at each point aong the path and which have
not. When a goal isfound, the path to that goal also constitutes a solution to the problem.

In many problems, however, the path to the goal isirrelevant. For example, in the 8-
gueens problem (see page 66), what mattersisthe final configuration of queens, not the order
in which they are added. Thisclass of problemsincludes many important applications such as
integrated-circuit design, factory-floor layout, job-shop scheduling, automatic programming,
telecommunications network optimization, vehicle routing, and portfolio management.

If the path to the goal does not matter, we might consider a different class of ago-
rithms, ones that do not worry about paths at all. Local search agorithms operate using
a single current state (rather than multiple paths) and generally move only to neighbors
of that state. Typicaly, the paths followed by the search are not retained. Although local
search agorithms are not systematic, they have two key advantages: (1) they use very little
memory — usudly aconstant amount; and (2) they can often find reasonable solutionsin large
or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

In addition to finding goals, local search agorithms are useful for solving pure op-
timization problems, in which the aim is to find the best state according to an objective
function. Many optimization problems do not fit the ** standard" search modelintroduced in

Section 4.3.

Local Search Algorithms and Optimization Problems 111

STATE SPACE
LANDSCAPE

GLOBAL MINIMUM

GLOBAL MAXIMUM

HILL-CLIMBING

Chapter 3. For example, nature provides an objective function— reproductive fithess—that
Darwinian evolution could be seen as attempting to optimize, but there is no *'goal test™ and
no **path cost™ for this problem.

To understand local search, we will find it very useful to consider the state space land-
scape (asin Figure4.10). A landscape has both “location” (defined by the state) and “eleva-
tion™ (defined by the value of the heuristic cost function or objective function). If elevation
corresponds to cost, then the aim is to find the lowest valey —a global minimum; if eleva-
tion corresponds to an objective function, then the aim is to find the highest pesk—a global
maximum,. (You can convert from one to the other just by inserting a minus sign.) Local
search algorithms explore this landscape. A complete, local search algorithm always finds a
goal if one exists; an optimal algorithm alwaysfindsa global minimum/maximum.

maximum

current
state

— — - - = dtatespace

Figure410 A one-dimensional state space landscapein which elevation corresponds to
theobjectivefunction. Theaimisto find the global maximum. Hill-climbing search modifies
thecurrent statetotry toimproveit, asshown by thearrow. The varioustopographicfeatures
are definedin the text.

Hill-climbing search

Thehill-climbingsearch algorithmis shownin Figure 4.11. It issimply aloop that continu-
ally movesin the direction of increasing value—thet is, uphill. It terminates when it reaches a
“peak” where no neighbor has a higher value. The algorithm does not maintain asearch tree,
so the current node data structure need only record the state and its objective function value.
Hill-climbing does not ook ahead beyond the immediate neighbors of the current state. This
resembles trying to find the top of Mount Everest inathick fog while suffering from amnesia

To illustrate hill-climbing, we will use the 8-queensproblem introduced on page 66.
Local-search algorithms typically use a complete-statefor mulation, where each state has
8 queens on the board, one per column. The successor function returns al possible states
generated by moving a single queen to another squarein the same column (so each state has

112

Chapter 4. Informed Search and Exploration

function HILL-CLIMBING(problem) returnsastate that is alocal maximum
inputs: problem, a problem
local variables. current, anode
neighbor, anode

current « MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < ahighest-valuedsuccessor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current «<— neighbor

Figure 411 The hill-climbing search algorithm (stegpest ascent version), which is the
most basic local search technique. At each step the current node is replaced by the best
neighbor; in this version, that means the neighbor with the highest VALUE, but if aheuristic
cost estimate h is used, we would find the neighbor with the lowest h.

(a) (b)

Figure4.12 (8) An 8-queensstate with heuristic cost estimate h=17, showing the value
of h for each possible successor obtained by moving a queen within its column. The best
movesare marked. (b) A local minimumin the 8-queens state space; the state has h=1 but
every successor has ahigher cost.

8 x 7="56 successors). The heuristic cost function h is the number of pairs of queens that
are attacking each other, either directly or indirectly. The globa minimum of this function
is zero, which occurs only at perfect solutions. Figure 4.12¢a) shows a state with h=17.
Thefigure also shows the values of all its successors, with the best successors having h=12.
Hill-climbing a gorithms typically choose randomly among the set of best successors, if there
is more than one.

Section 4.3.

Local Search Algorithms and Optimization Problems 113

GREEDY LOCAL
SEARCH

SHOULDER

SIDEWAYS MOVE

STOCHASTICHILL
CLIMBING

@ﬁﬁlﬁ-ﬁ\‘@ICE HILL

Hill climbingissometimescalled greedy local search becauseit grabs agood neighbor
state without thinking ahead about where to go next. Although greed is considered one of the
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing
often makes very rapid progress towards a solution, because it isusually quiteeasy toimprove
abad state. For example, from the statein Figure 4.12(a), it takes just five steps to reach the
state in Figure 4.12(b), which has h=1 and is very nearly a solution. Unfortunately, hill
climbing often gets stuck for thefollowing reasons:

¢ Local maxima: alocal maximum is a peak that is higher than each of its neighboring
states, but lower than the global maximum. Hill-climbing algorithms that reach the
vicinity of alocal maximum will be drawn upwards towards the peak, but will then be
stuck with nowhere else to go. Figure 4.10 illusfrates the problem schematically. More
concretely, the state in Figure4.12(b) isin fact alocal maximum (i.e., alocal minimum
for the cost h); every move of a single queen makes the situation worse.

¢ Ridges: aridgeisshown in Figure 4.13. Ridges result in a sequence of local maxima
that is very difficult for greedy algorithms to navigate.

¢ Plateaux: aplateau isan areaof the state space landscape where the evaluation function
isflat. It can beaflat loca maximum, from which no uphill exit exists, or ashoulder,
from which it is possible to make progress. (See Figure 4.10.) A hill-climbing search
might be unable to find its way off the plateau.

In each case, the algorithm reaches a point at which no progressis being made. Starting from
arandomly generated 8-queens state, steepest-ascent hill climbing gets stuck 86% of thetime,
solving only 14% of problem instances. 1t works quickly, taking just 4 steps on average when
it succeeds and 3 when it gets stuck—not bad for astate space with 8% ~ 17 million states.

The agorithm in Figure 4.11 hdts if it reaches a plateau where the best successor has
the same value as the current state. Might it not be a good idea to keep going—to alow a
sdewaysmovein the hope that the plateau isreally a shoulder, as shown in Figure4.10? The
answer isusualy yes, but we must take care. If we always alow sideways moves when there
are no uphill moves, an infinite loop will occur whenever the agorithm reaches a flat local
maximum that is not a shoulder. One common solution is to put alimit on the number of con-
secutive sdleways moves alowed. For example, we could alow up to, say, 100 consecutive
sideways moves in the 8-queens problem. This raises the percentage of problem instances
solved by hill-climbing from 14% to 94%. Success comes at a cost: the algorithm averages
roughly 21 steps for each successful instance and 64 for each failure.

Many variantsof hill-climbing have been invented. Stochastichill climbing chooses at
random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes it finds better solutions. First-choice hill climbing implements stochastic
hill climbing by generating successors randomly until oneis generated that is better than the
current state. Thisis agood strategy when a state has many (e.g., thousands) of successors.
Exercise4.16 asksyou to investigate.

The hill-climbing algorithms described so far are incomplete—they often fail to find
agoal when one exists because they can get stuck on local maxima. Random-restart hill

114

Chapter 4. Informed Search and Exploration

Figure4.13 Illustration of why ridges cause difficultiesfor hill-climbing. The grid of
states (dark circles) is superimposed on aridgerising from left to right, creating a sequence
of local maximathat are not directly connected to each other. From each local maximum, all
the available actions point downhill.

climbing adopts the well known adage, "If at first you don't succeed, try, try again." It
conducts a series of hill-climbing searches from randomly generated initial states,® stopping
when agoal isfound. It iscompletewith probability approaching 1, for thetrivial reason that
it will eventually generate a goal state as the initial state. If each hill-climbing search has a
probability p of success, then the expected number of restarts required is 1/p. For 8-queens
instances with no sideways moves allowed, p ~ 0.14, so we need roughly 7 iterations to find
agoal (6fallures and 1 success). The expected number of stepsis the cost of one successful
iteration plus (1—p) /p timesthe cost of failure, or roughly 22 steps. When weallow sideways
moves, 1/0.94 =~ 1.06 iterations are needed on averageand (1 x 21)+(0.06/0.94) x 64 ~ 25
steps. For 8-queens, then, random-restart hill climbing isvery effectiveindeed. Evenfor three
million queens, the approach can find solutionsin under a minute.’

The success of hill climbing depends very much on the shape of the state-space land-
scape: if there are few local maxima and plateaux, random-restart hill climbing will find a
good solution very quickly. On the other hand, many real problems have a landscape that
looks morelikeafamily of porcupines on aflat floor, with miniature porcupinesliving on the
tip of each porcupine needle, ad infinirum. NP-hard problems typically have an exponential
number of local maximato get stuck on. Despite this, areasonably good local maximum can
often befound after a small number of restarts.

8 Generating a random state from an implicitly specified state space can be a hard problem in itself.

9 Luby et al. (1993) provethat it is best, in some cases, torestart arandomized search algorithm after aparticular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways movesis an example of this.

Section 4.3.

Local Search Algorithms and Optimization Problems 115

SIMULATED
ANNEALING

GRADIENTDESCENT

LOCAL BEAM
SEARCH

Simulated annealing search

A hill-climbing algorithm that never makes" downhill" movestowardsstates withlower value
(or higher cost) is guaranteed to beincomplete, becauseit can get stuck on alocal maximum.
In contrast, a purely random walk —that is, moving to a successor chosen uniformly at ran-
dom from the set of successors—is complete, but extremely inefficient. Therefore, it seems
reasonable to try to combine hill climbing with arrandom walk in some way that yields both
efficiency and completeness. Simulated annealing is such an algorithm. In metallurgy, an-
nealing is the process used to temper or harden metals and glass by heating them to a high
temperature and then gradually cooling them, thus allowing the material to coalesce into a
low-energy crystalline state. To understand simulated annealing, let's switch our point of
view from hill climbing to gradient descent (i.e., minimizing cost) and imagine the task of
getting a ping-pong ball into the deepest crevice in a bumpy surface. If we just let the ball
roll, it will cometo rest at alocal minimum. If we shake the surface, we can bounce the ball
out of the local minimum. The trick is to shake just hard enough to bounce the ball out of
local minima, but not hard enough to dislodge it from the global minimum. The simulated-
annealing solution is to start by shaking hard (i.e., at a high temperature) and then gradually
reduce the intensity of the shaking (i.e., lower the temperature).

Theinnermost loop of the simulated-annealing algorithm (Figure 4.14) is quite similar
to hill climbing. Instead of picking the best move, however, it picks a random move. If the
moveimprovesthe situation, it isalwaysaccepted. Otherwise, the algorithm acceptsthe move
with some probability less than 1. The probability decreases exponentially with the™ badness”
of the move—the amount AE by which the evaluation is worsened. The probability also
decreases as the ""temperature™ T goes down: " bad moves are more likely to be allowed at
the start when temperatureis high, and they become more unlikely as T decreases. One can
provethat if the schedule lowers T slowly enough, the algorithm will find a global optimum
with probability approaching 1.

Simulated annealing was first used extensively to solve VLSI layout problemsin the
early 1980s. It has been applied widely to factory scheduling and other large-scal e optimiza-
tion tasks. In Exercise 4.16, you are asked to compare its performance to that of random-
restart hill climbing on the n-queens puzzle.

L ocal beam search

Keeping just one node in memory might seem to be an extreme reaction to the problem of
memory limitations. The local beam sear ch algorithm!? keeps track of k states rather than
just one. 1t begins with k randomly generated states. At each step, all the successors of all k
states are generated. If any oneisagoal, the algorithm halts. Otherwise, it selects the k best
successors from the compl ete list and repeats.

At first sight, aloca beam search with k states might seem to be nothing more than
running k random restarts in parallel instead of in sequence. In fact, the two agorithms
are quite different. In a random-restart search, each search process runs independently of

10 |ocal beam search isan adaptation of beam search, whichis a path-based algorithm.

116 Chapter 4. Informed Search and Exploration
function STIMULATED- ANNEALING(problem, schedule) returns asolution state
inputs. problem,aproblem
schedule, a mapping from time to "*temperature”
local variables: current, anode
next, anode
T ,a"temperature” controlling the probability o downward steps
current «+ MAKE-NODE(INITIAL-STATE[problem])
for t — 1to oo do
T « schedule[t]
if T=0thenreturn current
next « arandomly selected successor o current
AFE «— VALUE[next] — VALUE[current]
if AE > 0then current < next
else current « next only with probability e*Z/7
|
\ Figure4.14 Thesmulaed anneding search dgorithm, averson d stochastichill climb- l
ing where some downhill moves are dlowed. Downhill moves are accepted reedily early in - |
the annedling schedule and then less often as time goes on. The schedule input determines
thevadued T asafunction df time.
the others. In a local beam search, useful information is passed among the & parallel search
threads. For example, if one state generates several good successors and the other £ — 1 states
all generate bad successors, then the effect i s that thefirst state says to the others, " Come over
here, the grass is greener!™ The algorithm quickly abandons unfruitful searches and moves
its resourcesto where the most progress is being made.
Inits simplest form, local beam search can suffer from alack of diversity among the
k states—they can quickly become concentrated in a small region of the state space, making
the search little more than an expensive version of hill climbing. A variant called stochastic
SBRUSTCS heam search, analogous to stochastic hill climbing, helps to alleviate this problem. Instead
of choosing the best k from the the pool of candidate successors, stochastic beam search
chooses k successors at random, with the probability of choosing a given successor being
an increasing function of its value. Stochastic beam search bears some resemblance to the
process of natural selection, whereby the " successors™ (offspring) of a "'state’” (organism)
populate the next generation according to its "'value™ (fithess).
Geneticalgorithms
GENETIC A genetic algorithm (or GA) isa variant of stochastic beam searchin which successor states

POPULATION

are generated by combining rwo parent states, rather than by modifying a single state. The
analogy to natural selection is the same as in stochastic beam search, except now we are
dealing with sexual rather than asexual reproduction.

Like beam search, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet — most

Section 4.3.

Local Search Algorithms and Optimization Problems 117

FITNESS FUNCTION

(@) (b) (©)] O]
Initial Populaion Fitness Function Sdection Crossover Mutation

Figure4.15 The genetic dgorithm. The initial population in (a) isranked by the fitness
functionin (b), resultingin pairs for mating in (c). They produce offspring in (d), which are

subject to mutation in (€).

Figure4.16 The 8-queens states corresponding to the first two parentsin Figure 4.15(c)
and the firgt offspringin Figure 4.15(d). The shaded columns are lost in the crossover step
and the unshaded columns are retained.

commonly, astring of Os and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in acolumn of 8 squares, and so requires 8 x log, 8= 24 hits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We will see later
that the two encodings behave differently.) Figure 4.15(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.15(b)—(e). In (b),
each state is rated by the evaluation function or (in GA terminology) the fitness function.
A fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of thefour states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), arandom choice of two pairsis selected for reproduction, in accordance with the
probabilitiesin (b). Notice that oneindividual is selected twice and one not at all.!! For each

11 There are many variants of this selection rule. The method of culling,in which all individuals below a given
threshold are discarded, can be shown to converge faster than the random version (Baum et al., 1995).

118

Chapter 4. Informed Search and Exploration

CROSSOVER

MUTATION

SCHEMA

pair to be mated, a crossover point is randomly chosen from the positions in the string. In
Figure4.15 the crossover points are after the third digit in thefirst pair and after the fifth digit
in the second pair.'

In (d), the offspring themselves are created by crossing over the parent strings at the
crossover point. For example, thefirst child of thefirst pair gets the first three digits from the
first parent and the remaining digits from the second parent, whereas the second child gets
the first three digits from the second parent and the rest from the first parent. The 8-queens
states involved in this reproduction step are shown in Figure 4.16. The example illustrates
the fact that, when two parent states are quite different, the crossover operation can produce
astate that is along way from either parent state. It is often the case that the population is
quite diverseearly onin the process, so crossover (like simulated annealing) frequently takes
large stepsin the state space early in the search process and smaller stepslater on when most
individuals are quite similar.

Finally, in (€), each location is subject to random mutation with a small independent
probability. One digit was mutated in the first, third, and fourth offspring. In the 8-queens
problem, this corresponds to choosing a queen at random and moving it to a random square
inits column. Figure 4.17 describes an algorithm that implements all these steps.

Like stochastic beam search, genetic algorithms combine an uphill tendency with ran-
dom exploration and exchange of information among parallel search threads. The primary
advantage, if any, of genetic algorithms comes from the crossover operation. Yet it can be
shown mathematically that, if the positions of the genetic codeis permuted initially in aran-
dom order, crossover conveysno advantage. Intuitively, the advantage comes from the ability
of crossover to combine large blocks of letters that have evolved independently to perform
useful functions, thus raising the level of granularity at which the search operates. For ex-
ample, it could be that putting the first three queens in positions 2, 4, and 6 (where they do
not attack each other) constitutes a useful block that can be combined with other blocks to
construct a solution.

The theory of genetic algorithms explains how this works using the idea of a schema,
which is a substring in which some of the positions can be left unspecified. For example,
the schema 246***+##* describes al 8-queens states in which the first three queens are in
positions 2, 4, and 6 respectively. Strings that match the schema (such as 24613578) are
called instancesof the schema. It can be shown that, if the averagefitnessof theinstances of
aschemais above the mean, then the number of instancesof the schemawithin the population
will grow over time. Clearly, thiseffectis unlikely to be significant if adjacent bitsare totally
unrelated to each other, because then there will be few contiguous blocks that provide a
consistent benefit. Genetic algorithms work best when schemas correspond to meaningful
components of a solution. For example, if the string is a representation of an antenna, then
the schemas may represent components of the antenna, such as reflectors and deflectors. A
good component is likely to be good in a variety of different designs. This suggests that
successful use of genetic algorithms requires careful engineering of the representation.

12 |t is here that the encoding matters. If a 24-bit encoding is used instead of 8 digits, then the crossover point
has a 213 chance of being in the middle of adigit, which results in an essentially arbitrary mutation of that digit.

Section 4.4.

Local Search in Continuous Spaces 119

function GENETIC-ALGORITHM(populalion, FITNESS-FN) returnsanindividual
inputs. population, aset of individuals
FiTNESS-FN, afunction that measures the fitness of an individual

repeat
new-population < empty set
loop for i from 1 to S1ze(population) do
X «— RANDOM-SELECTION(population, FITNESS-FN)
i +— RANDOM-SELECTION(population, FITNESS-FN)
child <~ REPRODUCE(z, Y)
if (small random probability)then child « MUTATE(child)
add child to new-population
population < new_population
until someindividual isfit enough, or enoughtime has elapsed
return the bestindividual in population, according to FITNESS-FN

function REPRODUCE(z, y) returnsan individual
inputs. x, y, parentindividuals

n «— LENGTH(z)
¢ < random number from 1to n
return APPEND(SUBSTRING(z, 1, ¢), SUBSTRING(y, ¢ +1, ny)

Figure4.17 A genetic dgorithm. The agorithm is the same as the one diagrammed in
Figure 4.15, with one variation: in this more popular version, each mating of two parents

producesonly one offspring, not two.

In practice, genetic a gorithmshave had awidespreadimpact on optimization problems,
such as circuit layout and job-shop scheduling. At present, it is not clear whether the apped
o geneticagorithmsarisesfrom their performanceor fromtheir sthetically pleasingorigins
in the theory of evolution. Much work remainsto be done to identify the conditions under
which genetic algorithmsperformwell.

In Chapter 2, we explained the distinction between discrete and continuous environments,
pointing out that most real-world environments are continuous. Yé none of the algorithms
we havedescribed can handl e continuousstate spaces—the successor function would in most
cases return infinitely many states! This section provides a very brief introduction to some
local search techniques for finding optimal solutionsin continuous spaces. The literature
on this topic is vast; many of the basic techniques originated in the 17th century, after the
development of calculus by Newton and Leibniz.!* We will find usesfor these techniquesat

13 A basic knowledge of multivariate calculus and vector arithmetic is useful when oneisreading this section.

120 Chapter 4. Informed Search and Exploration

EVOLUTION AND SEARCH

The theory of evolution was developed in Charles Darwin's On the Origin of
Species by Means of Natural Selection (1859). The central ideais smple: varia-
tions (known as mutations) occur in reproduction and will be preserved in succes-
Sivegenerations approximately in proportion to their effect on reproductivefitness.

Darwin's theory was devel oped with no knowledge of how the traits of organ-
isms can be inherited and modified. The probabilistic laws governing these pro-
cesses were first identified by Gregor Mendel (1866), a monk who experimented
with sweet peas using what he called artificial fertilization. Much later, Watson and
Crick (1953) identified the structure of the DNA molecule and its alphabet, AGTC
(adenine, guanine, thymine, cytosine). In the standard model, variation occurs both
by point mutationsin the | etter sequence and by " crossover™ (in which the DNA of
an offspring is generated by combining long sections of DNA from each parent).

The analogy toloca search algorithms has aready been described; the princi-
pal difference between stochastic beam search and evolution isthe use of sexual re-
production, wherein successors are generated from multiple organisms rather than
just one. The actual mechanisms of evolution are, however, far richer than most
genetic algorithms alow. For example, mutations can involve reversals, duplica-
tions, and movement of large chunks of DNA ; some viruses borrow DNA from one
organism and insert it in another; and there are transposabl e genes that do nothing
but copy themselves many thousands of times within the genome. There are even
genes that poison cells from potential mates that do not carry the gene, thereby
increasing their chances of replication. Most important is the fact that the genes
themsel ves encode the mechanisms whereby the genome is reproduced and trans-
lated into an organism. In genetic algorithms, those mechanisms are a separate
program that is not represented within the strings being manipul ated.

Darwinian evolution might well seem to be an inefficient mechanism, having
generated blindly some 10*® or so organisms without improving its search heuris-
ticsoneiota Fifty years before Darwin, however, the otherwise great French natu-
ralist Jean Lamarck (1809) proposed a theory of evolution whereby traits acquired
by adaptation during an organism's lifetime would be passed on to its offspring.
Such a process would be effective, but does not seem to occur in nature. Much
later, James Baldwin (1896) proposed a superficially similar theory: that behavior
learned during an organism's lifetime could accelerate therate of evolution. Unlike
Lamarck's, Baldwin's theory is entirely consistent with Darwinian evolution, be-
cause it relies on selection pressures operating on individuals that havefound local
optimaamong the set of possible behaviorsallowed by their genetic makeup. Mod-
ern computer simulations confirm that the “Baldwin effect™ is real, provided that
"ordinary™ evolution can create organisms whose internal performance measureis
somehow correlated with actual fitness.

Section 4.4.

Local Search in Continuous Spaces 121

GRADIENT

EMPIRICAL
GRADIENT

LINE SEARCH

several placesin the book, including the chapters on learning, vision, and robotics. In short,
anything that deals with the real world.

Let us begin with an example. Suppose we want to place three new airports anywhere
in Romania, such that the sum of squared distances from each city on the map (Figure 3.2)
to its nearest airport is minimized. Then the state space is defined by the coordinates of
the airports. (x1,y1), (z2,92), and (z3,ys). Thisis a six-dimensional space; we also say
that states are defined by six variables. (In general, states are defined by an n-dimensional
vector of variables, X.) Moving around in this space corresponds to moving one or more of
the airports on the map. The objectivefunctionf (x4, y1, 2, y2, 23, y3) is relatively easy to
compute for any particular state once we compute the closest cities, but rather tricky to write
downin generd.

Oneway to avoid continuous problemsis simply to discretize the neighborhood of each
state. For example, we can move only one airport a atimein either the x or y direction by
a fixed amount £6. With 6 variables, this gives 12 possible successors for each state. We
can then apply any of the local search algorithms described previously. One can aso ap-
ply stochastic hill climbing and simulated annealing directly, without discretizing the space.
These algorithms choose successors randomly, which can be done by generating random vec-
torsof length 6.

There are many methods that attempt to use the gradient of the landscape to find a
maximum. The gradient of the objectivefunctionisavector V f that givesthe magnitude and
direction of the steepest slope. For our problem, we have

In some cases, we can find amaximum by solving the equation V f = 0. (Thiscould be done,
for example, if we were placing just one airport; the solution is the arithmetic mean of all the
cities coordinates.) In many cases, however, this equation cannot be solved in closed form.
For example, with three airports, the expression for the gradient depends on what cities are
closest to each airport in the current state. This means we can compute the gradient locally
but not globally. Even so, we can still perform steepest-ascent hill climbing by updating the
current state viathe formula

where ais a small constant. In other cases, the objective function might not be available
in adifferentiable form at dl —for example, the value of a particular set of airport locations
may be determined by running some large-scale economic simulation package. In those
cases, a so-,calledempirical gradient can be determined by evaluating the response to small
increments and decrements in each coordinate. Empirical gradient search is the same as
steepest-ascent hill climbing in adiscretized version of the state space.

Hidden beneath the phrase" a is a small constant” lies a huge variety of methods for
adjusting a. The basic problemis that, if aistoo small, too many steps are needed; if a
istoo large, the search could overshoot the maximum. The technique of line search tries to
overcome this dilemma by extending the current gradient direction—usualy by repeatedly
doubling a—until f startsto decreaseagain. The point at which this occurs becomes the new

122

Chapter 4. Informed Search and Exploration

NEWTON-RAPHSON

HESSIAN

CONSTRAINED
OPTIMIZATION

LINEAR
PROGRAMMING

current state. There are several schools of thought about how the new direction should be
chosen at this point.

For many problems, the most effective algorithm is the venerable Newton-Raphson
method (Newton, 1671; Raphson, 1690). This is a genera technique for finding roots of
functions—that is, solving equations of the form g(z)=0. It works by computing a new
estimate for theroot X according to Newton's formula

To find a maximum or minimum of f, we need to find X such that the gradient is zero (i.e.,
V f(x)=0). Thus g(z) in Newton's formula becomes Vf(X), and the update equation can
be written in matrix—vector form as

X «m X —H;l(x)Vf(X) ,
where H(x) is the Hessian matrix of second derivatives, whose elements H;; are given
by 8%f /82,0z;. Sincethe Hessian has n? entries, Newton—Raphson becomes expensive in
high-dimensional spaces, and many approximations have been devel oped.

Loca search methods suffer from local maxima, ridges, and plateaux in continuous
state spaces just as much as in discrete spaces. Random restarts and simulated annealing can
be used and are often helpful. High-dimensional continuous spaces are, however, big places
inwhichitiseasy to get lost.

A final topic with which a passing acquaintanceis useful is constrained optimization.
An optimization problemis constrained if solutions must satisfy some hard constraints on the
vauesof each variable. For example, in our airport-siting problem, we might constrain sites
to be inside Romania and on dry land (rather than in the middle of lakes). The difficulty of
constrained optimization problems depends on the nature of the constraints and the objec-
tive function. The best-known category is that of linear programming problems, in which
constraints must be linear inequalities forming a convex region and the objective function is
also linear. Linear programming problems can be solved in time polynomia in the number
of variables. Problems with different types of constraints and objective functions have also
been studied — quadratic programming, second-order conic programming, and so on.

4.5 ONLINE SEARCH AGENTS AND UNKNOWN ENVIRONMENTS

OFFLINE SEARCH

ONLINE SEARCH

So far we have concentrated on agents that use offline sear ch algorithms. They compute a
complete solution before setting foot in the real world (see Figure 3.1), and then execute the
solution without recourse to their percepts. In contrast, an online search'* agent operates
by interleaving computation and action: first it takes an action, then it observes the environ-
ment and computes the next action. Online search isagood ideain dynamic or semidynamic
domains—domainswhere there is a penalty for sitting around and computing too long. On-
line search is an even better ideafor stochastic domains. In general, an offline search would

14 The term "online" is commonly used in computer science to refer to algorithms that must process input data
asthey are received, rather than waiting for the entire input data set to become available.

Section 4.5.

Online Search Agents and Unknown Environments 123

COMPETITIVE RATIO

have to come up with an exponentially large contingency plan that considers all possible hap-
penings, while an online search need only consider what actually does happen. For example,
a chess playing agent is well-advised to make its first move long beforeit has figured out the
complete course of the game.

Online search is a necessary idea for an exploration problem, where the states and
actions are unknown to the agent. An agent in this state of Ignorance must useits actions as
experiments to determine what to do next, and hence must interleave computation and action.

The canonical example of online search is arobot that is placed in a new building and
must exploreit to build amap that it can use for getting from A to B. Methods for escaping
from labyrinths—required knowledge for aspiring heroes of antiquity —are also examples of
online search algorithms. Spatial exploration is not the only form of exploration, however.
Consider anewborn baby: it has many possible actions, but knows the outcomes of none of
them, and it has experienced only afew of the possible states that it can reach. The baby's
gradua discovery of how the world worksiis, in part, an online search process.

Online sear ch problems

An online search problem can be solved only by an agent executing actions, rather than by a
purely computational process. We will assume that the agent knows just the following:

e ACTIONS(s), whichreturnsalist of actions allowed in state s;

e The step-cost function ¢(s, a,s’)—note that this cannot be used until the agent knows
that s’ isthe outcome; and

e GOAL-TEST(s).

Note in particular that the agent cannot access the successors of a state except by actualy
trying al the actionsin that state. For example, in the maze problem shown in Figure 4.18,
the agent does not know that going Up from (1,1) leads to (1,2); nor, having done that, does
it know that going Down will take it back to (1,1). This degree of ignorance can be reduced
in some applications— for example, arobot explorer might know how its movement actions
work and beignorant only of thelocations of obstacles.

Wewrll assume that the agent can always recognize astate that it has visited before, and
we will assume that the actions are deterministic. (These last two assumptions are relaxed in
Chapter 17.) Finally, the agent might have accessto an admissible heuristic function 4(s) that
estimates the distance from the current stateto a goa state. For example, in Figure 4.18, the
agent might know thelocation of the goal and be able to usethe Manhattan distance heuristic.

Typicaly, the agent's objectiveisto reach agoa state while minimizing cost. (Another
possible objectiveis simply to explore the entire environment.) The cost is the total path cost
of the path that the agent actually travels. It is common to compare this cost with the path
cost of the path the agent would follow if it knew the search space in advance—that is, the
actual shortest path (or shortest complete exploration). In the language of online algorithms,
thisis called the competitive ratio; we would likeit to be as small as possible.

Although this sounds like a reasonable request, it is easy to see that the best achievable
competitive ratio isinfinitein some cases. For example,,if some actions areirreversible, the
online search might accidentally reach adead-end state from which no god stateisreachable.

124

Chapter 4. Informed Search and Exploration

ADVERSARY
ARGUMENT

1 2 3

Figure4.18 A simple maze problem. The agent starts at Sand must reach G, but knows
nothing of the environment.

(a) (b)

Figure4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followedis much longer than the best possible path.

Perhapsyou find theterm " accidentally** unconvincing — after all, there might be an algorithm
that happens not to takethe dead-end path asit explores. Our claim, to be more precise, isthat
no algorithm can avoid dead ends in all state spaces. Consider the two dead-end state spaces
in Figure4.19(a). To an online search algorithm that has visited states S and A, thetwo state
spaces look identical, so it must make the same decision in both. Therefore, it will fail in
one of them. Thisis an example of an adversary argument — wecan imagine an adversary
that constructs the state space while the agent exploresit and can put thegoal s and dead ends
wherever it likes.

Section 4.5.

Online Search Agents and Unknown Environments 125

SAFELY EXPLORABLE

Dead ends are a real difficulty for robot exploration—-staircases,ramps, cliffs, and all
kinds of natural terrain present opportunities for irreversible actions. To make progress, we
will simply assume that the state spaceissafely explorable— thatis, somegoal stateisreach-
able from every reachable state. State spaces with reversible actions, such as mazes and
8-puzzles, can be viewed as undirected graphs and are clearly safely explorable.

Even in safely explorable environments, no bounded competitive ratio can be guaran-
teed if there are paths of unbounded cost. Thisis easy to show in environments with irre-
versible actions, but in fact it remains true for the reversible case as well, as Figure 4.19(b)
shows. For thisreason, itiscommon to describe the performance of online search algorithms
interms of the size of the entire state space rather than just the depth of the shallowest goal.

Online sear ch agents

After each action, an online agent receives a percept telling it what state it has reached; from
this information, it can augment its map of the environment. The current map is used to
decide where to go next. This interleaving of planning and action means that online search
algorithms are quite different from the offline search algorithms we have seen previously.
For example, offline algorithms such as A* have the ability to expand a node in one part
of the space and then immediately expand a node in another part of the space, because node
expansioninvolvessimulated rather thanreal actions. An online algorithm, on the other hand,
can expand only a node that it physically occupies. To avoid traveling al the way acrossthe
tree to expand the next node, it seems better to expand nodesin a local order. Depth-first
search has exactly this property, because (except when backtracking) the next node expanded
isachild of the previous node expanded.

An online depth-first search agent is shown in Figure 4.20. This agent stores its map
in atable, result(a,s], that records the state resulting from executing action a in state s.
Whenever an action from the current state has not been explored, the agent tries that action.
The difficulty comes when the agent has tried all the actionsin a state. In offlinedepth-first
search, the state is simply dropped from the queue; in an online search, the agent has to
backtrack physically. In depth-first search, this means going back to the state from which the
agent entered the current state most recently. That is achieved by keeping a table that lists,
for each state, the predecessor states to which the agent has riot yet backtracked. If the agent
has run out of states to which it can backtrack, then its search is compl ete.

We recommend that the reader trace through the progress of ONLINE-DFS-AGENT
when applied to the maze givenin Figure 4.18. It isfairly easy to see that the agent will, in
the worst case, end up traversing every link in the state space exactly twice. For exploration,
thisis optimal; for finding a goal, on the other hand, the agent's competitive ratio could be
arbitrarily bad if it goes off on along excursion when thereis a goal right next to the initial
state. Anonlinevariant of iterative deepening solves this problem; for an environment that is
auniform tree, the competitiveratio of such an agent isasmall constant.

Because of its method of backtracking, ONLINE-DFS-AGENT works only in state
spaces where the actions are reversible. There are slightly more complex agorithms that
work in genera state spaces, but no such algorithm has a bounded competitive ratio.

126

Chapter 4. Informed Search and Exploration

RANDOMWALK

function ONLINE-DFS-AGENT(s’) returnsan action
inputs: s, apercept that identifies the current state
static: result, atable, indexed by action and state, initially empty
unexplored, atablethat lists, for each visited state, the actions not yet tried
unbacktracked, atablethat lists, for each visited state, the backtracksnot yet tried
s, &, the previousstate and action, initially null

if GoaL-TEST(s") then return stop
if s’ isanew statethen unexplored]s’] « ACTIONS(s')
if sisnot null then do
result{a, S] « &’
add s to thefront of unbacktracked[s']
if unexplored[s]isempty then
if unbacktracked[s]isempty then return stop
else a <« an action b such that result[b, S| = PoP(unbacktracked[s'])
else a « PoP(unezplored[s’])
s

return a

Figure4.20 An online search agent that uses depth-first exploration. The agent is appli-
cableonly in bidirected search spaces.

Onlinelocal search

Like depth-first search, hill-climbingsear ch has the property of locality in its node expan-
sions. In fact, because it keeps just one current state in memory, hill-climbing search is
already an online search algorithm! Unfortunately, it is not very useful in its simplest form
because it leaves the agent sitting at local maxima with nowhere to go. Moreover, random
restarts cannot be used, because the agent cannot transport itself to a new state.

Instead of random restarts, one might consider using a random walk to explore the
environment. A random walk simply selects at random one of the available actions from the
current state; preference can be given to actions that have not yet been tried. It is easy to
prove that a random walk will eventually find a goal or complete its exploration, provided
that the spaceis finite.!> On the other hand, the process can be very sow. Figure4.21 shows
an environment in which arandom walk will take exponentially many steps to find the goal,
because, at each step, backward progressis twice aslikely asforward progress. The example
is contrived, of course, but there are many real-world state spaces whose topology causes
these kinds of "'traps” for random walks.

Augmenting hill climbing with memory rather than randomness turns out to be a more
effective approach. The basic ideais to store a " current best estimate™ H(s) of the cost to
reach the goa from each state that has been visited. H(s) starts out being just the heuristic

15 The infinite case is much more tricky. Random walks are complete on infinite one-dimensional and two
dimensional grids, but not on three-dimensional grids! In thelatter case, the probability that the walk ever returns
to the starting point is only about 0.3405. (See Hughes, 1995, for a general introduction.)

Section 4.5.

Online Search Agents and Unknown Environments 127

LRTA*

OPTIMISM UNDER
UNCERTAINTY

ReAsasalincs

Figure4.21 An environmentin which arandom walk will take exponentidly many steps
to find thegoal.

estimate h(s) and is updated as the agent gains experience in the state space. Figure 4.22
shows a simple examplein aone-dimensional state space. In (a), the agent seems to be stuck
in aflatlocal minimum at the shaded state. Rather than staying whereiit is, the agent should
follow what seems to be the best path to the goal based on the current cost estimates for its
neighbors. The estimated cost to reach the goal through a neighbor s is the cost to get to
s plus the estimated cost to get to a goal from there—that is, c(s,a,s) T H(s). In the
example, there are two actions with estimated costs 1+ 9 and 1+ 2, soit seems best to move
right. Now, it is clear that the cost estimate of 2 for the shaded state was overly optimistic.
Since the best move cost 1 and led to a state that is at least 2 steps from a goal, the shaded
state must be at least 3 steps from a goal, so its H should be updated accordingly, as shown
in Figure 4.22(b). Continuing this process, the agent will move back and forth twice more,
updating H each time and *'flatteningout™ the local minimum until it escapes to the right.

An agent implementing this scheme, which is called learning real-time A* (LRTA*),is
shown in Figure4.23. Like ONLINE-DFS-AGENT, it builds amap of the environment using
the result table. It updates the cost estimatefor the stateit has just left and then chooses the
"apparently best” move according to its current cost estimates. One important detail is that
actions that have not yet been tried in astate s are alwaysassumed to lead immediately to the
goal with theleast possible cost, namely A (s). Thisoptimism under uncertainty encourages
the agent to explore new, possibly promising paths.

AnLRTA* agent isguaranteed tofind agoal in any finite, safely explorable environment.
Unlike A*, however, it is not completefor infinite state spaces- —thereare caseswhereit can be
ledinfinitely astray. It can explore an environment of n statesin O(n?) stepsin theworst case,
but often does much better. The LRTA* agentisjust one of alargefamily of online agentsthat
can be defined by specifying the action selection rule and the update rule in different ways.
We will discuss this family, which was developed originally for stochastic environments, in
Chapter 21.

Learningin onlinesearch

Theinitial ignorance of online search agents providesseveral opportunitiesfor learning. First,
the agents learn a""'map" of the environment — moreprecisely, the outcome of each actionin
each state—simply by recording each of their experiences. (Notice that the assumption of
deterministic environments means that one experience is enough for each action.) Second,
the local search agents acquire more accurate estimates of the value of each state by using
local updating rules, asin LRTA*. In Chapter 21 we will see that these updates eventually

128 Chapter 4. Informed Search and Exploration

(b)

(c)

(d)

Figure4.22 Fiveiterations of LRTA* on a one-dimensional state space. Each state is
labeled with H (s), the current cost estimate to reach agoal, and each arc is labeled withits
step cost. The shaded state marks the location of the agent, and the updated values at each
iteration are circled.

function LRTA *-AGENT(s") returnsan action
inputs. s', a percept that identifies the current state
static: result, atable, indexed by action and state, initially empty
H, atableof cost estimatesindexed by state, initially empty
s, a,the previousstateand action, initialy null

if GOAL-TEST(s") then return stop
if 5" isanew state (notin H)then H[s'] « A(s")
unless s is null

result[a, S| +— &

H[s]«— min LRTA*-COST(s, b, result[b, s] H)
be ACTIONS(s)

a« an action bin ACTIONS(s’) that minimizesLRTA*-CoST(s’, b, result[b, '] H)
s s
return a

function LRTA*-C0sT(s, a,s’, H) returnsacost estimate
if s'isundefined then return h(s)
dsereturnc(s,a,s') + HIs

Figure 423 LRTA*-AGENT selects an action according to the values of neighboring
states, which are updated as the agent moves about the state space.

Section 4.6.

Summary 129

convergeto exact valuesfor every state, provided that the agent explores the state spacein the
right way. Once exact values are known, optimal decisions can be taken simply by moving to
the highest-valued successor —that s, pure hill climbing is then an optimal strategy.

If you followed our suggestion to trace the behavior of ONLINE-DFS- AGENT in the
environment of Figure 4.18, you will have noticed that the agent is not very bright. For
example, after it has seen that the Up action goes from (1,1) to (1,2), the agent still has no
idea that the Down action goes back to (1,1), or that the Up action also goes from (2,1) to
(2,2), from (2,2) to (2,3), and so on. In general, we would like the agent to learn that Up
increases the y-coordinate unless thereisa wall in the way, that Down reducesit, and so on.
For this to happen, we need two things. First, we need a formal and explicitly manipulable
representation for these kinds of general rules; so far, we have hidden theinformation inside
the black box called the successor function. Part IIT i s devoted to thisissue. Second, we need
algorithms that can construct suitable general rules from the specific observations made by
the agent. These are covered in Chapter 18.

This chapter has examined the application of heuristics to reduce search costs. We have
looked at a number of algorithms that use heuristics and found that optimality comes at a stiff
pricein terms of search cost, even with good heuristics.

e Best-firstsearchisjust GRAPH-SEARCH where the minimum-cost unexpanded nodes
(according to some measure) are selected for expansion. Best-first algorithms typically
use aheuristic function h(n) that estimates the cost of asolution from n.

o Greedy best-first search expands nodes with minimal ~(n). It is not optimal, but is
often efficient.

e A* search expands nodes with minimal f (n) = g(n) + h(n). A is complete and
optimal, provided that we guarantee that h(n) is admissible (for TREE-SEARCH) or
consistent (for GRAPH-SEARCH). The space complexity of A* isstill prohibitive.

o The performance of heuristic search agorithms depends on the quality of the heuris-
tic function. Good heuristics can sometimes be constructed by relaxing the problem
definition, by precomputing solution costs for subproblems in a pattern database, or by
learning from experience with the problem class.

e RBFS and SMA* are robust, optimal search agorithms that use limited amounts of
memory; given enough time, they can solve problems that A* cannot solve because it
runs out of memory.

e Local search methods such as hill climbing operate on complete-state formulations,
keeping only a small number of nodesin memory. Severa stochastic algorithms have
been devel oped, including smulated annealing, which returns optimal solutions when
given an appropriate cooling schedule. Many local search methods can also be used to
solve problemsin continuous spaces.

130 Chapter 4. Informed Search and Exploration

e A genetic algorithm isastochastic hill-climbing searchin which alarge population of
statesis maintained. New states are generated by mutation and by crossover, which
combinespairsof statesfrom the population.

e Exploration problemsarise when the agent has no idea about the states and actions of
its environment. For safely explorable environments, online sear ch agents can build a
map and find agoal if oneexists. Updating heuristicestimatesfrom experienceprovides
an effectivemethod to escapefrom local minima

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The use of heuristic information in problem solving appears in an early paper by Simon
and Newell (1958), but the phrase " heuristic search™ and the use of heuristic functions that
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965).
Doran and Michie (1966) conducted extensive experimental studies of heuristic search as
applied to anumber of problems, especidly the 8-puzzleand the 15-puzzle. Although Doran
and Michiecarried out theoretical analysesof path length and “penetrance” (theratio of path
length to the total number of nodes examined so far) in heuristic search, they appear to have
ignored theinformation provided by current path length. The A* a gorithm, incorporating the
current path lengthinto heuristic search, was devel oped by Hart, Nilsson, and Raphael (1968),
with some later corrections (Hart et al., 1972). Dechter and Pearl (1985) demonstrated the
optimal efficiency of A*.

The original A* paper introduced the consistency condition on heuristic functions. The
monotonecondition wasintroduced by Pohl (1977) asasimpler replacement, but Pearl (1984)
showed that the two were equivalent. A number of algorithms predating A* used the equiva-
lent of open and closed lists; these include breadth-first, depth-first, and uniform-cost search
(Bellman, 1957; Dijkstra, 1959). Bellman's work in particular showed the importance of
additive path costs in simplifying optimizationa gorithms.

Pohl (1970, 1977) pioneered the study of the relationship between the error in heuris-
tic functions and the time complexity of A*. The proof that A* runsin linear time if the
error in the heuristic function is bounded by a constant can be found in Pohl (1977) and
in Gaschnig (1979). Pearl (1984) strengthened this result to alow alogarithmic growth in
the error. The™ effective branching factor” measure of the efficiency of heuristic search was
proposed by Nilsson (1971).

Therearemany variationson the A* algorithm. Pohl (1973) proposed the use of dynamic
weighting, which uses aweighted sum f,,(n) = wgg(n) * wph(n) of the current path length
and the heuristicfunction as an evaluation function, rather than thesimplesum f (n)=g(n) +
h{n) used in A*. The weightsw, and wy, are adjusted dynamically as the search progresses.
Pohl's al gorithmcan be shown to be e-admissible—that is, guaranteed to find sol utionswithin
afactor 1 ¢ of the optimal solution—where € is a parameter supplied to thealgorithm. The
same property isexhibited by the A} algorithm (Pearl, 1984), which can select any nodefrom
the fringe provided its f -cost is within afactor 1+ ¢ of thelowest-f-cost fringe node. The
selection can be done so as to minimize search cost.

Section 4.6.

Summary 131

A* arid other state-space search algorithms are closely related to the branch-and-bound
techniques that are widely used in operations research (Lawler and Wood, 1966). The
relationships between state-space search and branch-and-bound have been investigated in
depth (Kumar and Kanal, 1983; Nau ez al., 1984; Kumar er al., 1988). Martelli and Monta-
nari (1978) demonstrate a connection between dynamic programming (see Chapter 17) and
certain types of state-space search. Kumar and Kanal (1988) attempt a'* grand unification™ of
heuristic search, dynamic programming, and branch-and-bound techniques under the name
of CDP—the " composite decision process.”

Because computersin the late 1950s and early 1960s had at most afew thousand words
of main memory, mernory-bounded heuristic search was an early research topic. The Graph
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an
operator after searching best first up to the memory limit. IDA* (Korf, 1985a, 1985b) was the
first widely used optimal, memory-bounded, heuristic search algorithm, and alarge number
of variantshave been developed. An analysis of the efficiency of IDA* and of its difficulties
with real-valued heuristics appearsin Patrick et al. (1992).

RBFS (Korf, 1991, 1993) is actualy somewhat more complicated than the algorithm
shownin Figure4.5, whichis closer to an independently developed algorithm called iter ative
expansion, or |E (Russell, 1992). RBFS uses alower bound as well as the upper bound; the
two algorithms behave identically with admissible heuristics, but RBFS expands nodes in
best-first order even with an inadmissible heuristic. The idea of keeping track of the best
alternative path appeared earlier in Bratko's (1986) elegant Yrolog implementation of A* and
in the DTA* algorithm (Russell and Wefald, 1991). The latter work also discusses metalevel
state spaces and metalevel learning.

The MA* agorithm appeared in Chakrabarti et al. (1989). SMA*, or Simplified MA*,
emerged from an attempt:toimplement MA* asacomparison algorithmfor | E (Russell, 1992).
Kaindl and Khorsand (1994) have applied SMA* to produce a bidirectional search algorithm
that is substantially faster than previousalgorithms. Korf and Zhang (2000) describe adivide-
and-conquer approach, and Zhou and Hansen (2002) introduce memory-bounded A* graph
search. Korf (1995) surveys memory-bounded search techniques.

The idea that admissible heuristics can be derived by problem relaxation appearsin the
seminal paper by Held and Karp (1970), who used the the minimum-spanning-tree heuristic
to solve the TSP. (See Exercise 4.8.)

The automation of the relaxation process was implemented successfully by Priedi-
tis (1993), building on earlier work with Mostow (Mostow and Prieditis, 1989). The use
of pattern databases to derive admissible heuristics is due to Gasser (1995) and Culberson
and Schaeffer (1998); digoint pattern databases are described by Korf and Felner (2002).
The probabilistic interpretation of heuristics was investigated in depth by Pearl (1984) and
Hansson and Mayer (1989).

By far the most comprehensive source on heuristics and heuristic search algorithms
is Pearl's (1984) Heuristics text. This book provides especially good coverage of the wide
variety of offshootsand variationsof A*,including rigorous proofs of their formal properties.
Kanal and Kumar (1988) present an anthology of important articles on heuristic search. New
results on search algorithms appear regularly in the journal Artificial Intelligence.

132 Chapter 4. Informed Search and Exploration

L ocal-search techniques have along history in mathematics and computer science. In-
deed, the Newton—Raphson method (Newton, 1671; Raphson, 1690) can be seen as a very
efficient local-search method for continuous spaces in which gradient information is avail-
able. Brent (1973) is aclassic reference for optimization algorithms that do not require such
information. Beam search, which we have presented as alocal-search agorithm, originated
as a bounded-width variant of dynamic programming for speech recognition in the HARPY
system (Lowerre, 1976). A related algorithm is analyzed in depth by Pearl (1984, Ch. 5).

The topic of local search has been reinvigorated in recent years by surprisingly good
results for large constraint satisfaction problems such as n-queens (Minton et al ., 1992) and
logical reasoning (Selman et al., 1992) and by the incorporation of randomness, multiple
simultaneous searches, and other improvements. This renaissance of what Christos Papadi-
mitriou has called "New Age" algorithms has also sparked increased interest among theoret-
ical computer scientists (Koutsoupias and Papadimitriou, 1992; Aldous and Vazirani, 1994).

TABU SEARCH In the field of operations research, a variant of hill climbing called tabu sear ch has gained
popularity (Glover, 1989; Glover and Laguna, 1997). Drawing on models of limited short-
term memory in humans, thisalgorithm maintainsatabu list of £ previously visited states that
cannot berevisited; as well asimproving efficiency when searching graphs, this can alow the
algorithm to escape from some local minima. Another useful improvement on hill climb-
ing is the STAGE agorithm (Boyan and Moore, 1998). Theideais to use the local maxima
found by random-restart hill climbing to get an idea of the overall shape of the landscape.
The agorithm fits a smooth surface to the set of local maxima and then calcul ates the global
maximum of that surface analytically. This becomes the new restart point. The agorithm
has been shown to work in practice on hard problems. (Gomes et al., 1998) showed that
the run time distributions of systematic backtracking algorithms often have a heavy-tailed
distribution, which meansthat the probability of avery long run timeis more than would be
predicted if the run times were normally distributed. This provides atheoretical justification
for random restarts.

Simulated annealing was first described by Kirkpatrick et al. (1983), who borrowed
directly from the Metropolisalgorithm (which is used to simulate complex systems in
physics (Metropoliset al., 1953) and was supposedly invented at aL os Alamos dinner party).
Simulated annealing is now afieldin itself, with hundreds of papers published every year.

Finding optimal solutions in continuous spaces is the subject matter of several fields,
including optimization theory, optimal control theory, and the calculus of variations.
Suitable (and practical) entry points are provided by Press et al. (2002) and Bishop (1995).
Linear programming (LP) wasone of thefirst applications of computers; the ssmplex algo-
rithm (Wood and Dantzig, 1949; Dantzig, 1949) is still used despite worst-case exponential
complexity. Karmarkar (1984) developed apractical polynomial-time algorithm for LP.

Work by Sewall Wright (1931) on the concept of a fitnesslandscape was an impor-
tant precursor to the development of genetic algorithms. In the 1950s, severa statisticians,
including Box (1957) and Friedman (1959), used evolutionary techniques for optimization
EVOLUTION, problems, but it wasn't until Rechenberg (1965, 1973) introduced evolution strategies to

solve optimization problems for airfoils that the approach gained popularity. In the 1960s
and 1970s, John Holland (1975) championed genetic algorithms, both as a useful tool and

DiSTRIEUTIOR

Section 4.6.

Summary 133

ARTIFICIAL LIFE

GENETIC
PROGRAMMING

EULERIANGRAPHS

as a method to expand our understanding of adaptation, biological or otherwise (Holland,
1995). The artificial life movement (Langton, 1995) takes this idea one step further, view-
ing the products of genetic algorithms as organismsrather than solutions to problems. Work
in this field by Hinton and Nowlan (1987) and Ackley and Littman (1991) has done much
to clarify the implications of the Baldwin effect. For general background on evolution, we
strongly recommend Smith and Szathmary (1999).

Most comparisons of genetic algorithms to other approaches (especially stochastic hill-
climbing) have found that the genetic algorithms are slower to converge (O’Reilly and Op-
pacher, 1994; Mitchell et al., 1996; Juels and Wattenberg, 1996; Baluja, 1997). Such findings
are not universally popular within the GA community, but recent attempts within that com-
munity to understand popul ation-based search as an approximate form of Bayesian learning
(see Chapter 20) might help to close the gap between the field and its critics (Pelikan et al.,
1999). The theory of quadratic dynamical systems may also explain the performance of
GAs (Rabani et al., 1998). SeeLohn et al. (2001) for an example of GAs applied to antenna
design, and Larrafiaga et al. (1999) for an application to the traveling salesperson problem.

Thefield of genetic programmingis closely related to genetic algorithms. The princi-
pal differenceis that the representations that are mutated and combined are programs rather
than bit strings. The programs are represented in the form of expression trees; the expressions
can bein astandard language such as Lisp or can be specialty designed to represent circuits,
robot controllers, and so on. Crossover involves splicing together subtrees rather than sub-
strings. This form of mutation guarantees that the offspring are well-formed expressions,
which would not be the case if programs were manipulated as strings.

Recent interest in genetic programming was spurred by John Koza's work (Koza, 1992,
1994), but it goes back at |least to early experiments with machine code by Friedberg (1958)
and with finite-state automata by Fogel et al. (1966). As with genetic algorithms, there is
debate about the effectiveness of the technique. Koza et al. (1999) describe a variety of
experiments on the automated design of circuit devices using genetic programming.

The journas Evolutionary Computation and IEEE Transactions on Evolutionary Com:
putation cover genetic algorithms and genetic programming; articles are also found in Com-
plex Systems, Adaptive Behavior, and Artificial Life. "'The main conferences are the Inter-
national Conference on Genetic Algorithms and the Conference on Genetic Programming,
recently merged to form the Genetic and Evolutionary Computation Conference. The texts
by Melanie Mitchell (1996) and David Fogel (2000) give good overviewsof the field.

Algorithmsfor exploring unknown state spaces have been of interest for many centuries.
Depth-first search in amaze can beimplemented by keeping one's left hand on the wall; loops
can be avoided by marking each junction. Depth-first searchfails withirreversible actions; the
more general problem of exploring of Eulerian graphs(i.e., graphs in which each node has
equal numbers of incoming and outgoing edges) was solved by an algorithm dueto Hierhol zer
(1873). Thefirst thorough algorithmic study of the exploration problem for arbitrary graphs
was carried out by Deng and Papadimitriou (1990), who developed a completely genera
algorithm, but showed that no bounded competitive ratio is possible for exploring a general
graph. Papadimitriou and Yannakakis (1991) examined the question of finding pathsto agoal
in geometric path-planning environments (where all actions are reversible). They showed that

134

Chapter 4. Informed Search and Exploration

REAL-TIMESEARCH

PARALLELSEARCH

a small competitive ratio is achievable with sguare obstacles, but with genera rectangular
obstacles no bounded ratio can be achieved. (See Figure 4.19.)

The LRTA* agorithm was developed by Korf (1990) as part of an investigation into
real-time search for environments in which the agent must act after searching for only a
fixed amount of time (a much more common situation in two-player games). LRTA* isin
fact a special case of reinforcement learning algorithms for stochastic environments (Barto
etal.,1995). Itspolicy of optimism under uncertainty —aways head for the closest unvisited
state--can result in an exploration pattern that is less efficient in the uninformed case than
simple depth-first search (Koenig, 2000). Dasgupta et /. (1994) show that online iterative
deepening search is optimally efficient for finding a goal in a uniform tree with no heuristic
information. Several informed variants on the LRTA* theme have been developed with dif-
ferent methods for searching and updating within the known portion of the graph (Pemberton
and Korf, 1992). As yet, there is no good understanding of how to find goals with optimal
efficiency when using heuristic information.

Thetopic of parallel sear ch algorithmswas not coveredin the chapter, partly becauseit
requires alengthy discussion of parallel computer architectures. Parallel search is becoming
an important topic in both Al and theoretical computer science. A brief introduction to the
Al literature can be found in Mahanti and Daniels (1993).

4.1 Trace the operation of A* search applied to the problem of getting to Bucharest from
Lugoj using the straight-line distance heuristic. That is, show the sequence of nodes that the
algorithm will consider and the f, g, and h score for each node.

4.2 The heuristic path algorithm is a best-first search in which the objective function is
f(n) = (2 = w)g(n) + wh(n). For what values of w is this algorithm guaranteed to be
optimal? (You may assume that h is admissible) What kind of search does this perform
whenw = 0? Whenw = 1? Whenw = 2?

4.3 Proveeach of the following statements:

a. Breadth-first search isa specia case of uniform-cost search.

b. Breadth-first search, depth-first search, and uniform-cost search are specia cases of
best-first search.

c¢. Uniform-cost search isa special case of A* search.

4.4 Deviseastate space in which A* using GRAPH-SEARCH returns a suboptimal solution
with an A(n) function that is admissible but inconsistent.

45 Wesaw on page 96 that the straight-line distance heuristic leads greedy best-first search
astray on the problem of going from lasi to Fagaras. However, the heuristic is perfect on the
opposite problem: going from Fagaras to lasi. Are there problems for which the heuristicis
misleading in both directions?

Section 4.6. Summary 135

4.6 Inventaheuristic function for the 8-puzzle that sometirnesoverestimates, and show how
it can lead to a suboptimal solution on a particular problem. (Y ou can use acomputer to help
if youwant.) Provethat, if h never overestimatesby morethan c, A* using h returns asolution
whose cost exceeds that of the optimal solution by no more than c.

4.7 Provethat if a heuristic is consistent, it must be admissible. Construct an admissible
heuristic that is not consistent.

e 4.8 Thetraveling salesperson problem (TSP) can be solved via the minimum spanning tree
(MST) heuristic, which is used to estimate the cost of completing a tour, given that a partial
tour has already been constructed. The MST cost of a set of citiesis the smallest sum of the
link costs of any tree that connects all the cities.

a. Show how this heuristic can be derived from arelaxed version of the TSP.
b. Show that the M ST heuristic dominates straight-:linedistance.

c. Write a problem generator for instances of the TSP where cities are represented by
random pointsin the unit square.

d. Find an efficient algorithm in the literature for constructing the MST, and useit with an
admissible search agorithm to solveinstances of the TSP.

4.9 On page 108, we defined the relaxation of the 8-puzzle in which atile can movefrom
square A to square B if B is blank. The exact solution of this problem defines Gaschnig's
heuristic (Gaschnig, 1979). Explain why Gaschnig's heuristic is at least as accurate as h4
(misplaced tiles), and show cases whereit is more accurate than both 4, and hy (Manhattan
distance). Can you suggest away to calculate Gaschnig's heuristic efficiently?

4.10 We gave two simple heuristics for the 8-puzzle:: Manhattan distance and misplaced
tiles. Several heuristicsin the literature purport to improve on this—see, for example, Nils-
son (1971), Mostow and Prieditis (1989), and Hansson et al. (1992). Test these claims by
implementing the heuristics and comparing the performance of theresulting algorithms.

411 Givethe name of the algorithm that results from each of the following special cases:
a. Local beam search with k = 1.
b. Local beam search with oneinitial state and no limit on the number of states retained.
c. Simulated annealing with T = 0 at all times (and omitting the termination test).
d. Genetic algorithm with population size N = 1.

4.12 Sometimes there is no good evaluation function for a problem, but there is a good
comparison method: a way to tell whether one nodeis better than another, without assigning
numerical values to either. Show that this is enough to do a best-first search. Is there an
analog of A*?

4.13 Relatethe time complexity of LRTA* to its space complexity.

4.14 Suppose that an agent is in a 3 X 3 maze environment like the one shown in Fig-
ure4.18. The agent knows that itsinitial locationis(1,1), that thegoal isat (3,3), and that the

136

Chapter 4. Informed Search and Exploration

four actions Up, Down, Left, Right have their usual effects unless blocked by awall. The
agent does not know where theinternal wallsare. In any given state, the agent perceives the
set of legal actions; it can also tell whether thestateisone it has visited before or a new state.
a. Explain how this online search problem can be viewed as an of flinesearch in belief state
space, where the initial belief state includes all possible environment configurations.
How largeistheinitial belief state? How large is the space of belief states?
b. How many distinct percepts are possiblein theinitial state?
c. Describe the first few branches of a contingency plan for this problem. How large
(roughly) isthe complete plan?
Notice that thiscontingency planisasolution for every possible environment fitting the given
description. Therefore, interleaving of search and execution is not strictly necessary evenin
unknown environments.

4.15 Inthisexercise, we will explore the use of local search methods to solve TSPs of the
type definedin Exercise 4.8.
a Devise ahill-climbing approach to solve TSPs. Compare the results with optimal solu-
tions obtained viathe A* agorithm with the MST heuristic (Exercise4.8).
b. Devise a genetic algorithm approach to the traveling salesperson problem. Compare
results to the other approaches. You may want to consult Larrafiaga et al. (1999) for
some suggestions for representations.

4.16 Generate alarge number of 8-puzzle and 8-queens instances and solve them (where
possible) by hill climbing (steepest-ascent and first-choice variants), hill climbing with ran-
dom restart, and simulated annealing. Measure the search cost and percentage of solved
problems and graph these against the optimal solution cost. Comment on your results.

4.17 Inthisexercise, wewill examine hill climbing in the context of robot navigation, using
the environment in Figure 3.22 as an example.

a. Repeat Exercise 3.16 using hill climbing. Does your agent ever get stuck in alocal
minimum? Isit possiblefor it to get stuck with convex obstacles?

b. Construct a nonconvex polygonal environment in which the agent gets stuck.

c. Modify the hill-climbing algorithm so that, instead of doing a depth-1 search to decide
where to go next, it does a depth-k search. It should find the best k-step path and do
one step along it, and then repeat the process.

d. Istheresome k for which the new algorithmis guaranteed to escape from local minima?

e. Explain how LRTA* enables the agent to escape from local minimain this case.

4.18 Compare the performance of A* and RBFS on a set of randomly generated problems
in the 8-puzzle (with Manhattan distance) and TSP (with MST —see Exercise 4.8) domains.
Discuss your results. What happens to the performance of RBFS when a small random num-
ber is added to the heuristic valuesin the 8-puzzle domain?

