## Universal hashing

Problem: if $h$ is fixed $\rightarrow$ there are $S \subseteq U$ with many collisions
Idea of universal hashing:
Choose hash function $h$ randomly
$H$ finite set of hash functions

$$
h \in H: U \rightarrow\{0, \ldots m-1\}
$$

Definition: $H$ is universal, if for arbitrary $x, y \in U$ :

$$
\frac{\{h \in H \mid h(x)=h(y)\}}{|H|} \leq \frac{1}{m}
$$

Hence: if $x, y \in U, H$ universal, $h \in H$ picked randomly

$$
\operatorname{Pr}_{H}(h(x)=h(y)) \leq \frac{1}{m}
$$

## A universal class of hash functions

## Assumptions:

- $|U|<p$ ( $p$ prime) and $U=\{0, \ldots, p-1\}$
- Let $a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}$ and $\underline{h}_{\underline{a}, \underline{b}}: \underline{U} \rightarrow\{0, \ldots, m-1\}$ be defined as follows

$$
h_{a, b}=((a x+b) \bmod p) \bmod m
$$

Then:
The set

$$
H=\left\{h_{a, b} \mid 1 \leq a \leq p-1,0 \leq b \leq p-1\right\}
$$

is a universal class of hash functions.

## Universal hashing - example

Hash table $T$ of size $3,|U|=5$
Consider the 20 functions (set $H$ ):

$$
\begin{array}{cccr}
x+0 & 2 x+0 & 3 x+0 & 4 x+0 \\
x+1 & 2 x+1 & 3 x+1 & 4 x+1 \\
x+2 & 2 x+2 & 3 x+2 & 4 x+2 \\
x+3 & 2 x+3 & 3 x+3 & 4 x+3 \\
x+4 & 2 x+4 & 3 x+4 & 4 x+4
\end{array}
$$

each $(\bmod 5)(\bmod 3)$ and the key
s 1 und 4, let us consider the number of hash functions in $H$, such that $h(1)=h(4)$.

| 1234 | 1234 | 481216 | 4321 |
| :--- | :--- | :--- | :--- |
| 2345 | 2340 | 591317 | 0432 |
| 3456 | 3401 | 6101418 | 1043 |
| 4567 | 4012 | 7111519 | 2104 |
| 5678 | 0123 | 8121620 | 3210 |
| $a(1)+b$ | $h^{\prime}(1)=(a(1)+b) \bmod 5$ | $a(4)+b$ | $h^{\prime}(4)=(a(4)+b) \bmod 5$ |

## Universal hashing - example

Hash table $T$ of size $3,|U|=5$
Consider the 20 functions (set $H$ ):

$$
\begin{array}{rrrr}
x+0 & 2 x+0 & 3 x+0 & 4 x+0 \\
x+1 & 2 x+1 & 3 x+1 & 4 x+1 \\
x+2 & 2 x+2 & 3 x+2 & 4 x+2 \\
x+3 & 2 x+3 & 3 x+3 & 4 x+3 \\
x+4 & 2 x+4 & 3 x+4 & 4 x+4
\end{array}
$$

each $(\bmod 5)(\bmod 3)$ and the keys
1 und 4, let us consider the number of hash functions $h$ in $H$, such that $h(1)=h(4)$.

| 1234 | $(1) 234$ | 481216 | (4) 321 |
| :---: | :---: | :---: | :---: |
| 2345 | 2340 | 591317 | 0432 |
| 3456 | 3401 | 6101418 | 1043 |
| 4567 | 4012 | 7111519 | 2104 |
| 5678 | $012(3)$ | 8121620 | $(3210$ |
| $a(1)+b$ | $h^{\prime}(1)=(a(1)+b) \bmod 5$ | $a(4)+b$ | $h^{\prime}(4)=(a(4)+b) \bmod 5$ |

## A universal class of hash functions

## Assumptions:

- $|U|<p$ ( $p$ prime) and $U=\{0, \ldots, p-1\}$
- Let $a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}$ and $\underline{h}_{\underline{a}, \underline{b}}: \underline{U} \rightarrow\{0, \ldots, m-1\}$ be defined as follows

$$
h_{a, b}=((a x+b) \bmod p) \bmod m
$$

Then:
The set

$$
H=\left\{h_{a, b} \mid 1 \leq a \leq p-1,0 \leq b \leq p-1\right\}
$$

is a universal class of hash functions.

## $h_{a, b}=((a x+b) \bmod p) \bmod m$

$H=\left\{h_{a, b} \mid 1 \leq a \leq p-1,0 \leq b \leq p-1\right\}$ is a universal class of hash functions.

## Proof

Consider two distinct keys $x$ and $y$ from $\{0, \ldots, p-1\}$, so that $x \neq y$. For a given hash function $h_{a, b}$, we let
$s=(a x+b) \bmod p$,
$t=(a y+b) \bmod p$.
Firstly, $s \neq t$ holds, since $s-t \equiv a(x-y)(\bmod p)$.

## Possible ways of treating collisions

## Treatment of collisions:

- Collisions are treated differently in different methods.
- A data set with key $s$ is called a colliding element if bucket $B_{h(s)}$ is already taken by another data set.
- What can we do with colliding elements?

1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During storage and lookup, these are found through so-called probing.

# Theory I <br> Algorithm Design and Analysis 

(6 Hashing: Chaining)

Prof. Th. Ottmann

## Chaining (1)

- The hash table is an array (length $m$ ) of lists.

Each bucket is realized by a list.

```
class hashTable {
    List[] ht; // an array of lists
    hashTable (int m){ // Construktor
        ht = new List[m];
        for (int i = 0; i < m; i++)
            ht[i] = new List(); // Construct a list
    }
}
```

- Two different ways of using lists:

1. Direct chaining:

Hash table only contains list headers; the data sets are stored in the lists.

- 2. Separate chaining:

Hash table contains at most one data set in each bucket as well as a list header.
Colliding elements are stored in the list.

## Hashing by chaining

Keys are stored in overflow lists

$$
h(k)=k \bmod 7
$$



This type of chaining is also known as direct chaining.

## Chaining

Lookup key $k$

- Compute $h(k)$ and overflow list $T h(k)$ ]
- Look for $k$ in the overflow list

Insert a key $k$

- Lookup $k$ (fails)
- Insert $k$ in the overflow list

Delete a key $k$

- Lookup k (successfully)
- Remove $k$ from the overflow list
$\rightarrow$ only list operations


## Analysis of direct chaining

## Uniform hashing assumption:

- All hash addresses are chosen with the same probability, i.e.:

$$
\operatorname{Pr}\left(h\left(k_{i}\right)=j\right)=1 / m
$$

- independent from operation to operation

Average chain length for $n$ entries:

$$
n / m=\quad \alpha
$$

Definition:
$C^{\prime}{ }_{n}=$ Expected number of entries inspected during a failed search
$C_{n}=$ Expected number of entries inspected during a successful search
Analysis:

$$
\begin{aligned}
& C_{n}^{\prime}=\alpha \\
& C_{n} \approx 1+\frac{\alpha}{2}
\end{aligned}
$$

## Chaining

## Advantages:

$+\mathrm{C}_{n}$ and $\mathrm{C}^{\prime}{ }_{n}$ are small
$+\alpha>1$ possible

+ real distances
+ suitable for secondary memory

Efficiency of lookup

| $\alpha$ | $\mathrm{C}_{n}$ (successful) | $\mathrm{C}^{\prime}$ (fail) |
| :--- | :--- | :--- |
| 0.50 | 1.250 | 0.50 |
| 0.90 | 1.450 | 0.90 |
| 0.95 | 1.457 | 0.95 |
| 1.00 | 1.500 | 1.00 |
| 2.00 | 2.000 | 2.00 |
| 3.00 | 2.500 | 3.00 |

Disadvantages:

- Additional space for pointers
- Colliding elements are outside the hash table


## Summary

## Analysis of hashing with chaining:

- worst case:
$h(s)$ always yields the same value, all data sets are in a list.
Behavior as in linear lists.
- average case:
- Successful lookup \& delete: complexity (in inspections) $\approx 1+0.5 \times$ load factor
- Failed lookup \& insert: complexity $\approx$ load factor

This holds for direct chaining, with separate chaining the complexity is a bit higher.

- best case:
lookup is an immediate success: complexity $\in O(1)$.

