
Universal hashing

Problem: if h is fixed  there are with many collisions

Idea of universal hashing:
 Choose hash function h randomly

H finite set of hash functions

Definition: H is universal, if for arbitrary x,y ∈ U:

Hence: if x, y ∈ U, H universal, h ∈ H picked randomly

A universal class of hash functions

Assumptions:

•  |U| < p (p prime) and U = {0, …, p-1}

•  Let a ∈ {1, …, p-1}, b ∈ {0, …, p-1} and ha,b : U  {0,…,m-1} be defined as follows

 ha,b = ((ax+b) mod p) mod m

Then:

The set

 H = {ha,b | 1 ≤ a ≤ p-1, 0 ≤ b ≤ p-1}

is a universal class of hash functions.

Universal hashing - example

Hash table T of size 3, |U| = 5

Consider the 20 functions (set H):

 x+0 2x+0 3x+0 4x+0
 x+1 2x+1 3x+1 4x+1
 x+2 2x+2 3x+2 4x+2
 x+3 2x+3 3x+3 4x+3
 x+4 2x+4 3x+4 4x+4

each (mod 5) (mod 3) and the ‏
key
s 1 und 4, let us consider the number of hash functions in H, such that h(1) = h(4).

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

1 2 3 4
2 3 4 0
3 4 0 1
4 0 1 2
0 1 2 3

a(1) +b h’(1)=(a(1) +b) mod 5

4 8 12 16
5 9 13 17
6 10 14 18
7 11 15 19
8 12 16 20

a(4) +b

4 3 2 1
0 4 3 2
1 0 4 3
2 1 0 4
3 2 1 0

h’(4)=(a(4) +b) mod 5

Universal hashing - example

Hash table T of size 3, |U| = 5

Consider the 20 functions (set H):

 x+0 2x+0 3x+0 4x+0
 x+1 2x+1 3x+1 4x+1
 x+2 2x+2 3x+2 4x+2
 x+3 2x+3 3x+3 4x+3
 x+4 2x+4 3x+4 4x+4

each (mod 5) (mod 3) and the ‏
keys
1 und 4, let us consider the number of hash functions h in H, such that h(1) = h(4).

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

1 2 3 4
2 3 4 0
3 4 0 1
4 0 1 2
0 1 2 3

a(1) +b h’(1)=(a(1) +b) mod 5

4 8 12 16
5 9 13 17
6 10 14 18
7 11 15 19
8 12 16 20

a(4) +b

4 3 2 1
0 4 3 2
1 0 4 3
2 1 0 4
3 2 1 0

h’(4)=(a(4) +b) mod 5

A universal class of hash functions

Assumptions:

•  |U| < p (p prime) and U = {0, …, p-1}

•  Let a ∈ {1, …, p-1}, b ∈ {0, …, p-1} and ha,b : U  {0,…,m-1} be defined as follows

 ha,b = ((ax+b) mod p) mod m

Then:

The set

 H = {ha,b | 1 ≤ a ≤ p-1, 0 ≤ b ≤ p-1}

is a universal class of hash functions.

ha,b = ((ax+b) mod p) mod m

H = {ha,b | 1 ≤ a ≤ p-1, 0 ≤ b ≤ p-1} is a universal class of hash functions.

Proof

Consider two distinct keys x and y from {0,…,p-1}, so that x ≠ y. For a given hash
function ha,b , we let

s = (ax + b) mod p,

t = (ay + b) mod p.

Firstly, s ≠ t holds, since s - t ≡ a(x - y) (mod p).

Possible ways of treating collisions

Treatment of collisions:

•  Collisions are treated differently in different methods.

•  A data set with key s is called a colliding element if bucket Bh(s) is already taken by
another data set.

•  What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in
these lists.
2. Open Addressing: Colliding elements are stored in other vacant buckets. During
storage and lookup, these are found through so-called probing.

Theory I
Algorithm Design and Analysis

(6 Hashing: Chaining)

Prof. Th. Ottmann

Chaining (1)

•  The hash table is an array (length m) of lists.
Each bucket is realized by a list.

 class hashTable {
 List[] ht; // an array of lists
 hashTable (int m){ // Construktor
 ht = new List[m];
 for (int i = 0; i < m; i++)
 ht[i] = new List(); // Construct a list
 }

 ...
}

•  Two different ways of using lists:
1. Direct chaining:
Hash table only contains list headers; the data sets are stored in the lists.

•  2. Separate chaining:
Hash table contains at most one data set in each bucket as well as a list header.
Colliding elements are stored in the list.

Hashing by chaining

Keys are stored in overflow lists

This type of chaining is also known as direct chaining.

h(k) = k mod 7

0 1 2 3 4 5 6

hash table T
pointer

colliding elements

15 2

43

53 12

19

5

Chaining

Lookup key k
- Compute h(k) and overflow list T[h(k)]
- Look for k in the overflow list

Insert a key k
- Lookup k (fails)
- Insert k in the overflow list

Delete a key k
- Lookup k (successfully)
- Remove k from the overflow list

 only list operations

Analysis of direct chaining
Uniform hashing assumption:

•  All hash addresses are chosen with the same probability, i.e.:

 Pr(h(ki) = j) = 1/m

•  independent from operation to operation

Average chain length for n entries:

 n/m =

Definition:

 C´n = Expected number of entries inspected during a failed search

 Cn = Expected number of entries inspected during a successful search

Analysis:

€

C'n =α

Cn ≈1+
α
2

Chaining

Advantages:
+ Cn and C´n are small
+ > 1 possible
+ real distances
+ suitable for secondary memory

Efficiency of lookup
 Cn (successful) C´n (fail)
 0.50 1.250 0.50
 0.90 1.450 0.90
 0.95 1.457 0.95
 1.00 1.500 1.00
 2.00 2.000 2.00
 3.00 2.500 3.00

Disadvantages:
- Additional space for pointers
- Colliding elements are outside the hash table

Summary

Analysis of hashing with chaining:

•  worst case:
h(s) always yields the same value, all data sets are in a list.
Behavior as in linear lists.

•  average case:
– Successful lookup & delete: complexity (in inspections) ≈ 1 + 0.5 × load factor
– Failed lookup & insert: complexity ≈ load factor

 This holds for direct chaining, with separate chaining the complexity is a bit higher.

•  best case:
lookup is an immediate success: complexity ∈ O(1).

