Universal hashing

Problem: if *h* is fixed \rightarrow there are $S \subseteq U$ with many collisions

Idea of universal hashing:

Choose hash function *h* randomly

H finite set of hash functions

$$h \in H : U \rightarrow \{0, \dots m-1\}$$

Definition: *H* is universal, if for arbitrary $x, y \in U$:

$$\frac{\{h \in H \mid h(x) = h(y)\}}{\mid H \mid} \leq \frac{1}{m}$$

Hence: if x, $y \in U$, H universal, $h \in H$ picked randomly
 $\Pr_{H}(h(x) = h(y)) \leq \frac{1}{m}$

A universal class of hash functions

Assumptions:

- |U|
- Let $a \in \{1, ..., p-1\}$, $b \in \{0, ..., p-1\}$ and $\underline{h}_{\underline{a},\underline{b}} : \underline{U} \rightarrow \{0,...,m-1\}$ be defined as follows

 $h_{a,b} = ((ax+b) \mod p) \mod m$

Then:

The set

$$H = \{h_{a,b} \mid 1 \le a \le p-1, \ 0 \le b \le p-1\}$$

is a universal class of hash functions.

Hash table *T* of size 3, |U| = 5

Consider the 20 functions (set *H*):

x+0 2	x+0	3 <i>x</i> +0	4 <i>x</i> +0
<i>x</i> +1	2 <i>x</i> +1	3 <i>x</i> +1	4 <i>x</i> +1
<i>x</i> +2	2 <i>x</i> +2	3 <i>x</i> +2	4 <i>x</i> +2
<i>x</i> +3	2 <i>x</i> +3	3 <i>x</i> +3	4 <i>x</i> +3
x+4	2 <i>x</i> +4	3 <i>x</i> +4	4 <i>x</i> +4

each (mod 5) (mod 3) and the

key

s 1 und 4, let us consider the number of hash functions in H, such that h(1) = h(4).

1234	1234	4 8 12 16	4321
2345	2340	5 9 13 17	0432
3456	3401	6 10 14 18	1043
4567	4012	7 11 15 19	2104
5678	0123	8 12 16 20	3210
a(1) +b	h'(1)=(a(1) +b) mod 5	a(4) +b	h'(4)=(a(4) +b) mod 5

Hash table *T* of size 3, |U| = 5

Consider the 20 functions (set *H*):

<i>x</i> +0 2	<i>x</i> +0	3 <i>x</i> +0	4 <i>x</i> +0
<i>x</i> +1	2x+1	3 <i>x</i> +1	4 <i>x</i> +1
<i>x</i> +2	2 <i>x</i> +2	3 <i>x</i> +2	4 <i>x</i> +2
<i>x</i> +3	2 <i>x</i> +3	3 <i>x</i> +3	4 <i>x</i> +3
x +4	2 <i>x</i> +4	3 <i>x</i> +4	4 <i>x</i> +4

each (mod 5) (mod 3) and the

keys

1 und 4, let us consider the number of hash functions h in H, such that h(1) = h(4).

1234	1234	4 8 12 16	(4)3 2(1)
2345	2340	5 9 13 17	0432
3456	3401	6 10 14 18	1043
4567	4012	7 11 15 19	2104
5678	0 1 23	8 12 16 20	3210
a(1) +b	h'(1)=(a(1) +b) mod 5	a(4) +b	h'(4)=(a(4) +b) mod 5

A universal class of hash functions

Assumptions:

- |U|
- Let $a \in \{1, ..., p-1\}$, $b \in \{0, ..., p-1\}$ and $\underline{h}_{\underline{a},\underline{b}} : \underline{U} \rightarrow \{0,...,m-1\}$ be defined as follows

 $h_{a,b} = ((ax+b) \mod p) \mod m$

Then:

The set

$$H = \{h_{a,b} \mid 1 \le a \le p-1, \ 0 \le b \le p-1\}$$

is a universal class of hash functions.

$h_{a,b} = ((ax+b) \mod p) \mod m$

 $H = \{h_{a,b} \mid 1 \le a \le p-1, 0 \le b \le p-1\}$ is a universal class of hash functions.

Proof

Consider two distinct keys x and y from $\{0, \dots, p-1\}$, so that $x \neq y$. For a given hash function $h_{a,b}$, we let

 $s = (ax + b) \mod p$,

 $t = (ay + b) \mod p$.

Firstly, $s \neq t$ holds, since $s - t \equiv a(x - y) \pmod{p}$.

Possible ways of treating collisions

Treatment of collisions:

- Collisions are treated differently in different methods.
- A data set with key *s* is called a colliding element if bucket $B_{h(s)}$ is already taken by another data set.
- What can we do with colliding elements?

1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in these lists.

2. Open Addressing: Colliding elements are stored in other vacant buckets. During storage and lookup, these are found through so-called probing.

Theory I Algorithm Design and Analysis

(6 Hashing: Chaining)

Prof. Th. Ottmann

Chaining (1)

• The hash table is an array (length *m*) of lists. Each bucket is realized by a list.

```
class hashTable {
  List[] ht; // an array of lists
  hashTable (int m) { // Construktor
    ht = new List[m];
    for (int i = 0; i < m; i++)
        ht[i] = new List(); // Construct a list
    }
    ...
}</pre>
```

• Two different ways of using lists:

1. Direct chaining:

Hash table only contains list headers; the data sets are stored in the lists.

• 2. Separate chaining:

Hash table contains at most one data set in each bucket as well as a list header. Colliding elements are stored in the list.

Hashing by chaining

Keys are stored in overflow lists

 $h(k) = k \mod 7$

This type of chaining is also known as direct chaining.

Chaining

Lookup key k

- Compute h(k) and overflow list T[h(k)]
- Look for *k* in the overflow list

Insert a key k

- Lookup k (fails)
- Insert k in the overflow list

Delete a key k

- Lookup k (successfully)
- Remove *k* from the overflow list
- \rightarrow only list operations

Analysis of direct chaining

Uniform hashing assumption:

• All hash addresses are chosen with the same probability, i.e.:

 $Pr(h(k_i) = j) = 1/m$

independent from operation to operation

Average chain length for *n* entries:

 $n/m = \alpha$

Definition:

 C'_n = Expected number of entries inspected during a failed search

 C_n = Expected number of entries inspected during a successful search

Analysis:

$$C'_n = \alpha$$

 $C_n \approx 1 + \frac{\alpha}{2}$

Chaining

Advantages:

- + C_n and C'_n are small
- + α > 1 possible
- + real distances
- + suitable for secondary memory

Efficiency of lookup

α	C _n (successful)	C´ _n (fail)
0.50	1.250	0.50
0.90	1.450	0.90
0.95	1.457	0.95
1.00	1.500	1.00
2.00	2.000	2.00
3.00	2.500	3.00

Disadvantages:

- Additional space for pointers
- Colliding elements are outside the hash table

Summary

Analysis of hashing with chaining:

• worst case:

h(s) always yields the same value, all data sets are in a list. Behavior as in linear lists.

- average case:
 - Successful lookup & delete: complexity (in inspections) \approx 1 + 0.5 × load factor
 - Failed lookup & insert: complexity \approx load factor

This holds for direct chaining, with separate chaining the complexity is a bit higher.

• best case:

lookup is an immediate success: complexity $\in O(1)$.