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The dictionary problem 

Different approaches to the dictionary problem: 

•  Previously: Structuring the set of actually occurring keys: lists, trees, graphs, ... 

•  Structuring the complete universe of all possible keys: hashing 

Hashing describes a special way of storing the elements of a set  by breaking down 
the universe of possible keys. 

The position of the data element in the memory is given by computation directly from 
the key. 



Hashing 

Dictionary problem: 
Lookup, insertion, deletion of data sets (keys) 

Place of data set d: computed from the key s of d  
 no comparisons   
 constant time  

Data structure: linear field (array) of size m 
Hash table 

0         1        2                                 i                                  m-2    m-1 

key s 

…………. …………. 

The memory is divided in m containers (buckets) of the same size. 



Hash tables - examples 

Examples: 

•  Compilers 
i int 0x87C50FA4 
j int 0x87C50FA8 
x double 0x87C50FAC 
name String 0x87C50FB2 
... 

•  Environment variables (key, attribute) list 
EDITOR=emacs 
GROUP=mitarbeiter 
HOST=vulcano 
HOSTTYPE=sun4 
LPDEST=hp5 
MACHTYPE=sparc 
... 

•  Executable programs 
PATH=˜/bin:/usr/local/gnu/bin:/usr/local/bin:/usr/bin:/bin:  



Implementation in Java 

 class TableEntry { 
    private Object key,value; 
} 

 abstract class HashTable { 
    private TableEntry[] tableEntry; 
    private int capacity; 

     // Construktor 
    HashTable (int capacity) { 
        this.capacity = capacity; 
        tableEntry = new TableEntry [capacity]; 
        for (int i = 0; i <= capacity-1; i++) 
            tableEntry[i] = null;  
    } 
    // the hash function  
    protected abstract int h (Object key); 

     // insert element with given key and value (if not there already)        
    public abstract void insert (Object key Object value); 

     // delete element with given key (if there)  
    public abstract void delete (Object key); 

     // locate element with given key  
    public abstract Object search (Object key); 
} // class hashTable 



Hashing - problems 

1.  Size of the hash table 
Only a small subset S of all possible keys (the universe) U actually occurs 

2.  Calculation of the address of a data set 
- keys are not necessarily integers 
- index depends on the size of hash table 

In Java: 

 public class Object { 
    ... 
    public int hashCode()  {…} 
    ... 
} 

The universe U should be distributed as evenly as possibly to the numbers -231, …, 231-1. 



h(s) = hash address  

h(s) = h(s´)       s and s´ are synonyms with respect to h 
  address collision 

Hash function (1) 

Set of keys S 

Univer- 
se U 
of all  
possible 
keys  

hash function h 

0,…,m-1 

hash table T 
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(H(U)⊆ [−231,231 −1])



Hash function (2) 

Definition: Let U be a universe of possible keys and {B0, . . . ,Bm-1} a set of m buckets for 
storing elements from U. Then a hash function is a total mapping 

     h : U  {0, ... , m - 1}  

 mapping each key s ∈ U to a number h(s)  
(and the respective element to the bucket Bh(s)). 

•  The bucket numbers are also called hash addresses, the complete set of buckets is 
called hash table. 

B0 

B1 

Bm-1 

… 

… 



Address collisions 

•  A hash function h calculates for each key s the number of the associated bucket. 

•  It would be ideal if the mapping of a data set with key s to a bucket h(s) was 
unique (one-to-one): insertion and lookup could be carried out in constant time 
(O(1)). 

•  In reality, there will be collisions: several elements can be mapped to the same 
hash address. Collisions have to be treated (in one way or another). 



Hashing methods 

Example for U: all names in Java with length ≤ 40  |U | = 6240 

  If |U | > m : address collisions are inevitable 

Hashing methods: 
1. Choice of a hash function that is as “good” as possible 
2. Strategy for resolving address collisions 

Load factor     : 

Assumption: table size m is fixed € 

α =
#  stored keys

size of the hash table
=
S
m

=
n
m



Requirements for good hash functions 

Requirements 

•  A collision occurs if the bucket Bh(s) for a newly inserted element with key s is 
already taken. 

•  A hash function h is called perfect for a set S of keys if no collisions will occur for S. 

•  If h is perfect and |S| = n, then n ≤ m.  
The load factor of the hash table is n/m ≤ 1. 

•  A hash function is well chosen if 

 – the load factor is as high as possible, 
– for many sets of keys the # of collisions is as small as possible, 
– it can be computed efficiently. 



Example of a hash function 

Example: hash function for strings 

 public static int h (String s){ 
    int k = 0, m = 13; 
    for (int i=0; i < s.length(); i++) 
        k += (int)s.charAt (i); 
    return ( k%m ); 
} 

The following hash addresses are generated for m = 13. 

 key s           h(s) 
Test    0 
Hallo    2 
SE     9 
Algo  10 

The greater the choice of m, the more perfect h becomes. 



 Probability of collision (1) 

Choice of the hash function 

•  The requirements high load factor and small number of collisions are in conflict 
with each other. We need to find a suitable compromise. 

•  For the set S of keys with |S| = n and buckets B0, ..., Bm-1: 
– for n > m conflicts are inevitable 
– for n < m there is a (residual) probability PK(n,m) for the occurrence of at least 
one collision. 

How can we find an estimate for PK(n,m)? 

•  For any key s the probability that h(s) = j with j ∈ {0, ..., m - 1} is:  
PK [h(s) = j] = 1/m, provided that there is an equal distribution. 

•  We have PK(n,m) = 1 - P¬K(n,m), 
if P¬K(n,m) is the probability that storing of n elements in m buckets leads to no 
collision. 



Probability of collision (2) 

On the probability of collisions 

•  If n keys are distributed sequentially to the buckets B0, ..., Bm-1 (with 
equal distribution), each time we have P [h(s) = j ] = 1/m. 

•  The probability P(i) for no collision in step i is P(i) = (m - (i - 1))/m 

•  Hence, we have 

   

 For example, if m = 365, P(23) > 50% and P(50) ≈ 97% (“birthday paradox”) 

€ 

PK (n,m) =1− P(1)*P(2)* ...*P(n) =1− m(m −1)...(m − n +1)
mn



Common hash functions 

Hash fuctions used in practice: 

•  see: D.E. Knuth: The Art of Computer Programming 

•  For U = integer the [divisions-residue method] is used: 

   h(s) = (a × s) mod m (a ≠ 0, a ≠ m, m prime) 

•  For strings of characters of the form s = s0s1 . . . sk-1 one can use: 

e.g. B = 131 and w = word width (bits) of the computer (w = 32 or w = 64 is common). 
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Simple hash function 

Choice of the hash function 
- simple and quick computation   
- even distribution of the data (example: compiler) 

(Simple) division-residue method 

   h(k) = k mod m 

How to choose m? 

Examples: 

a)  m even  h(k) even       k even  

Problematic if the last bit has a meaning (e.g. 0 = female, 1 = male) 

b) m = 2p yields the p lowest dual digits of k 

Rule: Choose m prime, and m is not a factor of any ri +/- j , 
where i and j are small, non-negative numbers and r is the radix of the representation. 



Multiplicative method (1) 

Choose constant 

1. Compute  

2. 

Choice of m is uncritical, choose m = 2p : 

Computation of h(k) : 

€ 

kθ mod  1= kθ − kθ 

€ 

h(k) = m(kθ  mod  1) 

p Bits = h(k) 
r0 r1 

0, 

k 



Example: 

Of all numbers        ,            leads to the most even distribution. 

€ 

θ =
5 −1
2

≈ 0.6180339

k =123456
m =10000

€ 

h(k) = 10000(123456*0.61803...mod1) 
= 10000(76300,0041151...mod1) 
= 41.151... = 41

€ 

0 ≤θ ≤1

€ 
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2

Multiplicative method (2) 



Universal hashing 

Problem: if h is fixed  there are                with many collisions 

Idea of universal hashing: 
    Choose hash function h randomly 

H finite set of hash functions 

   

Definition: H is universal, if for arbitrary x,y ∈ U: 

Hence: if x, y ∈ U, H universal, h ∈ H  picked randomly 
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S ⊆U

€ 

h ∈ H :U→{0,...,m −1}
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{h ∈ H | h(x) = h(y)}
H

≤
1
m
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PrH (h(x) = h(y)) ≤ 1
m



Universal hashing 

Definition: 

Extension to sets: 

     

Corollary: H is universal, if for any x,y ∈ U 

€ 

δ(x,y,h) =
1, if h(x) = h(y) and x ≠ y
0, otherwise
 
 
 

€ 

δ(x,S,h) = δ(x,s,h)
s∈S
∑
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δ(x,y,G) = δ(x,y,h)
h∈G
∑
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δ(x,y,H) ≤
H
m



A universal class of hash functions 

Assumptions: 

•  |U| = p (p prime) and U = {0, …, p-1} 

•  Let a ∈ {1, …, p-1}, b ∈ {0, …, p-1} and ha,b : U  {0,…,m-1} be defined as follows 

    ha,b = ((ax+b) mod p) mod m 

Then: 

The set 

  H = {ha,b | 1 ≤ a ≤ p-1, 0 ≤ b ≤ p-1} 
    

is  a universal class of hash functions. 



Universal hashing - example 

Hash table T of size 3, |U| = 5 

Consider the 20 functions (set H ): 

  x+0  2x+0  3x+0  4x+0 
 x+1  2x+1  3x+1  4x+1 
 x+2  2x+2  3x+2  4x+2 
 x+3  2x+3  3x+3  4x+3 
 x+4  2x+4  3x+4  4x+4  

each (mod 5) (mod 3) 

and the keys 1 und 4 

We get: 

 (1*1+0) mod 5 mod 3 = 1 = (1*4+0) mod 5 mod 3 
(1*1+4) mod 5 mod 3 = 0 = (1*4+4) mod 5 mod 3 
(4*1+0) mod 5 mod 3 = 1 = (4*4+0) mod 5 mod 3  
(4*1+4) mod 5 mod 3 = 0 = (4*4+4) mod 5 mod 3 



Possible ways of treating collisions 

Treatment of collisions: 

•  Collisions are treated differently in different methods. 

•  A data set with key s is called a colliding element if bucket Bh(s) is already taken by 
another data set. 

•  What can we do with colliding elements? 
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in 
these lists. 
2. Open Addressing: Colliding elements are stored in other vacant buckets. During 
storage and lookup, these are found through so-called probing. 


