
Theory I
Algorithm Design and Analysis

(5 Hashing)

Prof. Th. Ottmann

The dictionary problem

Different approaches to the dictionary problem:

•  Previously: Structuring the set of actually occurring keys: lists, trees, graphs, ...

•  Structuring the complete universe of all possible keys: hashing

Hashing describes a special way of storing the elements of a set by breaking down
the universe of possible keys.

The position of the data element in the memory is given by computation directly from
the key.

Hashing

Dictionary problem:
Lookup, insertion, deletion of data sets (keys)

Place of data set d: computed from the key s of d
 no comparisons
 constant time

Data structure: linear field (array) of size m
Hash table

0 1 2 i m-2 m-1

key s

…………. ………….

The memory is divided in m containers (buckets) of the same size.

Hash tables - examples

Examples:

•  Compilers
i int 0x87C50FA4
j int 0x87C50FA8
x double 0x87C50FAC
name String 0x87C50FB2
...

•  Environment variables (key, attribute) list
EDITOR=emacs
GROUP=mitarbeiter
HOST=vulcano
HOSTTYPE=sun4
LPDEST=hp5
MACHTYPE=sparc
...

•  Executable programs
PATH=˜/bin:/usr/local/gnu/bin:/usr/local/bin:/usr/bin:/bin:

Implementation in Java

 class TableEntry {
 private Object key,value;
}

 abstract class HashTable {
 private TableEntry[] tableEntry;
 private int capacity;

 // Construktor
 HashTable (int capacity) {
 this.capacity = capacity;
 tableEntry = new TableEntry [capacity];
 for (int i = 0; i <= capacity-1; i++)
 tableEntry[i] = null;
 }
 // the hash function
 protected abstract int h (Object key);

 // insert element with given key and value (if not there already)
 public abstract void insert (Object key Object value);

 // delete element with given key (if there)
 public abstract void delete (Object key);

 // locate element with given key
 public abstract Object search (Object key);
} // class hashTable

Hashing - problems

1.  Size of the hash table
Only a small subset S of all possible keys (the universe) U actually occurs

2.  Calculation of the address of a data set
- keys are not necessarily integers
- index depends on the size of hash table

In Java:

 public class Object {
 ...
 public int hashCode() {…}
 ...
}

The universe U should be distributed as evenly as possibly to the numbers -231, …, 231-1.

h(s) = hash address

h(s) = h(s´) s and s´ are synonyms with respect to h
 address collision

Hash function (1)

Set of keys S

Univer-
se U
of all
possible
keys

hash function h

0,…,m-1

hash table T

€

(H(U)⊆ [−231,231 −1])

Hash function (2)

Definition: Let U be a universe of possible keys and {B0, . . . ,Bm-1} a set of m buckets for
storing elements from U. Then a hash function is a total mapping

 h : U  {0, ... , m - 1}

 mapping each key s ∈ U to a number h(s)
(and the respective element to the bucket Bh(s)).

•  The bucket numbers are also called hash addresses, the complete set of buckets is
called hash table.

B0

B1

Bm-1

…

…

Address collisions

•  A hash function h calculates for each key s the number of the associated bucket.

•  It would be ideal if the mapping of a data set with key s to a bucket h(s) was
unique (one-to-one): insertion and lookup could be carried out in constant time
(O(1)).

•  In reality, there will be collisions: several elements can be mapped to the same
hash address. Collisions have to be treated (in one way or another).

Hashing methods

Example for U: all names in Java with length ≤ 40  |U | = 6240

 If |U | > m : address collisions are inevitable

Hashing methods:
1. Choice of a hash function that is as “good” as possible
2. Strategy for resolving address collisions

Load factor :

Assumption: table size m is fixed €

α =
stored keys

size of the hash table
=
S
m

=
n
m

Requirements for good hash functions

Requirements

•  A collision occurs if the bucket Bh(s) for a newly inserted element with key s is
already taken.

•  A hash function h is called perfect for a set S of keys if no collisions will occur for S.

•  If h is perfect and |S| = n, then n ≤ m.
The load factor of the hash table is n/m ≤ 1.

•  A hash function is well chosen if

 – the load factor is as high as possible,
– for many sets of keys the # of collisions is as small as possible,
– it can be computed efficiently.

Example of a hash function

Example: hash function for strings

 public static int h (String s){
 int k = 0, m = 13;
 for (int i=0; i < s.length(); i++)
 k += (int)s.charAt (i);
 return (k%m);
}

The following hash addresses are generated for m = 13.

 key s h(s)
Test 0
Hallo 2
SE 9
Algo 10

The greater the choice of m, the more perfect h becomes.

 Probability of collision (1)

Choice of the hash function

•  The requirements high load factor and small number of collisions are in conflict
with each other. We need to find a suitable compromise.

•  For the set S of keys with |S| = n and buckets B0, ..., Bm-1:
– for n > m conflicts are inevitable
– for n < m there is a (residual) probability PK(n,m) for the occurrence of at least
one collision.

How can we find an estimate for PK(n,m)?

•  For any key s the probability that h(s) = j with j ∈ {0, ..., m - 1} is:
PK [h(s) = j] = 1/m, provided that there is an equal distribution.

•  We have PK(n,m) = 1 - P¬K(n,m),
if P¬K(n,m) is the probability that storing of n elements in m buckets leads to no
collision.

Probability of collision (2)

On the probability of collisions

•  If n keys are distributed sequentially to the buckets B0, ..., Bm-1 (with
equal distribution), each time we have P [h(s) = j] = 1/m.

•  The probability P(i) for no collision in step i is P(i) = (m - (i - 1))/m

•  Hence, we have

 For example, if m = 365, P(23) > 50% and P(50) ≈ 97% (“birthday paradox”)

€

PK (n,m) =1− P(1)*P(2)* ...*P(n) =1− m(m −1)...(m − n +1)
mn

Common hash functions

Hash fuctions used in practice:

•  see: D.E. Knuth: The Art of Computer Programming

•  For U = integer the [divisions-residue method] is used:

 h(s) = (a × s) mod m (a ≠ 0, a ≠ m, m prime)

•  For strings of characters of the form s = s0s1 . . . sk-1 one can use:

e.g. B = 131 and w = word width (bits) of the computer (w = 32 or w = 64 is common).

€

h(s) = Bisi
i= 0

k−1

∑








 mod2w




 




  modm

Simple hash function

Choice of the hash function
- simple and quick computation
- even distribution of the data (example: compiler)

(Simple) division-residue method

 h(k) = k mod m

How to choose m?

Examples:

a) m even  h(k) even k even

Problematic if the last bit has a meaning (e.g. 0 = female, 1 = male)

b) m = 2p yields the p lowest dual digits of k

Rule: Choose m prime, and m is not a factor of any ri +/- j ,
where i and j are small, non-negative numbers and r is the radix of the representation.

Multiplicative method (1)

Choose constant

1. Compute

2.

Choice of m is uncritical, choose m = 2p :

Computation of h(k) :

€

kθ mod 1= kθ − kθ 

€

h(k) = m(kθ mod 1) 

p Bits = h(k)
r0 r1

0,

k

Example:

Of all numbers , leads to the most even distribution.

€

θ =
5 −1
2

≈ 0.6180339

k =123456
m =10000

€

h(k) = 10000(123456*0.61803...mod1) 
= 10000(76300,0041151...mod1) 
= 41.151... = 41

€

0 ≤θ ≤1

€

5 −1
2

Multiplicative method (2)

Universal hashing

Problem: if h is fixed  there are with many collisions

Idea of universal hashing:
 Choose hash function h randomly

H finite set of hash functions

Definition: H is universal, if for arbitrary x,y ∈ U:

Hence: if x, y ∈ U, H universal, h ∈ H picked randomly

€

S ⊆U

€

h ∈ H :U→{0,...,m −1}

€

{h ∈ H | h(x) = h(y)}
H

≤
1
m

€

PrH (h(x) = h(y)) ≤ 1
m

Universal hashing

Definition:

Extension to sets:

Corollary: H is universal, if for any x,y ∈ U

€

δ(x,y,h) =
1, if h(x) = h(y) and x ≠ y
0, otherwise




€

δ(x,S,h) = δ(x,s,h)
s∈S
∑

€

δ(x,y,G) = δ(x,y,h)
h∈G
∑

€

δ(x,y,H) ≤
H
m

A universal class of hash functions

Assumptions:

•  |U| = p (p prime) and U = {0, …, p-1}

•  Let a ∈ {1, …, p-1}, b ∈ {0, …, p-1} and ha,b : U  {0,…,m-1} be defined as follows

 ha,b = ((ax+b) mod p) mod m

Then:

The set

 H = {ha,b | 1 ≤ a ≤ p-1, 0 ≤ b ≤ p-1}

is a universal class of hash functions.

Universal hashing - example

Hash table T of size 3, |U| = 5

Consider the 20 functions (set H):

 x+0 2x+0 3x+0 4x+0
 x+1 2x+1 3x+1 4x+1
 x+2 2x+2 3x+2 4x+2
 x+3 2x+3 3x+3 4x+3
 x+4 2x+4 3x+4 4x+4

each (mod 5) (mod 3)

and the keys 1 und 4

We get:

 (1*1+0) mod 5 mod 3 = 1 = (1*4+0) mod 5 mod 3
(1*1+4) mod 5 mod 3 = 0 = (1*4+4) mod 5 mod 3
(4*1+0) mod 5 mod 3 = 1 = (4*4+0) mod 5 mod 3
(4*1+4) mod 5 mod 3 = 0 = (4*4+4) mod 5 mod 3

Possible ways of treating collisions

Treatment of collisions:

•  Collisions are treated differently in different methods.

•  A data set with key s is called a colliding element if bucket Bh(s) is already taken by
another data set.

•  What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in
these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During
storage and lookup, these are found through so-called probing.

