

1

Reading Assignment 1 – Anatomy of a Database
System

José Filipe Barbosa de Carvalho (josé.carvalho@fe.up.pt)

26th October 2007

Advanced Database Systems
Technische Universität Wien,

Karlsplatz 13, A-1040 Wien AUSTRIA

Abstract: This text wants to resume the fundamental ideas in [1], after a careful
reading. It also presents things that author didn’t well understand and his per-
sonnel opinion about it.

1 Introduction

 Nowadays Database Management Systems (DBMSs) are complex and an impor-
tant component in almost information systems. However it is difficult find good in-
formation about database systems architectures and about specific internal implemen-
tations, because the community of people involved in development of database sys-
tems is relatively small and because much information is a commercial secret.

 The paper [1] presents the challenges to design and to implement a simple data-
base system, presenting the main components that compound the database application.
To maintain text simple to understand, many of new features and extensions, like
stored procedures, object-oriented databases or XML, are omitted. The paper uses a
historical perspective, showing not only how databases evolved in the last 30 years,
but also related aspects, like evolution of hardware and operation systems (OS).

2 Important ideas and results of the paper

 The paper discusses, in a simple and concise way, the architectural and imple-
menting issues of database systems. First it shows overall architecture of DBMS
processes and how they are implemented in different hardware and operating systems.

2

After that, it presents the main components that a DBMS must have (see figure 1),
detailing a lot of issues in their development. The four main components, and respec-
tive subcomponents’, of a database management system are:

• Process Manager (Admission Control and Connection Manager);
• Query Processor (Parser, Query Rewrite, Optimizer and Executor);
• Transactional Storage Manager (Access Methods, Buffer Manager, Lock

Manager and Log Manager);
• Shared Utilities (Memory Manager, Disk Space Manager, Replication Ser-

vices and Admin Utilites).

Figure 1 – Main components of a Database Management System

 In the first part of text, authors introduce the subject, contextualize and present

structure of paper. After that, begin second chapter, which discusses process models
and hardware architectures. The papers show possible decisions when we build a
multi-user server, based in hardware and operating system used. So, it discusses the
use of OS processes or OS threads, and the advantages/disadvantages of using specific
DBMS threads. Assuming uniprocessor hardware and high-performance OS threads,
the text presents three process models:

• One process per client connection;
• One server process, with multiple threads;
• One server process, with multiple threads, and I/O processes to provide asyn-

chronous I/O features.
 In this part, [1] also propose how to passing data across threads. After that it

shows how to map between DBMS threads and OS processes and the current imple-
mentations of this in some commercial databases.

 In second chapter are also presented the challenges of parallelism and of memory
coordination in process models, when platforms have more than one processor. It
discusses four different architectures:

3

• Shared Memory architectures: all processors can access the main memory
and disks with the same performance;

• Shared Nothing architectures: a set of single-processor machines that com-
municate over a high-speed network interconnect;

• Shared Disk architectures: all processors can access the same disks with
about same performance, but can’t access each other’s main memory;

• Non-Uniform Memory Access architectures: existence of a shared memory
where the time required to access some remote memory is much higher
than the time required to access local memory.

 All the four architectures have their trade-offs, that database administrator
(DBA) must understand to choose the appropriate architecture for a given scenario.
Nowadays marketplace supports a mix of Shared-Nothing, Shared Memory and
Shared-Disks architectures.

 The chapter two of [1] presents also the admission control component, which can
be have two layers: the first one ensures that number of clients is kept below a thre-
shold; the second layer is execution admission controller, that must be implement
within the core DBMS query processor, to decide whether a query is postponed or
begins immediately, depending on resources that it will use. To finalize, second chap-
ter shows the standard practice in modern DBMSs to accomplish issues described in
chapter.

 The chapter three begins with basic considerations about storage models. It dis-
cusses spatial control of data in disks and also temporal control, that is, when write
and read blocks to and from disk. One important subject is if database should use OS
services or use low-level operations, with direct access to the disk. The second choice
complicates the implementation but can improve performance, because database ap-
plication knows what is better for their data (like store all tuples of a table together)
and OS not. Today, because commercial file systems have evolved is common prac-
tice allocate a large file in file system and DBMS control the placement of data within
this file using special OS interfaces. However direct access to disks remains a com-
mon high-performance option in most of database systems. This chapter also presents
buffer management issues, talking about the page replacement policies like LRU and
Clock.

 The fourth chapter is all about query processor. It presents their subcomponents:
parser, query rewrite, optimizer and executor. Query processor is responsible “to take
a declarative SQL statement, validates it, optimizes it into a procedural dataflow im-
plementation plan, and (subject to admission control) executes that dataflow” [1],
which will generate a result that will be fetched by client program.

 The query processor parser is the subcomponent that validates SQL statement,
converting it into an internal format and checks if user has permission do this opera-
tion. It makes use of catalog manager to do these tests. And what is catalog manager?
Is a kind of metadata that stores information about data in system, like table, users,
indexes, and so on.

 The query rewrite receive as input a query and optimizes it, only by rewriting of
that expression. It doesn’t change the internal format of query. For example, it does
view expanding or simplifies some logical predicates. The function of optimizer is to
create an efficient query plan (it is like a diagram flow that starts from base relations

4

and after a set of operations has the same meaning that original SQL statement) to
execute it. To create this “efficient plan” exist several techniques to minimize the
number of operations and data used to perform the queries. The executor is like a
runtime interpreter: it follows the query plan did by optimizer, recursively invoking
operators existing in the plan. The paper also discusses the iterator model employed
by many modern executors, and many challenges of their implementation, like if it is
better to store iterators and their data in buffer pool or in memory heap.

 In final part of chapter four it also refers access methods, one subcomponent of
Transactional Storage Manager. The access methods are the routines for manage
access to diverse disk-based data structures, which usually include unordered files of
tuples, and various kinds of indexes. Indexation is a technique to optimize the speed in
the access of large amounts of data. In text [1] said that all commercial database sys-
tems including B+-tree indexes and heap files.

 The fifth chapter talks about transactions and two topics associated: concurrency
control and recovery. There is explained why databases appear as enormous and mo-
nolithic pieces of software: the subcomponents of transactional storage manager are
really intertwined:

• A lock manager for concurrency control;
• A log manager for recovery;
• A buffer pool to perform database I/Os;
• Access methods to organize data on disk.

 This text refers what it is an ACID transaction, a mnemonic for Atomicity, Con-
sistency, Isolation and Durability. There are four characteristics that all transactions
must have, however they are not formally defined, but only a general reference. It also
noted the four isolation levels defined ANSI SQL standard: Read Uncommitted, Read
Committed, Repeatable Read and Serializable. The first three don’t guarantee seriali-
zation of transactions, but provides more concurrency.

 The lock manager is responsible to manage concurrency, namely to ensure that
“a sequence of interleaved actions for multiple committing transactions correspond to
some serial execution of the transactions” [1], using, for example, the two-phase lock-
ing (2PL). Database locks correspond to some resource or data that we want ensure
exclusive access for some time. For example, we must lock one table if we want delete
some of its tuples, to ensure that another transaction don’t change our goals for our
transaction. Normally databases also support latches, another kind of exclusion me-
chanism, but to provide access to internal DBMSs data structures.

 The log manager ensures the durability of transactions and provides methods to
rollback in aborted transactions, to maintain atomicity property. It registers a sequence
of log records on disk and uses several data structures in memory to provide this func-
tionality. Many DBMSs make uses of ARIES protocol to implement this subcompo-
nent.

 To finalize fifth chapter also discusses the challenges of locking and logging in-
dexes and the interdependencies of transactional storage.

5

3 Things not well understood

I haven’t troubles in understood almost of this paper. I have a strong preparation
in Operating Systems and Database topics, which I got in my earlier courses. Namely,
it is important have specific knowledge about databases, as what is subqueries, index-
es, views, schema constraints, and so on, to understand this paper. I also have good
background in algorithmic and data structures, like B++ tree or hash tables.

Of course I didn’t know some jargon like “Thrash” (appeared in 14th page) or
some technologies like IBM SP2 (appeared in 12th page). But with a simple search in
Google or Wikipedia I understood, in a general way, these simple concepts.

The page replacement policies (like LRU and Clock) are mentioned in second
lesson of Advanced Database Systems course, otherwise maybe I couldn’t understand
section 3.3.

When paper discuss Iterator model of Executor component (section 4.4), I
couldn’t understand how exchange iterators provided support for parallel query: may-
be I should read the additional bibliography mentioned in the text – but the text don’t
have list of references.

I also didn’t understand well the differences between the three approaches in
latching B+-Trees (section 5.4.1): conservative, latch-coupling and right-link schemes.
Maybe if I read more about B+-Trees and Indexes and read the references showed in
that section.

4 Things that I like and I didn’t like in the paper

The paper is written in friendly way, explaining the concepts in a historical pers-
pective and with a lot of specific examples, revealing some implementation details of
the most popular databases, as Oracle, Microsoft SQL Server and DB2. I like too
much the paper because it details the internal architecture of databases, a totally new
subject for me. My previous experience in databases systems is more focused in using
them, as application programmer: designing databases schemas, implementing SQL
queries and stored procedures, tuning performance of database, and so on. This paper
gives me another image of databases systems, showing the major challenges in their
implementations.

Sometimes the paper refers the implementation used in some famous databases
with some degree of uncertainly (see, for example, the commentary about using of
top-down optimizers in Microsoft SQL Server, page 25). Is questionable do this in a
scientific paper, but I think that is justifiable: implementation of commercial database
systems is a valuable secret.

But the paper is written in 1998 and we are at 2007. Almost ten years has passed,
and informatics topics evolving too fast. Probably the paper has some out of date
expressions. For example, I think that is strange that Oracle (one of most used data-
bases) installation for UNIX maintains uses, by default, the one process per connec-
tion architecture (see page 5 of [1]): maybe that sentence is out of date or maybe

6

another reason explains this (like as explained in page 10, where explains that one
process in Linux have only available 3GB of memory).

The document is well-structured and is a good resume of implementation issues of
database systems. But in some parts I think that the paper has some needless low-level
details: for instance, the description of locks and latches APIs (in section 5.2) is more
or less boring. If authors used some abstraction this part is more interesting and less
messy.

Another critic is that version of paper is incomplete, the page forty two ends with
an incomplete sentence and I can’t see the references noted in the text, and I couldn’t
find the complete version at Internet.

5 Conclusion

This paper is a good point to start understanding the internals of database manage-
ment systems, as many of challenges to design and to implement it. Of course some
topics are very general, but paper presents a good overview to the subject, that we can
explore and go deeply with further readings.

6 Bibliography

[1] HELLERSTEIN, Joseph M.; STONEBRAKER, Michael; “Anatomy of a Database
System." (Section 1-4) Readings in Database Systems, 1998

