
Universal hashing 

Problem: if h is fixed  there are                with many collisions 

Idea of universal hashing: 
    Choose hash function h randomly 

H finite set of hash functions 

   

Definition: H is universal, if for arbitrary x,y ∈ U: 

Hence: if x, y ∈ U, H universal, h ∈ H  picked randomly 



A universal class of hash functions 

Assumptions: 

•  |U| < p (p prime) and U = {0, …, p-1} 

•  Let a ∈ {1, …, p-1}, b ∈ {0, …, p-1} and ha,b : U  {0,…,m-1} be defined as follows 

    ha,b = ((ax+b) mod p) mod m 

Then: 

The set 

  H = {ha,b | 1 ≤ a ≤ p-1, 0 ≤ b ≤ p-1} 
    

is  a universal class of hash functions. 



Universal hashing - example 

Hash table T of size 3, |U| = 5 

Consider the 20 functions (set H ): 

  x+0  2x+0  3x+0  4x+0 
 x+1  2x+1  3x+1  4x+1 
 x+2  2x+2  3x+2  4x+2 
 x+3  2x+3  3x+3  4x+3 
 x+4  2x+4  3x+4  4x+4  

each (mod 5) (mod 3)  and the ‏
key
s 1 und 4, let us consider the number of hash functions in H, such that h(1) = h(4). 

1 2 3 4 
2 3 4 5 
3 4 5 6 
4 5 6 7 
5 6 7 8  

1 2 3 4 
2 3 4 0 
3 4 0 1 
4 0 1 2 
0 1 2 3  

a(1) +b h’(1)=(a(1) +b) mod 5 

4  8  12  16 
5  9  13  17 
6 10 14  18 
7 11 15  19 
8 12 16  20  

a(4) +b 

4 3 2 1 
0 4 3 2 
1 0 4 3 
2 1 0 4 
3 2 1 0 

h’(4)=(a(4) +b) mod 5 
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ha,b = ((ax+b) mod p) mod m 

H = {ha,b | 1 ≤ a ≤ p-1, 0 ≤ b ≤ p-1}  is  a universal class of hash functions. 

Proof  

Consider two distinct keys x and y from {0,…,p-1}, so that x ≠ y. For a given hash 
function ha,b , we let 

s = (ax + b) mod p, 

t = (ay + b) mod p. 

Firstly, s ≠ t holds, since s - t ≡ a(x - y) (mod p). 



Possible ways of treating collisions 

Treatment of collisions: 

•  Collisions are treated differently in different methods. 

•  A data set with key s is called a colliding element if bucket Bh(s) is already taken by 
another data set. 

•  What can we do with colliding elements? 
1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in 
these lists. 
2. Open Addressing: Colliding elements are stored in other vacant buckets. During 
storage and lookup, these are found through so-called probing. 



Theory I 
Algorithm Design and Analysis 

(6  Hashing: Chaining) 

Prof. Th. Ottmann 



Chaining (1) 

•  The hash table is an array (length m) of lists.  
Each bucket is realized by a list.  

 class hashTable { 
    List[] ht;    // an array of lists 
    hashTable (int m){    // Construktor 
        ht = new List[m]; 
        for (int i = 0; i < m; i++) 
            ht[i] = new List();  // Construct a list 
    } 

    ... 
} 

•  Two different ways of using lists: 
1. Direct chaining:  
Hash table only contains list headers; the data sets are stored in the lists.  

•  2. Separate chaining:  
Hash table contains at most one data set in each bucket as well as a list header. 
Colliding elements are stored in the list.  



Hashing by chaining 

Keys are stored in overflow lists  

This type of chaining is also known as direct chaining. 

h(k) = k mod 7 

0     1      2      3     4      5      6 

hash table T 
pointer 

colliding elements 

15 2 

43 

53 12 

19 

5 



Chaining 

Lookup key k  
- Compute h(k) and overflow list T[h(k)]   
- Look for k in the overflow list 

Insert a key k   
- Lookup k (fails) 
- Insert k in the overflow list 

Delete a key k  
- Lookup k (successfully) 
- Remove k from the overflow list 

 only list operations 



Analysis of direct chaining 
Uniform hashing assumption:   

•  All  hash addresses are chosen with the same probability, i.e.:  

  Pr(h(ki) = j) = 1/m 

•  independent from operation to operation 

Average chain length for n entries: 

   n/m =  

Definition: 

    C´n =  Expected number of entries inspected during a failed search 

    Cn  =  Expected number of entries inspected during a successful search 

Analysis: 

€ 

C'n =α

Cn ≈1+
α
2



Chaining 

Advantages: 
+ Cn and C´n are small 
+     > 1  possible 
+ real distances 
+ suitable for secondary memory 

Efficiency of lookup 
   Cn (successful)  C´n (fail) 
  0.50  1.250   0.50 
  0.90  1.450   0.90 
  0.95  1.457   0.95 
  1.00  1.500   1.00 
  2.00  2.000   2.00 
  3.00  2.500   3.00   

Disadvantages: 
- Additional space for pointers 
- Colliding elements are outside the hash table 



Summary 

Analysis of hashing with chaining: 

•  worst case:  
h(s) always yields the same value, all data sets are in a list. 
Behavior as in linear lists. 

•  average case: 
– Successful lookup & delete:  complexity (in inspections) ≈ 1 + 0.5 × load factor 
– Failed lookup & insert:  complexity ≈ load factor 

 This holds for direct chaining, with separate chaining the complexity is a bit higher. 

•  best case:  
lookup is an immediate success: complexity ∈ O(1). 


