

Theory I Algorithm Design and Analysis

(4 – AVL trees: deletion)

Prof. Th. Ottmann

Definition of AVL trees

Definition: A binary search tree is called AVL tree or height-balanced tree, if for each node v the height of the right subtree $h(T_r)$ of v and the height of the left subtree $h(T_l)$ of v differ by at most 1.

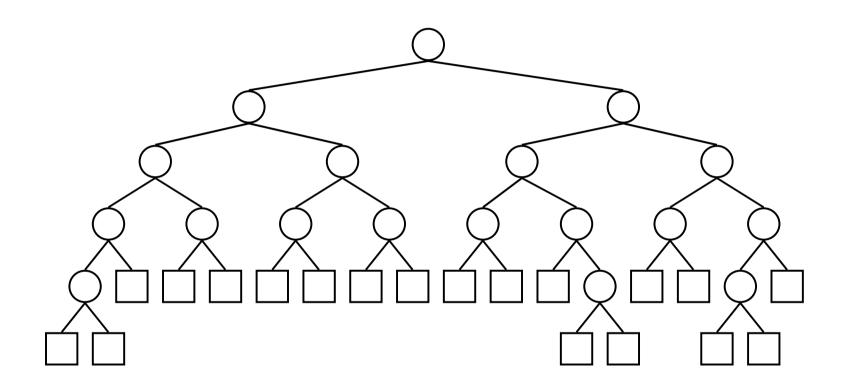
Balance factor:

$$bal(v) = h(T_r) - h(T_l) \in \{-1, 0, +1\}$$

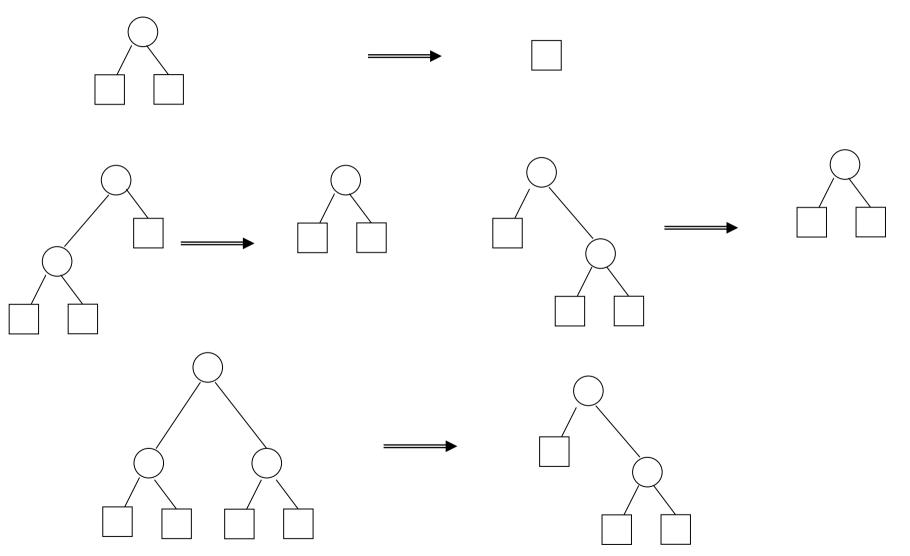
Deletion from an AVL tree

- We proceed similarly to standard search trees:
 - 1. Search for the key to be deleted.
 - 2. If the key is not contained, we are done.
 - 3. Otherwise we distinguish three cases:
 - (a) The node to be deleted has no internal nodes as its children.
 - (b) The node to be deleted has exactly one internal child node.
 - (c) The node to be deleted has two internal children.
- After deleting a node the AVL property may be violated (similar to insertion).
- This must be fixed appropriately.

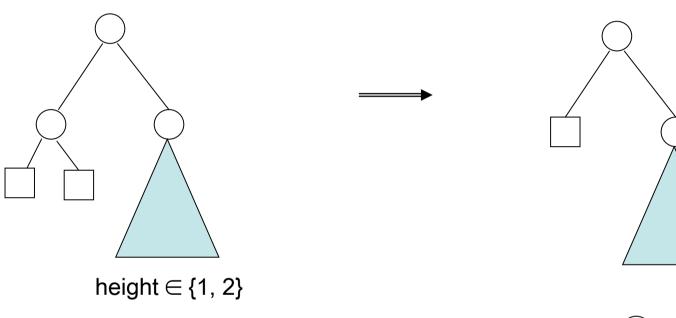
Example



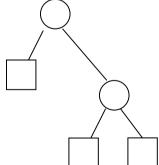
Node has only leaves as children



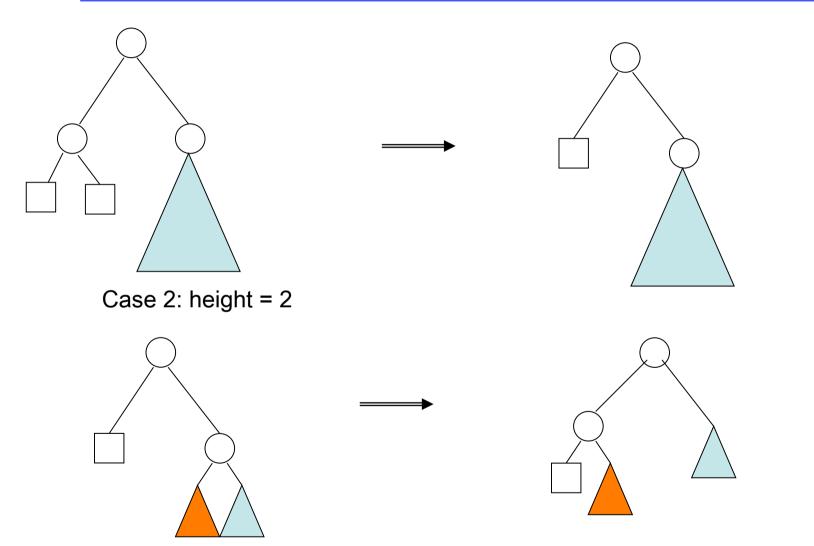
Node has only leaves as children



Case1: height = 1: Done!

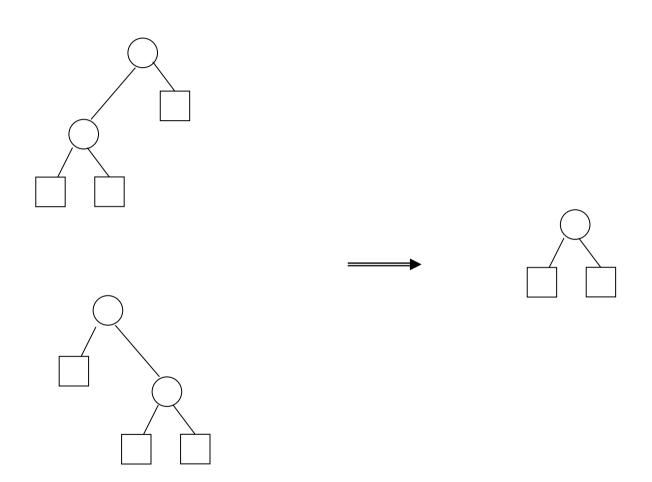


Node has only leaves as children



NOTE: height may have decreased by 1!

Node has one internal node as a child



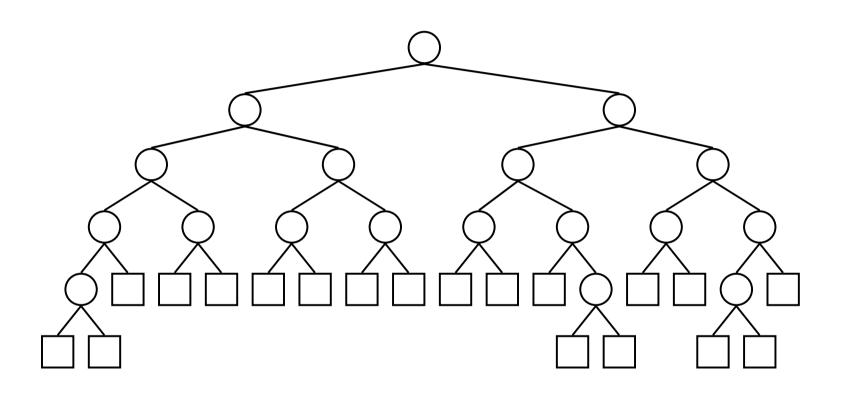
Node has two internal node as children

- First we proceed just like we do in standard search trees:
 - 1. Replace the content of the node to be deleted p by the content of its symmetrical successor q.
 - 2. Then delete node *q*.
- Since q can have at most one internal node as a child (the right one),
 cases 1 and 2 apply for q.

The method upout

- The method upout works similarly to upin.
- It is called recursively along the search path and adjusts the balance factors die via rotations and double rotations.
- When *upout* is called for a node *p*, we have (see above):
 - 1. bal(p) = 0
 - 2. The height of the subtree rooted in *p* has decreased by 1.
- upout will be called recursively as long as these conditions are fulfilled (invariant).
- Again, we distinguish 2 cases, depending on whether p is the left or the right child of its parent ϕp .
- Since the two cases are symmetrical, we only consider the case where p is the left child of ϕp .

Example



Case 1.1: p is the left child of φp and $bal(\varphi p) = -1$

- Since the height of the subtree rooted in p has decreased by 1, the balance factor of ϕp changes to 0.
- By this, the height of the subtree rooted in φp has also decreased by 1 and we have to call $upout(\varphi p)$ (the invariant now holds for φp !).

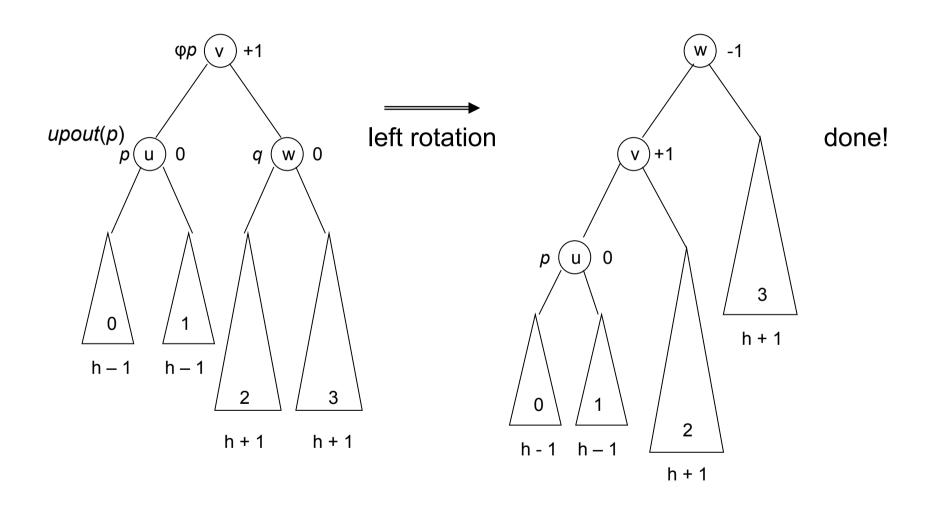
Case 1.2: p is the left child of φp and $bal(\varphi p) = 0$

- Since the height of the subtree rooted in p has decreased by 1, the balance factor of ϕp changes to 1.
- Then we are done, because the height of the subtree rooted in φp has not changed.

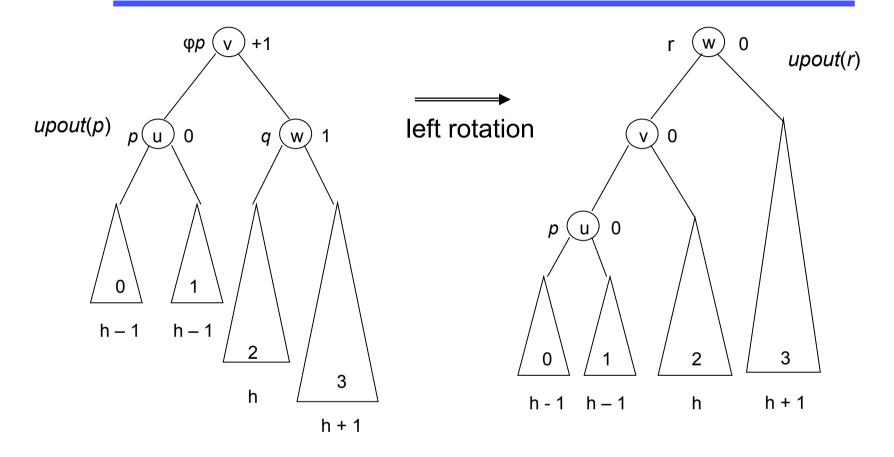
Case 1.3: p is the left child of φp and $bal(\varphi p) = +1$

- Then the right subtree of φp was higher (by 1) than the left subtree before the deletion.
- Hence, in the subtree rooted in φp the AVL property is now violated.
- We distinguish three cases according to the balance factor of q.

Case 1.3.1: bal(q) = 0

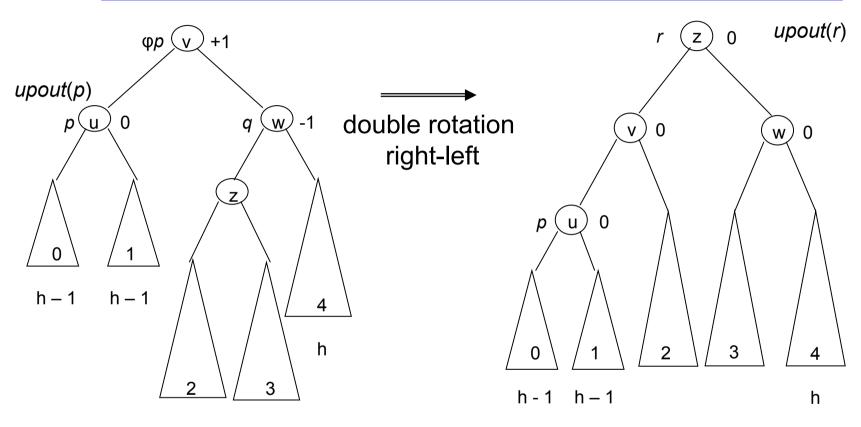


Case 1.3.2: bal(q) = +1



- Again, the height of the subtree has decreased by 1, while bal(r) = 0 (invariant).
- Hence we call upout(r).

Case 1.3.3: bal(q) = -1



- Since bal(q) = -1, one of the trees 2 or 3 must have height h.
- Therefore, the height of the complete subtree has decreased by 1, while bal(r) = 0 (invariant).
- Hence, we again call upout(r).

Observations

- Unlike insertions, deletions may cause recursive calls of upout after a double rotation.
- Therefore, in general a single rotation or double rotation is not sufficient to rebalance the tree.
- There are examples where for all nodes along the search path rotations or double rotations must be carried out.
- Since h = O(log n), it becomes clear that the deletion of a key form an AVL tree with n keys can be carried out in at most O(log n) steps.
- AVL trees are a worst-case efficient data structure for finding, inserting and deleting keys.