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Theory I
Algorithm Design and Analysis

(3 - Balanced trees, AVL trees)

Prof. Th. Ottmann
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Balanced Trees

A class of binary search trees is balanced, if each of the three dictionary 
operations  

find
insert
delete

of keys for a tree with n keys can always (in the worst case) be carried 
out in O(log n) steps.

Possible balancing conditions:

height condition AVL-Bäume
weight condition BB[α]-Bäume
structural conditions Bruder-, 2-3-, a-b-, B-Bäume

Goal: Height of a tree with n keys is always in O(log n).
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AVL trees

Developed by Adelson-Velskii and Landis (1962)

• Search, insertion and deletion of a key in a randomly created standard
search tree with n keys can be done, on average, in O(log2 n) steps.

• However, the worst case complexity is Ω(n).

• Idea of AVL trees: modified procedures for insertion and deletion, 
which prevents the tree from degenerating.

• Goal of AVL trees: height is in O(log2 n) and search, insertion
and deletion can be carried out in logarithmic time.
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Definition of AVL trees

Definition: A binary search tree is called AVL tree or height-balanced 
tree, if for each node v the height of the right subtree h(Tr) of v
and the height of the left subtree h(Tl) of v differ by at most 1.

Balance factor:

bal(v) = h(Tr) – h(Tl)  ∈ {-1, 0, +1}
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Examples

AVL tree not an AVL tree AVL tree
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Properties of AVL trees

• AVL trees cannot degenerate into linear lists.

• AVL trees with n nodes have a height in O(log n).

Apparently:

• An AVL tree of height 0 has 1 leaf

• An AVL tree of height 1 has 2 leaves

• An AVL tree of height 2 with a minimal number of leaves has 3 leaves

• ...

• How many leaves does an AVL tree of height h with minimal number of 
leaves have?
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Minimal number of leaves of AVL trees of height h

Hence: An AVL tree of height h has at least Fh+2 leaves, where

F0 = 0

F1 = 1

Fi+2 = Fi+1 + Fi

Fi is the i-th Fibonacci number.

h + 1
h h + 2
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Minimal AVL tree of height 9
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Height of an AVL tree

Theorem: The height h of an AVL tree with n leaves (and n-1 internal nodes is 
at most c·log2 n + 1, i.e.

h ≤ c·log2 n + 1, with a constant c.

Proof: For the Fibonacci numbers we know

Since

n ≥ Fh+2 ≈ 1.894... * 1.618 . . .h

we get
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Insertion in an AVL tree

• For each modification of the tree we have to guarantee that the 
AVL property is maintained.

Original situation: After inserting key 5:

Problem: How can we modify the new tree such that it will be an AVL tree?

7 7

4

5

4
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Storing the balance factors in the nodes

• In order to restore the AVL property it is sufficient to store, in each node, 
the balance factor.

• According to the definition 
bal(p) = h(p.right) – h(p.left) ∈ {-1, 0, +1}

Example:
-1

-1 +1

+1 00

0
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Different situations for insertions in an AVL tree

1. The tree is empty: create a single node with two leaves, store x in it. Done!

2. The tree is not empty and the search ends in a leaf.

Let node p be the parent of the leaf where the search ended.
Since bal(p) ∈ {-1,0,1}, we know that either

• the left child of p is a leaf, but not the right one (case 1) or

• the right child of p is a leaf, but not the left one (case 2) or

• both children of p are leaves (case 3).

x
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Example of an AVL tree
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Case 1: [bal(p) = +1] and x < p.key, since the search ends at a leaf with 
parent p.

done!

Overall height unchanged (1)

p

0

+1 p

0

0

x
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Case 2: [bal(p) = -1] and x > p.key, since the search ends at a leaf with 
parent p.

done!

Overall height unchanged (2)

Both cases are uncritical: 
The height of the subtree containing p does not change.

p

x

0

0

p -1

0
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The critical case

Case 3: [bal(p) = 0] Then both children of p are leaves. The height increases!

We distinguish the cases whether the new key x must be inserted as the right or left 
child of p:

[bal(p) =0 and x > p.key] [bal(p) =0 and x < p.key]

• In both cases we need a procedure upin(p) which traces back the search path, 
checks the balance factors and carries out restructuring operations (so-called 
rotations or double rotations).

p 0 p

0

-1

x

k kp 0 p 1

x

k k
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The procedure upin(p)

• When upin(p) is called, we always have bal(p) ∈ {-1, +1} and the height of 
the subtree rooted in p has increased by 1.

• upin(p) starts at p and goes upwards stepwise (until the root if necessary).

• In each step it tries to restore the AVL property.

• In the following we concentrate on the situation where p is the left child of 
its parent φp.

• The situation where p is the right child of its parent φp is handled similarly.
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Case 1: bal(φp) = 1

1. The parent φp has balance factor +1. Since the height of the subtree 
rooted in p (the left child of φp) has increased by 1, it is sufficient to set 
the balance factor of φp to 0:

φp +1

p

φp 0

p

done!
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Case 2: bal(φp) = 0

2. The parent φp has balance factor 0. Since the height of the subtree rooted 
in p (the left child of φp) has increased by 1, the balance factor of φp
changes to -1. Since the height of the subtree rooted in φp has also 
changed, we must call upin recursively with φp as the argument.

φp 0

p

φp -1

p

upin(φp)
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The critical case 3: bal(φp) = -1

• If bal(φp) = -1 and the height of the left subtree of φp (rooted in p) has 
increased by 1, the AVL property is now violated in φp.

• In this case we have to restructure the tree.

• Again we distinguish two cases: bal(p) = -1 (case 3.1)
and bal(p) = +1 (case 3.2).

• The invariant for the call of upin(p) is bal(p) ≠ 0. The case bal(p) = 0 can 
therefore not occur!

φp -1

p
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Case 3.1: bal(φp) = -1 and bal(p) = -1

right rotation done!

φp 0

y 0

x

1

h

2

h - 1

3

h - 1

φp -1

-1x

y

1

h

2

h - 1

3

h - 1
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Is the resulting tree still a search tree?

We must guarantee that the resulting tree fulfils the

1. search tree condition and the

2. AVL property.

Search tree condition: Since the original tree was a search tree, we know that

all keys in tree 1 are smaller than x.

all keys in tree 2 are greater than x and smaller then y.

all keys in tree 3 are greater than y (and x).

Hence, the resulting tree also fulfils the search tree condition.
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Is the resulting tree balanced?

AVL property: Since the original tree was an AVL tree, we know:

• since bal(φp) = -1,  tree 2 and tree 3 have the same height h-1.

• since bal(p) = -1 after the insertion, tree 1 has height h, while tree 2 has 
height h-1.

Hence, after the rotation:

• The node containing y has balance factor 0.

• Node φp has balance factor 0.

Thus, the AVL property has been restored.
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Case 3.2: bal(φp) = -1 and bal(p) = +1
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Case 3.2: bal(φp) = -1 and bal(p) = +1

double rotation
left-right

done!

φp 0

zh

y

3

h - 2

h - 1

4

h - 1

xh

1

h - 1

2

h – 1

h - 2

φp -1

+1x

z

1

h-1

4

h - 1
yh

2

h – 1

h - 2

3

h – 2

h - 1

p
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Properties of the subtrees

1. The new key must have been inserted into the right subtree of p.

2. Trees 2 and 3 must have different height, since otherwise the method upin
would not have been called.

3. The only possible combination of heights in trees 2 and 3 is therefore
(h-1, h-2) and (h-2, h-1), unless they are empty.

4. Since bal(p) = 1, tree 1 must have height h-1 

5. Finally, tree 4 also must have height h-1 (because bal(φp) = -1).

Hence, the resulting tree also fulfils the AVL property.
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Search tree condition

We have:

1. All keys in tree 1 are smaller than x.

2. All keys in tree 2 are smaller than y but greater than x.

3. All keys in tree 3 are greater than y and x but smaller than z.

4. All keys in tree 4 are greater than x, y and z.

Hence, the tree resulting from the double rotation is also a search tree.
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Remarks

• We have only considered the case where p is the left child of its parent φp.

• The case where p is the right child of its parent φp is handled similarly.

• For an efficient implementation of the method upin(p), we have to create a 
list of all visited nodes during the search for the insert position.

• Then we can use this list during the recursive calls to proceed to the 
parent and carry out the necessary rotations or double rotations.
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Insertion in a non-empty AVL tree

1. Right child of p not a leaf, x < p.key Append as left child of p, done.

2. Left child of p not a leaf, x > p.key append as right child of p, done.

3. Both children of p are leaves: append x as child of p and call upin(p).

The method upin(p):

1. p is left child of φp
(a) bal(φp) = +1 bal(φp) = 0, done.
(b) bal(φp) =   0 bal(φp) = -1, upin(φp)
(c) i.  bal(φp) = -1 und bal(p) =  -1 right rotation, done.

ii. bal(φp) =  -1 und bal(p) = +1 double rotation left-right, done.

2. p is righter child of φp.
...

Search for x ends in a leaf with parent p
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An example (1)

Original situation:

10

3

7

15 01

-1

0
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An example (2)

Insert key 9:

AVL property is violated!

10

3

7

15 01

1

-1

*p

9 0
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An example (3)

Left rotation at *p yields:

10

7

9

15 00

-1

03 0
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An example (4)

Insertion of 8 followed by double rotation (left-right):

10

7

9

15 01

-1

-1

3 0

8 0

9

7

8

10 10

0

0

3 0 15 0

left-right

φp

p
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