Universal hashing l'

FREIBURG

Problem: if h is fixed = there are S C U with many collisions

|dea of universal hashing:
Choose hash function h randomly

H finite set of hash functions
hEH :U—{0,..m-1}

Definition: H is universal, if for arbitrary x,y € U.
VWEH | h(x)=h(y); _ 1

| | m
Hence: if x, y € U, H universal, h € H picked randomly

Pr, (h(x)= h(y))s —

m

A universal class of hash functions "

..........
uuuuuuuu

Assumptions:
« |U]l<p(pprime)and U=10, ..., p-1}
* Letae{1,...,p-1}, bEA{0,...,p-1}and h,, : U = {0,...,m-1} be defined as follows

h,,= ((ax+b) mod p) mod m

Then:
The set

H={h,,|1<as<p-1,0<bsp-1}

is a universal class of hash functions.

Universal hashing - example (A4

INFORMATIK

Hash table T of size 3, |U| =5
Consider the 20 functions (set H):

x+0 2x+0 3x+0 4x+0
x+1 2x+1 3x+1 4 x+1
X+2 2x+2 3x+2 4x+2
x+3 2x+3 3x+3 4x+3
x+4 2x+4 3x+4 4dx+4

each (mod 5) (mod 3) and the

key
s 1 und 4, let us consider the number of hash functions in H, such that h(1) = h(4).
1234 1234 4812 16 4321
2345 2340 59 13 17 0432
3456 3401 61014 18 1043
4567 4012 71115 19 2104
5678 0123 81216 20 3210

a(1) +b h'(1)=(a(1) +b) mod 5 a(4) +b h’'(4)=(a(4) +b) mod 5

Universal hashing - example (A4

INFORMATIK

Hash table T of size 3, |U| =5
Consider the 20 functions (set H):

x+0 2x+0 3x+0 4x+0
x+1 2x+1 3x+1 4 x+1
X+2 2x+2 3x+2 4x+2
x+3 2x+3 3x+3 4x+3
x+4 2x+4 3x+4 4dx+4

each (mod 5) (mod 3) and the

keys
1 und 4, let us consider the number of hash functions h in H, such that h(1) = h(4).
1234 (1238 4812 16 (4321
2345 2340 59 13 17 0432
3456 3401 61014 18 1043
4567 4012 71115 19 2104
5678 (01243 81216 20 (32 10)

a(1) +b h'(1)=(a(1) +b) mod 5 a(4) +b h’'(4)=(a(4) +b) mod 5

A universal class of hash functions "

..........
uuuuuuuu

Assumptions:
« |U]l<p(pprime)and U=10, ..., p-1}
* Letae{1,...,p-1}, bEA{0,...,p-1}and h,, : U = {0,...,m-1} be defined as follows

h,,= ((ax+b) mod p) mod m

Then:
The set

H={h,,|1<as<p-1,0<bsp-1}

is a universal class of hash functions.

h,,= ((ax+b) mod p) mod m A

FREIBURG

H={h,,|1sasp-1,0sb<p-1} is auniversal class of hash functions.

Proof

Consider two distinct keys x and y from {0, ...,p-1}, so that x # y. For a given hash
function h, , , we let

S = (ax + b) mod p,
t=(ay + b) mod p.
Firstly, s # t holds, since s -t = a(x - y) (mod p).

Possible ways of treating collisions A

FREIBURG

Treatment of collisions:
« Collisions are treated differently in different methods.

A data set with key s is called a colliding element if bucket B, is already taken by
another data set.

« What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in
these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During
storage and lookup, these are found through so-called probing.

Theory |
Algorithm Design and Analysis

(6 Hashing: Chaining)

Prof. Th. Ottmann

Chaining (1) N

FREIBURG

* The hash table is an array (length m) of lists.
Each bucket is realized by a list.

class hashTable {

List[] ht; // an array of lists
hashTable (int m) { // Construktor
ht = new List[m];
for (int 1 = 0; i < m; 1i++)
ht[i] = new List(); // Construct a list

}

» Two different ways of using lists:
1. Direct chaining:
Hash table only contains list headers; the data sets are stored in the lists.

« 2. Separate chaining:

Hash table contains at most one data set in each bucket as well as a list header.
Colliding elements are stored in the list.

Hashing by chaining

Keys are stored in overflow lists
h(k) = kmod 7

o 1 2 3 4 &5 6

hash table T
pointer

> colliding elements

_/

This type of chaining is also known as direct chaining.

uT FO
..........
eeeeeeee

Chaining A

FREIBURG

Lookup key k
- Compute h(k) and overflow list T[h(k)]
- Look for k in the overflow list

Insert a key k
- Lookup k (fails)
- Insert k in the overflow list

Delete a key k
- Lookup k (successfully)
- Remove k from the overflow list

—> only list operations

Analysis of direct chaining N

FREIBURG

Uniform hashing assumption:
« All hash addresses are chosen with the same probability, i.e.:
Pr(h(k) = j) = 1/m
* independent from operation to operation
Average chain length for n entries:
nim = a

Definition:

c

= Expected number of entries inspected during a failed search

n

C, = Expected number of entries inspected during a successful search

n

Analysis:

I
Q

SIS

I

[y

+
N R

Advantages:

+ C, and C’, are small

+a >1 possible
+ real distances

Chaining

+ suitable for secondary memory

Efficiency of lookup

o C,, (successful) C’, (fail)
0.50 1.250 0.50
0.90 1.450 0.90
0.95 1.457 0.95
1.00 1.500 1.00
2.00 2.000 2.00
3.00 2.500 3.00

Disadvantages:

- Additional space for pointers
- Colliding elements are outside the hash table

INFORMATIK
FREIBURG

Summary "

INFORMATIK

Analysis of hashing with chaining:

e worst case:
h(s) always yields the same value, all data sets are in a list.
Behavior as in linear lists.

* average case:
— Successful lookup & delete: complexity (in inspections) = 1 + 0.5 x load factor
— Failed lookup & insert: complexity = load factor

This holds for direct chaining, with separate chaining the complexity is a bit higher.

* Dbest case:
lookup is an immediate success: complexity € O(1).

