
1

Theory I
Algorithm Design and Analysis

(3 - Balanced trees, AVL trees)

Prof. Th. Ottmann

2

Balanced Trees

A class of binary search trees is balanced, if each of the three dictionary
operations

find
insert
delete

of keys for a tree with n keys can always (in the worst case) be carried
out in O(log n) steps.

Possible balancing conditions:

height condition AVL-Bäume
weight condition BB[α]-Bäume
structural conditions Bruder-, 2-3-, a-b-, B-Bäume

Goal: Height of a tree with n keys is always in O(log n).

3

AVL trees

Developed by Adelson-Velskii and Landis (1962)

• Search, insertion and deletion of a key in a randomly created standard
search tree with n keys can be done, on average, in O(log2 n) steps.

• However, the worst case complexity is Ω(n).

• Idea of AVL trees: modified procedures for insertion and deletion,
which prevents the tree from degenerating.

• Goal of AVL trees: height is in O(log2 n) and search, insertion
and deletion can be carried out in logarithmic time.

4

Definition of AVL trees

Definition: A binary search tree is called AVL tree or height-balanced
tree, if for each node v the height of the right subtree h(Tr) of v
and the height of the left subtree h(Tl) of v differ by at most 1.

Balance factor:

bal(v) = h(Tr) – h(Tl) ∈ {-1, 0, +1}

5

Examples

AVL tree not an AVL tree AVL tree

6

Properties of AVL trees

• AVL trees cannot degenerate into linear lists.

• AVL trees with n nodes have a height in O(log n).

Apparently:

• An AVL tree of height 0 has 1 leaf

• An AVL tree of height 1 has 2 leaves

• An AVL tree of height 2 with a minimal number of leaves has 3 leaves

• ...

• How many leaves does an AVL tree of height h with minimal number of
leaves have?

7

Minimal number of leaves of AVL trees of height h

Hence: An AVL tree of height h has at least Fh+2 leaves, where

F0 = 0

F1 = 1

Fi+2 = Fi+1 + Fi

Fi is the i-th Fibonacci number.

h + 1
h h + 2

8

Minimal AVL tree of height 9

9

Height of an AVL tree

Theorem: The height h of an AVL tree with n leaves (and n-1 internal nodes is
at most c·log2 n + 1, i.e.

h ≤ c·log2 n + 1, with a constant c.

Proof: For the Fibonacci numbers we know

Since

n ≥ Fh+2 ≈ 1.894... * 1.618 . . .h

we get

h

hh

hF ...618.1*...7236.0
2

51
2

51
5

1
11

≈
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

++

.1log..44.1
...618.1log
...7236.0loglog*

...618.1log
1

2
2

2
2

2

+≤−≤ nnh

10

Insertion in an AVL tree

• For each modification of the tree we have to guarantee that the
AVL property is maintained.

Original situation: After inserting key 5:

Problem: How can we modify the new tree such that it will be an AVL tree?

7 7

4

5

4

11

Storing the balance factors in the nodes

• In order to restore the AVL property it is sufficient to store, in each node,
the balance factor.

• According to the definition
bal(p) = h(p.right) – h(p.left) ∈ {-1, 0, +1}

Example:
-1

-1 +1

+1 00

0

12

Different situations for insertions in an AVL tree

1. The tree is empty: create a single node with two leaves, store x in it. Done!

2. The tree is not empty and the search ends in a leaf.

Let node p be the parent of the leaf where the search ended.
Since bal(p) ∈ {-1,0,1}, we know that either

• the left child of p is a leaf, but not the right one (case 1) or

• the right child of p is a leaf, but not the left one (case 2) or

• both children of p are leaves (case 3).

x

13

Example of an AVL tree

14

Case 1: [bal(p) = +1] and x < p.key, since the search ends at a leaf with
parent p.

done!

Overall height unchanged (1)

p

0

+1 p

0

0

x

15

Case 2: [bal(p) = -1] and x > p.key, since the search ends at a leaf with
parent p.

done!

Overall height unchanged (2)

Both cases are uncritical:
The height of the subtree containing p does not change.

p

x

0

0

p -1

0

16

The critical case

Case 3: [bal(p) = 0] Then both children of p are leaves. The height increases!

We distinguish the cases whether the new key x must be inserted as the right or left
child of p:

[bal(p) =0 and x > p.key] [bal(p) =0 and x < p.key]

• In both cases we need a procedure upin(p) which traces back the search path,
checks the balance factors and carries out restructuring operations (so-called
rotations or double rotations).

p 0 p

0

-1

x

k kp 0 p 1

x

k k

17

The procedure upin(p)

• When upin(p) is called, we always have bal(p) ∈ {-1, +1} and the height of
the subtree rooted in p has increased by 1.

• upin(p) starts at p and goes upwards stepwise (until the root if necessary).

• In each step it tries to restore the AVL property.

• In the following we concentrate on the situation where p is the left child of
its parent φp.

• The situation where p is the right child of its parent φp is handled similarly.

18

Case 1: bal(φp) = 1

1. The parent φp has balance factor +1. Since the height of the subtree
rooted in p (the left child of φp) has increased by 1, it is sufficient to set
the balance factor of φp to 0:

φp +1

p

φp 0

p

done!

19

Case 2: bal(φp) = 0

2. The parent φp has balance factor 0. Since the height of the subtree rooted
in p (the left child of φp) has increased by 1, the balance factor of φp
changes to -1. Since the height of the subtree rooted in φp has also
changed, we must call upin recursively with φp as the argument.

φp 0

p

φp -1

p

upin(φp)

20

The critical case 3: bal(φp) = -1

• If bal(φp) = -1 and the height of the left subtree of φp (rooted in p) has
increased by 1, the AVL property is now violated in φp.

• In this case we have to restructure the tree.

• Again we distinguish two cases: bal(p) = -1 (case 3.1)
and bal(p) = +1 (case 3.2).

• The invariant for the call of upin(p) is bal(p) ≠ 0. The case bal(p) = 0 can
therefore not occur!

φp -1

p

21

Case 3.1: bal(φp) = -1 and bal(p) = -1

right rotation done!

φp 0

y 0

x

1

h

2

h - 1

3

h - 1

φp -1

-1x

y

1

h

2

h - 1

3

h - 1

22

Is the resulting tree still a search tree?

We must guarantee that the resulting tree fulfils the

1. search tree condition and the

2. AVL property.

Search tree condition: Since the original tree was a search tree, we know that

all keys in tree 1 are smaller than x.

all keys in tree 2 are greater than x and smaller then y.

all keys in tree 3 are greater than y (and x).

Hence, the resulting tree also fulfils the search tree condition.

23

Is the resulting tree balanced?

AVL property: Since the original tree was an AVL tree, we know:

• since bal(φp) = -1, tree 2 and tree 3 have the same height h-1.

• since bal(p) = -1 after the insertion, tree 1 has height h, while tree 2 has
height h-1.

Hence, after the rotation:

• The node containing y has balance factor 0.

• Node φp has balance factor 0.

Thus, the AVL property has been restored.

24

Case 3.2: bal(φp) = -1 and bal(p) = +1

25

Case 3.2: bal(φp) = -1 and bal(p) = +1

double rotation
left-right

done!

φp 0

zh

y

3

h - 2

h - 1

4

h - 1

xh

1

h - 1

2

h – 1

h - 2

φp -1

+1x

z

1

h-1

4

h - 1
yh

2

h – 1

h - 2

3

h – 2

h - 1

p

26

Properties of the subtrees

1. The new key must have been inserted into the right subtree of p.

2. Trees 2 and 3 must have different height, since otherwise the method upin
would not have been called.

3. The only possible combination of heights in trees 2 and 3 is therefore
(h-1, h-2) and (h-2, h-1), unless they are empty.

4. Since bal(p) = 1, tree 1 must have height h-1

5. Finally, tree 4 also must have height h-1 (because bal(φp) = -1).

Hence, the resulting tree also fulfils the AVL property.

27

Search tree condition

We have:

1. All keys in tree 1 are smaller than x.

2. All keys in tree 2 are smaller than y but greater than x.

3. All keys in tree 3 are greater than y and x but smaller than z.

4. All keys in tree 4 are greater than x, y and z.

Hence, the tree resulting from the double rotation is also a search tree.

28

Remarks

• We have only considered the case where p is the left child of its parent φp.

• The case where p is the right child of its parent φp is handled similarly.

• For an efficient implementation of the method upin(p), we have to create a
list of all visited nodes during the search for the insert position.

• Then we can use this list during the recursive calls to proceed to the
parent and carry out the necessary rotations or double rotations.

29

Insertion in a non-empty AVL tree

1. Right child of p not a leaf, x < p.key Append as left child of p, done.

2. Left child of p not a leaf, x > p.key append as right child of p, done.

3. Both children of p are leaves: append x as child of p and call upin(p).

The method upin(p):

1. p is left child of φp
(a) bal(φp) = +1 bal(φp) = 0, done.
(b) bal(φp) = 0 bal(φp) = -1, upin(φp)
(c) i. bal(φp) = -1 und bal(p) = -1 right rotation, done.

ii. bal(φp) = -1 und bal(p) = +1 double rotation left-right, done.

2. p is righter child of φp.
...

Search for x ends in a leaf with parent p

30

An example (1)

Original situation:

10

3

7

15 01

-1

0

31

An example (2)

Insert key 9:

AVL property is violated!

10

3

7

15 01

1

-1

*p

9 0

32

An example (3)

Left rotation at *p yields:

10

7

9

15 00

-1

03 0

33

An example (4)

Insertion of 8 followed by double rotation (left-right):

10

7

9

15 01

-1

-1

3 0

8 0

9

7

8

10 10

0

0

3 0 15 0

left-right

φp

p

	Theory I�Algorithm Design and Analysis��(3 - Balanced trees, AVL trees)
	Balanced Trees
	AVL trees
	Definition of AVL trees
	Examples
	Properties of AVL trees
	Minimal number of leaves of AVL trees of height h
	Minimal AVL tree of height 9
	Height of an AVL tree
	Insertion in an AVL tree
	Storing the balance factors in the nodes
	Different situations for insertions in an AVL tree
	Example of an AVL tree
	Overall height unchanged (1)
	Overall height unchanged (2)
	The critical case
	The procedure upin(p)
	Case 1: bal(φp) = 1
	Case 2: bal(φp) = 0
	The critical case 3: bal(φp) = -1
	Case 3.1: bal(φp) = -1 and bal(p) = -1
	Is the resulting tree still a search tree?
	Is the resulting tree balanced?
	Case 3.2: bal(φp) = -1 and bal(p) = +1
	Case 3.2: bal(φp) = -1 and bal(p) = +1
	Properties of the subtrees
	Search tree condition
	Remarks
	Insertion in a non-empty AVL tree
	An example (1)
	An example (2)
	An example (3)
	An example (4)

