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The dictionary problem '\

Different approaches to the dictionary problem:

* Previously: Structuring the set of actually occurring keys: lists, trees, graphs, ...

« Structuring the complete universe of all possible keys: hashing

Hashing describes a special way of storing the elements of a set by breaking down

the universe of possible keys.

The position of the data element in the memory is given by computation directly from

the key.

INFORMATIE
FREIBURG



Hashing A4
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Dictionary problem:
Lookup, insertion, deletion of data sets (keys)

Place of data set d: computed from the key s of d

—> NO comparisons
-> constant time

Data structure: linear field (array) of size m
Hash table

key s

0 1 2 i m-2 m-1

The memory is divided in m containers (buckets) of the same size.



Hash tables - examples '\
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Examples:

- Compilers
i int 0x87C50FA4
j int Ox87C50FA8
x double 0x87C50FAC
name String 0x87C50FB2

«  Environment variables (key, attribute) list
EDITOR=emacs
GROUP=mitarbeiter
HOST=vulcano
HOSTTYPE=sun4
LPDEST=hp5
MACHTYPE=sparc

« Executable programs
PATH="/bin:/usr/local/gnu/bin:/usr/local/bin:/usr/bin:/bin:



Implementation in Java "
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class TableEntry {
private Object key,value;

}

abstract class HashTable {
private TableEntry[] tableEntry;
private int capacity;

// Construktor

HashTable (int capacity) {
this.capacity = capacity;
tableEntry = new TableEntry [capacity];
for (int i = 0; i <= capacity-1; i++)

tableEntry[i] = null;

}

// the hash function

protected abstract int h (Object key);

// insert element with given key and value (if not there already)
public abstract void insert (Object key Object value);

// delete element with given key (if there)
public abstract void delete (Object key);

// locate element with given key
public abstract Object search (Object key);
} // class hashTable



Hashing - problems "
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1. Size of the hash table
Only a small subset S of all possible keys (the universe) U actually occurs

2. Calculation of the address of a data set

- keys are not necessarily integers
- index depends on the size of hash table

In Java:

public class Object {
public int hashCode () {..}

}

The universe U should be distributed as evenly as possibly to the numbers -23", ... 231-1,



Hash function (1) (A4
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h(s) = hash address

h(s) = h(s’) < s and s” are synonyms with respect to h
address collision



Hash function (2) "
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Definition: Let U be a universe of possible keys and {B,, . . . ,B,,_.,} a set of m buckets for
storing elements from U. Then a hash function is a total mapping

h:U=>1{0, .., m-1

mapping each key s € U to a number h(s)
(and the respective element to the bucket B, ).

» The bucket numbers are also called hash addresses, the complete set of buckets is
called hash table.




Address collisions (A
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A hash function h calculates for each key s the number of the associated bucket.

It would be ideal if the mapping of a data set with key s to a bucket h(s) was
unigue (one-to-one): insertion and lookup could be carried out in constant time

(O(1)).

In reality, there will be collisions: several elements can be mapped to the same
hash address. Collisions have to be treated (in one way or another).



Hashing methods N
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Example for U: all names in Java with length <40 > |U | = 6240

If [U|> m : address collisions are inevitable

Hashing methods:
1. Choice of a hash function that is as “good” as possible
2. Strategy for resolving address collisions

Load factor &
# stored keys m _

n
 size of the hash table m om

Assumption: table size m is fixed



Requirements for good hash functions '\
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Requirements

* Acollision occurs if the bucket B, for a newly inserted element with key s is
already taken.

» A hash function h is called perfect for a set S of keys if no collisions will occur for S.

« |If his perfect and |S| = n, then n<m.
The load factor of the hash table is n/m < 1.

A hash function is well chosen if

— the load factor is as high as possible,
— for many sets of keys the # of collisions is as small as possible,
— it can be computed efficiently.



Example of a hash function A
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Example: hash function for strings

public static int h (String s) {
int k =0, m = 13;
for (int i=0; 1 < s.length(); i++)
k += (int)s.charAt (1i);
return ( k%m );

}

The following hash addresses are generated for m = 13.

key s h(s)
Test 0
Hallo 2
SE 9
Algo 10

The greater the choice of m, the more perfect h becomes.



Probability of collision (1)

Choice of the hash function

The requirements high load factor and small number of collisions are in conflict
with each other. We need to find a suitable compromise.

For the set S of keys with |S| = n and buckets B, ..., B, ;:

— for n > m conflicts are inevitable

— for n < mthere is a (residual) probability Px(n,m) for the occurrence of at least
one collision.

How can we find an estimate for Px(n,m)?

For any key s the probability that h(s) =j withj € {0, ..., m- 1} is:
P« [h(s) = j] = 1/m, provided that there is an equal distribution.

We have Px(n,m) =1 - P_x(n,m),
if P-x(n,m) is the probability that storing of n elements in m buckets leads to no
collision.
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Probability of collision (2) '\
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On the probability of collisions

« If n keys are distributed sequentially to the buckets B,, ..., B,,.; (with
equal distribution), each time we have P [h(s) =j] = 1/m.

» The probability P(i) for no collision in step iis P(i) = (m - (i- 1))/m
« Hence, we have

m(m-1)..(m-n+1)

P.(n,m)=1-P()* P(2Q)*..* P(n)=1-

n

m

For example, if m = 365, P(23) > 50% and P(50) = 97% (“birthday paradox”)



Common hash functions N
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Hash fuctions used in practice:

« see: D.E. Knuth: The Art of Computer Programming

 For U = integer the [divisions-residue method] is used:
h(s)=(axs)mod m(a#0,a#m, mprime)

« For strings of characters of the form s = s;s, . . . 5,4 One can use:

h(s) = ((gBisi

i=0

m0d2w)modm

e.g. B= 131 and w = word width (bits) of the computer (w = 32 or w = 64 is common).



Simple hash function A\
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Choice of the hash function
- simple and quick computation
- even distribution of the data (example: compiler)

(Simple) division-residue method
h(k) = kmod m
How to choose m?
Examples:
a) meven 2 h(k) even < keven
Problematic if the last bit has a meaning (e.g. 0 = female, 1 = male)
b) m = 2P yields the p lowest dual digits of k

Rule: Choose m prime, and m is not a factor of any r +/-
where / and j are small, non-negative numbers and r is the radix of the representation.



Multiplicative method (1) "
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Choose constant 6,0 <60 <1
1. Compute kO mod 1=k0 - |_k9J

2. h(k)=|m(k6 mod 1)]

Choice of m is uncritical, choose m = 2° :

Computation of h(k) :

o. I

p Bits = h(k)



Multiplicative method (2) [\
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Example:

0= ‘62'1 ~0.6180339

k =123456
m =10000

h(k) =|10000(123456 *0.61803...mod )|
=10000(76300,0041151...mod 1)
=|41.151..]= 41

Of all numbers O<fO=<1 |, \E —1 |eads to the most even distribution.
2



Universal hashing l'
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Problem: if h is fixed = there are § C {7 with many collisions

|ldea of universal hashing:
Choose hash function h randomly

H finite set of hash functions
he H:U—{0,...m-1}

Definition: H is universal, if for arbitrary x,y € U.:

{h € HIh(x)=h(y)}] _1
| m
Hence: if x, y € U, H universal, h € H picked randomly

Pr,, (h(x) = h(y)) = —

m




Universal hashing "

INFORMATIE
FREIBURG

Definition:
Lifh(x)=h(y)andx =y

0, otherwise

o(x,y,h) = {

Extension to sets:

S(x,S,h) = Eé(x,s,h)

seS

(S(X,)’,G) = Eé(x,y,h)

heG
Corollary: H is universal, if for any x,y € U

o(x,y,H) =< H
m



A universal class of hash functions N
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Assumptions:
« |U]l=p(pprime)and U=10, ..., p-1}
* Letac{1,...,p1} bE{0, ..., p-1}and h,, : U > {0,...,m-1} be defined as follows

h,,= ((@ax+b) mod p) mod m

Then:
The set

H={h,,|1<as<p-1,0<bsp-1}

iS a universal class of hash functions.



Universal hashing - example A
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Hash table T of size 3, |U| =5
Consider the 20 functions (set H ):

x+0 2x+0 3x+0 4x+0
x+1 2x+1 3x+1 4x+1
X+2 2x+2 3x+2 4x+2
x+3 2x+3 3x+3 4x+3
x+4 2x+4 3x+4 4x+4

each (mod 5) (mod 3)
and the keys 1 und 4
We get:

(1*1+0) mod 5 mod 3 =1 = (1*4+0) mod 5 mod 3
(1*1+4) mod 5 mod 3 = 0 = (1*4+4) mod 5 mod 3
(4*1+0) mod 5 mod 3 =1 = (4*4+0) mod 5 mod 3
(4*1+4) mod 5 mod 3 = 0 = (4*4+4) mod 5 mod 3



Possible ways of treating collisions '\

FREIBURG

Treatment of collisions:
« Collisions are treated differently in different methods.

A data set with key s is called a colliding element if bucket B, is already taken by
another data set.

« What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in
these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During
storage and lookup, these are found through so-called probing.



