Theory |
Algorithm Design and Analysis

(5 Hashing)

Prof. Th. Ottmann



The dictionary problem '\

Different approaches to the dictionary problem:

* Previously: Structuring the set of actually occurring keys: lists, trees, graphs, ...

« Structuring the complete universe of all possible keys: hashing

Hashing describes a special way of storing the elements of a set by breaking down

the universe of possible keys.

The position of the data element in the memory is given by computation directly from

the key.

INFORMATIE
FREIBURG



Hashing A4

INSTITUT FO
INFORMATIK
--------

Dictionary problem:
Lookup, insertion, deletion of data sets (keys)

Place of data set d: computed from the key s of d

—> NO comparisons
-> constant time

Data structure: linear field (array) of size m
Hash table

key s

0 1 2 i m-2 m-1

The memory is divided in m containers (buckets) of the same size.



Hash tables - examples '\

FREIBURG

Examples:

- Compilers
i int 0x87C50FA4
j int Ox87C50FA8
x double 0x87C50FAC
name String 0x87C50FB2

«  Environment variables (key, attribute) list
EDITOR=emacs
GROUP=mitarbeiter
HOST=vulcano
HOSTTYPE=sun4
LPDEST=hp5
MACHTYPE=sparc

« Executable programs
PATH="/bin:/usr/local/gnu/bin:/usr/local/bin:/usr/bin:/bin:



Implementation in Java "

uuuuuuuuuuu
xxxxxxxxxx
uuuuuuuu

class TableEntry {
private Object key,value;

}

abstract class HashTable {
private TableEntry[] tableEntry;
private int capacity;

// Construktor

HashTable (int capacity) {
this.capacity = capacity;
tableEntry = new TableEntry [capacity];
for (int i = 0; i <= capacity-1; i++)

tableEntry[i] = null;

}

// the hash function

protected abstract int h (Object key);

// insert element with given key and value (if not there already)
public abstract void insert (Object key Object value);

// delete element with given key (if there)
public abstract void delete (Object key);

// locate element with given key
public abstract Object search (Object key);
} // class hashTable



Hashing - problems "

INFORMATIK
FREIBURG

1. Size of the hash table
Only a small subset S of all possible keys (the universe) U actually occurs

2. Calculation of the address of a data set

- keys are not necessarily integers
- index depends on the size of hash table

In Java:

public class Object {
public int hashCode () {..}

}

The universe U should be distributed as evenly as possibly to the numbers -23", ... 231-1,



Hash function (1) (A4

...........

Set of keys S

(]
@]
Univer § hash function h
@]
se U 0 o
of all o °
possible§ S 0.....m-1
keys o o
(] (@]
(@]
o hash table T
°
(]

(HU)CS[-2"2" 1))

h(s) = hash address

h(s) = h(s’) < s and s” are synonyms with respect to h
address collision



Hash function (2) "

FREIBURG

Definition: Let U be a universe of possible keys and {B,, . . . ,B,,_.,} a set of m buckets for
storing elements from U. Then a hash function is a total mapping

h:U=>1{0, .., m-1

mapping each key s € U to a number h(s)
(and the respective element to the bucket B, ).

» The bucket numbers are also called hash addresses, the complete set of buckets is
called hash table.




Address collisions (A

FREIBURG

A hash function h calculates for each key s the number of the associated bucket.

It would be ideal if the mapping of a data set with key s to a bucket h(s) was
unigue (one-to-one): insertion and lookup could be carried out in constant time

(O(1)).

In reality, there will be collisions: several elements can be mapped to the same
hash address. Collisions have to be treated (in one way or another).



Hashing methods N

FREIBURG

Example for U: all names in Java with length <40 > |U | = 6240

If [U|> m : address collisions are inevitable

Hashing methods:
1. Choice of a hash function that is as “good” as possible
2. Strategy for resolving address collisions

Load factor &
# stored keys m _

n
 size of the hash table m om

Assumption: table size m is fixed



Requirements for good hash functions '\

FREIBURG

Requirements

* Acollision occurs if the bucket B, for a newly inserted element with key s is
already taken.

» A hash function h is called perfect for a set S of keys if no collisions will occur for S.

« |If his perfect and |S| = n, then n<m.
The load factor of the hash table is n/m < 1.

A hash function is well chosen if

— the load factor is as high as possible,
— for many sets of keys the # of collisions is as small as possible,
— it can be computed efficiently.



Example of a hash function A

FREIBURG

Example: hash function for strings

public static int h (String s) {
int k =0, m = 13;
for (int i=0; 1 < s.length(); i++)
k += (int)s.charAt (1i);
return ( k%m );

}

The following hash addresses are generated for m = 13.

key s h(s)
Test 0
Hallo 2
SE 9
Algo 10

The greater the choice of m, the more perfect h becomes.



Probability of collision (1)

Choice of the hash function

The requirements high load factor and small number of collisions are in conflict
with each other. We need to find a suitable compromise.

For the set S of keys with |S| = n and buckets B, ..., B, ;:

— for n > m conflicts are inevitable

— for n < mthere is a (residual) probability Px(n,m) for the occurrence of at least
one collision.

How can we find an estimate for Px(n,m)?

For any key s the probability that h(s) =j withj € {0, ..., m- 1} is:
P« [h(s) = j] = 1/m, provided that there is an equal distribution.

We have Px(n,m) =1 - P_x(n,m),
if P-x(n,m) is the probability that storing of n elements in m buckets leads to no
collision.

‘ IF
INSTITUT FOR
INFORMATIK
FREIBURG



Probability of collision (2) '\

‘‘‘‘‘
FREIBURG

On the probability of collisions

« If n keys are distributed sequentially to the buckets B,, ..., B,,.; (with
equal distribution), each time we have P [h(s) =j] = 1/m.

» The probability P(i) for no collision in step iis P(i) = (m - (i- 1))/m
« Hence, we have

m(m-1)..(m-n+1)

P.(n,m)=1-P()* P(2Q)*..* P(n)=1-

n

m

For example, if m = 365, P(23) > 50% and P(50) = 97% (“birthday paradox”)



Common hash functions N

INFORMATIK
FREIBURG

Hash fuctions used in practice:

« see: D.E. Knuth: The Art of Computer Programming

 For U = integer the [divisions-residue method] is used:
h(s)=(axs)mod m(a#0,a#m, mprime)

« For strings of characters of the form s = s;s, . . . 5,4 One can use:

h(s) = ((gBisi

i=0

m0d2w)modm

e.g. B= 131 and w = word width (bits) of the computer (w = 32 or w = 64 is common).



Simple hash function A\

FREIBURG

Choice of the hash function
- simple and quick computation
- even distribution of the data (example: compiler)

(Simple) division-residue method
h(k) = kmod m
How to choose m?
Examples:
a) meven 2 h(k) even < keven
Problematic if the last bit has a meaning (e.g. 0 = female, 1 = male)
b) m = 2P yields the p lowest dual digits of k

Rule: Choose m prime, and m is not a factor of any r +/-
where / and j are small, non-negative numbers and r is the radix of the representation.



Multiplicative method (1) "

..........
vvvvvvvv

Choose constant 6,0 <60 <1
1. Compute kO mod 1=k0 - |_k9J

2. h(k)=|m(k6 mod 1)]

Choice of m is uncritical, choose m = 2° :

Computation of h(k) :

o. I

p Bits = h(k)



Multiplicative method (2) [\

FREIBURG

Example:

0= ‘62'1 ~0.6180339

k =123456
m =10000

h(k) =|10000(123456 *0.61803...mod )|
=10000(76300,0041151...mod 1)
=|41.151..]= 41

Of all numbers O<fO=<1 |, \E —1 |eads to the most even distribution.
2



Universal hashing l'

FREIBURG

Problem: if h is fixed = there are § C {7 with many collisions

|ldea of universal hashing:
Choose hash function h randomly

H finite set of hash functions
he H:U—{0,...m-1}

Definition: H is universal, if for arbitrary x,y € U.:

{h € HIh(x)=h(y)}] _1
| m
Hence: if x, y € U, H universal, h € H picked randomly

Pr,, (h(x) = h(y)) = —

m




Universal hashing "

INFORMATIE
FREIBURG

Definition:
Lifh(x)=h(y)andx =y

0, otherwise

o(x,y,h) = {

Extension to sets:

S(x,S,h) = Eé(x,s,h)

seS

(S(X,)’,G) = Eé(x,y,h)

heG
Corollary: H is universal, if for any x,y € U

o(x,y,H) =< H
m



A universal class of hash functions N

uuuuuuuuu
..........
vvvvvvvv

Assumptions:
« |U]l=p(pprime)and U=10, ..., p-1}
* Letac{1,...,p1} bE{0, ..., p-1}and h,, : U > {0,...,m-1} be defined as follows

h,,= ((@ax+b) mod p) mod m

Then:
The set

H={h,,|1<as<p-1,0<bsp-1}

iS a universal class of hash functions.



Universal hashing - example A

INFORMATIK

Hash table T of size 3, |U| =5
Consider the 20 functions (set H ):

x+0 2x+0 3x+0 4x+0
x+1 2x+1 3x+1 4x+1
X+2 2x+2 3x+2 4x+2
x+3 2x+3 3x+3 4x+3
x+4 2x+4 3x+4 4x+4

each (mod 5) (mod 3)
and the keys 1 und 4
We get:

(1*1+0) mod 5 mod 3 =1 = (1*4+0) mod 5 mod 3
(1*1+4) mod 5 mod 3 = 0 = (1*4+4) mod 5 mod 3
(4*1+0) mod 5 mod 3 =1 = (4*4+0) mod 5 mod 3
(4*1+4) mod 5 mod 3 = 0 = (4*4+4) mod 5 mod 3



Possible ways of treating collisions '\

FREIBURG

Treatment of collisions:
« Collisions are treated differently in different methods.

A data set with key s is called a colliding element if bucket B, is already taken by
another data set.

« What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in
these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During
storage and lookup, these are found through so-called probing.



