
Theory 1

Introduction

SS 09

Prerequisite of Theory I

• Basic knowledge on data structures and algorithms, mathematics

• Programming language, such as C++

• Sufficient knowledge on English for reading research papers

Course Goal

• Get an in-depth knowledge on the data structures and graph algorithms, as

well as database systems

• Improve the problem solving ability by doing the exercises

• Practicing skills in conducting research work:

Reading papers efficiently

Writing reviews and surveys

Course load

• 7-8 exercises

– exercises posted one week ahead

– exercise classes take place on each 2nd Tuesday (two hours)

– hand in your solution before the exercise class starts!

• 5-6 Reading assignments (get bonus, by submitting high quality reviews on

the assigned papers)

– reviews sent per email

• Final exam

Topics

• Tree, balanced tree

• Hashing, Dynamic tables, Randomization

• Text search

• Relational algebra, relational calculus

• Relational DB design theory

• Transaction theory

• ...

• http://dbis.informatik.uni-freiburg.de/index.php?course=SS09/Kursvorlesung/TheoryI/index.html

Algorithm

• An algorithm is a sequence of computational steps that transform the input into the

output, e.g. sorting

• the behavior an algorithm for a given application depends on

– the number of items

– the structure of the items,

– possible restrictions on the item values, and the kind of storage device to be

used: main memory, disks, or tapes.

• we assume the algorithms are correct.

Applications of algorithms

• The Human Genome Project has the goals of identifying all the 100,000 genes in

human DNA, determining the sequences of the 3 billion chemical base pairs that

make up human DNA, storing this information in databases, and developing tools for

data analysis.

• The Internet enables people all around the world to quickly access and retrieve large

amounts of information. In order to do so, clever algorithms are employed to manage

and manipulate this large volume of data.

• Electronic commerce enables goods and services to be negotiated and exchanged

electronically. Public-key cryptography and digital signatures core technologies used

and are based on numerical algorithms and number theory.

Hard problems

• There are some problems, for which no efficient solution is known.

• Why are NP-complete problems interesting?

– although no efficient algorithm for an NP-complete problem has ever been

found, it is unknown whether or not efficient algorithms exist for NP-complete

problems.

– the set of NP-complete problems has the remarkable property that if an efficient

algorithm exists for any one of them, then efficient algorithms exist for all of

them.

– if a problem is proven NP-complete, one can instead spend your time developing

an efficient algorithm that gives a good, but not the best possible, solution.

9

Analysis of algorithms

• Issues:

– correctness

– time efficiency

– space efficiency

– optimality

• Approaches:

– theoretical analysis

– empirical analysis

10

Best-case, average-case, worst-case

For some algorithms, efficiency depends on form of input:

• Worst case: Cworst(n) – maximum over inputs of size n

• Best case: Cbest(n) – minimum over inputs of size n

• Average case: Cavg(n) – “average” over inputs of size n

– Number of times the basic operation will be executed on typical input

– NOT the average of worst and best case

– Expected number of basic operations considered as a random variable under some

assumption about the probability distribution of all possible inputs. So, avg =

expected under uniform distribution.

11

Example: Sequential search

• Worst case

• Best case

• Average case

n key comparisons

1 comparisons

(n+1)/2, assuming K is in A

12

Types of formulas for basic operation‟s count

• Exact formula

e.g., C(n) = n(n-1)/2

• Formula indicating order of growth with specific multiplicative constant

e.g., C(n) ≈ 0.5 n2

• Formula indicating order of growth with unknown multiplicative constant

e.g., C(n) ≈ cn2

13

Order of growth

• Most important: Order of growth within a constant multiple as n→∞

• Example:

– How much faster will algorithm run on computer that is twice

as fast?

– How much longer does it take to solve problem of double

input size?

14

Values of some important functions as n

15

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes (because?)

• O(g(n)): class of functions f(n) that grow no faster than g(n)

• Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

• Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

16

Useful summation formulas and rules

l i n1 = 1+1+…+1 = n - l + 1

In particular, l i n1 = n - 1 + 1 = n (n)

1 i n i = 1+2+…+n = n(n+1)/2 n2/2 (n2)

1 i n i2 = 12+22+…+n2 = n(n+1)(2n+1)/6 n3/3 (n3)

0 i n ai = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a 1

In particular, 0 i n 2i = 20 + 21 +…+ 2n = 2n+1 - 1 (2n)

(ai ± bi) = ai ± bi cai = c ai l i uai = l i mai + m+1 i uai

Theory I

Algorithm Design and Analysis

(1 The Dictionary Problem: Search Trees)

Prof. Th. Ottmann

The Dictionary Problem

The dictionary problem can be described as follows:

Given: a set of objects (data) where each element can be identified by a unique key

(integer, string, ...).

Goal: a structure for storing the set of objects such that at least the following operations

(methods) are supported:

• search (find, access)

• insert

• delete

The Dictionary Problem (2)

The following conditions can influence the choice of a solution to the dictionary problem:

• The place where the data are stored: main memory, hard drive, tape, WORM (write once

read multiple)

• The frequency of the operations:

– mostly insertion and deletion (dynamic)

– mostly search (static)

– approximately the same frequencies

– not known

• Other operations to be implemented:

– Enumerate the set in a certain order (e.g. ascending by key)

– Set operations: union, intersection, difference quantity, ...

– Split

– construct

• Measure for estimating the solution: average case, worst case, amortized worst case

• Order of executing the operations:

– sequential

– concurrent

The Dictionary Problem (3)

Different approaches to the dictionary problem:

• Structuring the complete universe of all possible keys: hashing

• Structuring the set of the actually occurring keys: lists, trees, graphs, ...

Trees (1)

Trees are

• generalized lists

(each list element can have more than one successor)

• special graphs:

– in general, a graph G = (V,E) consists of a set V of vertices and

a set E V × V of edges.

– the edges are either directed or undirected.

– vertices and edges can be labelled (they contain further information).

A tree is a connected acyclic graph, where:

vertices = # edges + 1

• A general and central concept for the hierarchical structuring of information:

– decision trees

– code trees

– syntax trees

Trees (2)

Several kinds of trees can be distinguished:

• Undirected tree (with no designated root)

• Rooted tree (one node [= vertex] is designated as the root)

– From each node k there is exactly one path (a sequence of pairwise neighbouring

edges) to the root

– the parent (or: direct predecessor) of a node k is the first neighbour on the path

from k to the root

– the children (or: direct successors) are the other neighbours of k

– the rank (or: outdegree) of a node k is the number of children of k

4

65

2

1
3

Wurzel

6
5

1

4

3

2

Trees (3)

• Rooted tree:

– root: the only node that has no parent

– leaf nodes (leaves): nodes that have no children

– internal nodes: all nodes that are not leaves

– order of a tree T: maximum rank of a node in T

– The notion tree is often used as a synonym for rooted tree.

• Ordered (rooted) tree: among the children of each node there is an order,

e.g. the < relation among the keys of the nodes

• Binary tree: ordered tree of order 2; the children of a node are referred to

as left child and right child.

• Multiway tree: ordered tree of order > 2

1 < 2

3 < 5 <

4

6

Trees (4)

A more precise definition of the set Md of the ordered rooted trees of order d (d ≥ 1):

• A single node is in Md

• Let t1, . . .,td Md and w a node. Then w with the roots of t1, . . .,td as its children

(from left to right) is a tree t Md. The ti are subtrees of t.

– According to this definition each node has rank d (or rank 0).

– In general, the rank can be d.

– Nodes of binary trees either have 0 or 2 children.

– Nodes with exactly 1 child could also be permitted by allowing empty subtrees

in the above definition.

Recursive Definition

• is a tree of order d, with height 0.

• Let t1,…,td be disjoint trees of order d. Then another tree of order d can be created

by making the roots of t1,…,td the successors of a newly created root w. The height

h of the new tree is max {h(t1),…,h(td)}+1.

Convention: d = 2 binary trees, d > 2 multiway trees.

w

t1 t2 td

..................

Examples

tree not a tree not a tree

(but two trees!)

Structural Properties of Trees

• Depth of a node k: # edges from the tree root until k

(distance of k to the root)

• Height h(t) of a tree t: maximum depth of a leaf in t.

Alternative (recursive) definition:

– h(leaf) = 0

– h(t) = 1 + max{ti | root of ti is a child of the root of t} (ti is a subtree of t)

• Level i: all nodes of depth i

• Complete tree: tree where each non-empty level has the maximum number of nodes.

 all leaves have the same depth.

Applications of trees

Use of trees for the dictionary problem:

• Node: stores one data object

• Tree: stores a set of data

• Advantage (compared to hash tables): enumeration of the complete set of data

(e.g. in ascending order) can be accomplished easily.

Standard binary search trees (1)

Goal: Storage, retrieval of data (more general: dictionary problem)

Two alternative ways of storage:

• Search trees: keys are stored in internal nodes

leaf nodes are empty (usually = null), they represent intervals between the keys

• Leaf search trees: keys are stored in the leaves

internal nodes contain information in order to direct the search for a key

Search tree condition:

For each internal node k: all keys in the left subtree tl of k are less (<) than the key in

k and all keys in the right subtree tr of k are greater (>) than the key in k

k

tl tr

Leaves in the search tree represent intervals between keys of the internal nodes

How can the search for key s be implemented? (leaf null)

k = root;

while (k != null) {

if (s == k.key)return true;

if (s < k.key) k = k.left;

else k = k.right

}

return false;

Standard trees (2)

(9,12)

(4,9)(3,4)

(12,)(- ,3) ∞∞

9

3 12

4

Example (without stop node)

root 27

393

15

14

1

Search for key s ends in the internal node k with k.key == s

or in the leaf whose interval contains s

Standard trees (3)

Leaf search tree:

• Keys are stored in leaf nodes

• Clues (routers) are stored in internal nodes, such that sl ≤ sk ≤ sr

(sl : key in left subtree, sk : router in k, sr : key in right subtree)

“=“ should not occur twice in the above inequality

• Choice of s: either maximum key in tl (usual) or minimum key in tr.

Leaf nodes store keys, internal nodes contain routers.

Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.

Example: leaf search tree

1

5 6

9 12

Leaf nodes store keys, internal nodes contain routers.

Example: leaf search tree

1

5 6

9 12

6

1

5

9

Standard trees (4)

How is the search for key s implemented in a leaf search tree?

(leaf node with 2 null pointers)

k = root;

if (k == null) return false;

while (k.left != null) { // thus also k.right != null

if (s <= k.key) k = k.left;

else k = k.right;

} // now in the leaf

return s==k.key;

In the following we always talk about search trees (not leaf search trees).

1

5 6

9 1

2

6

1

5

9

Standard trees (5)

class SearchNode {

int content;

SearchNode left;

SearchNode right;

SearchNode (int c){ // Constructor for a node

content = c; // without successor

left = right = null;

}

} //class SearchNode

class SearchTree {

SearchNode root;

SearchTree () { // Constructor for empty tree

root = null;

}

// ...

}

Standard trees (6)

/* Search for c in the tree */

boolean search (int c) {

return search (root, c);

}

boolean search (SearchNode n, int c){

while (n != null) {

if (c == n.content) return true;

if (c < n.content) n = n.left;

else n = n.right;

}

return false;

}

Standard trees (7)

Alternative tree structure:

• Instead of leaf null, set leaf pointer to a special “stop node” b

• For searching, store the search key s in b to save comparisons in internal nodes.

Use of a stop node for searching!

Example (with stop node)

27

393

15

14

1

Root

x

Standard trees (7)

Insertion of a node with key s in search tree t:

• Search for s ends in a node with s: don„t insert (otherwise, there would be

duplicated keys)

• Search ends in leaf b: make b an internal node with s as its key and two new

leaves.

 tree remains a search tree!

Standard trees (8)

• Tree structure depends on the order of insertions into the initially empty tree

• Height can increase linearly, but it can also be in O(log n),

more precisely log2 (n+1) .

9

3 12

4

9

3 12

5

4

Insert 5

Standard trees (9)

int height() {

return height(root);

}

int height(SearchNode n){

if (n == null) return 0;

else return 1 + Math.max(height(n.left), height(n.right));

}

/* Insert c into tree; return true if successful

and false if c was in tree already */

boolean insert (int c) { // insert c

if (root == null){

root = new SearchNode (c);

return true;

} else return insert (root, c);

}

Standard trees (10)

boolean insert (SearchNode n, int c){

while (true){

if (c == n.content) return false;

if (c < n.content){

if (n.left == null) {

n.left = new SearchNode (c);

return true;

} else n = n.left;

} else { // c > n.content

if (n.right == null) {

n.right = new SearchNode (c);

return true;

} else n = n.right;

}

}

}

Special cases

The structure of the resulting tree depends on the order, in which the keys are

inserted. The minimal height is log2 (n + 1) and the maximal height is n.

Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 and

1, 3, 14, 15, 27, 39:

15

393

14 271

1

3

14

15

27

39

Standard trees (11)

A standard tree is created by iterative insertions in an initially empty tree.

• Which trees are more frequent/typical: the balanced or the degenerate ones?

• How costly is an insertion?

Standard trees (11)

Deletion of a node with key s from a tree (while retaining the search tree property)

• Search for s.

If search fails: done.

Otherwise search ends in node k with k.key == s and

• k has no child, one child or two children:

(a) no child: done (set the parent‟s pointer to null instead of k)

(b) only one child: let k‟s parent v point to k‟s child instead of k

(c) two children: search for the smallest key in k‟s right subtree, i.e. go right and then

to the left as far as possible until you reach p (the symmetrical successor of k);

copy p.key to k, delete p (which has at most one child, so follow step (a) or (b))

Symmetrical successor

Definition: A node q is called the symmetrical successor of a node p

if q contains the smallest key greater than or equal to the key of p.

Observations:

• The symmetrical successor q of p is leftmost node in the right

subtree of p.

• The symmetrical successor has at most one child, which is the

right child.

Finding the symmetrical successor

Observation: If p has a right child, the symmetrical successor always exists.

• First go to the right child of p.

• From there, always proceed to the left child until you find a node without a

left child.

p

q

Idea of the delete operation

Delete p by replacing its content with the content of its symmetrical successor q.

Then delete q.

Deletion of q is easy because q has at most one child.

xp

yq

xp

yq

Examples

k has no internal child, one internal child or two internal children:

v

v

tl

v

tr

v

sk

tr

v

sk

v

sk

tl

v

sk

tl
tr

p

a)

b)

c) d)

Standard trees (12)

boolean delete(int c) {

return delete(null, root, c);

}

// delete c from the tree rooted in n, whose parent is vn

boolean delete(SearchNode vn, SearchNode n, int c) {

if (n == null) return false;

if (c < n.content) return delete(n, n.left, c);

if (c > n.content) return delete(n, n.right, c);

// now we have: c == n.content

if (n.left == null) {

point (vn, n, n.right);

return true;

}

if (n.right == null) {

point (vn, n, n.left);

return true;

}

// ...

Standard trees (13)

// now n.left != null and n.right != null

SearchNode q = pSymSucc(n);

if (n == q) { // right child of q is pSymSucc(n)

n.content = q.right.content;

q.right = q.right.right;

return true;

} else { // left child of q is pSymSucc(n)

n.content = q.left.content;

q.left = q.left.right;

return true;

}

} // boolean delete(SearchNode vn, SearchNode n, int c)

Standard trees (14)

// let vn point to m instead of n;

// if vn == null, set root pointer to m

void point(SearchNode vn, SearchNode n, SearchNode m) {

if (vn == null) root = m;

else if (vn.left == n) vn.left = m;

else vn.right = m;

}

// returns the parent of the symmetrical successor

SearchNode pSymSucc(SearchNode n) {

if (n.right.left != null) {

n = n.right;

while (n.left.left != null) n = n.left;

}

return n;

}

