

# Theory I Algorithm Design and Analysis

(8 – Dynamic tables)

## **Dynamic Tables**



Problem:

Maintenance of a table under the operations insert and delete such that

- the table size can be adjusted to the number of elements
- a fixed portion of the table is always filled with elements
- the costs for *n* insert or delete operations are in O(n).

Organisation of the table: hash table, heap, stack, etc.

Load factor  $\alpha_T$ : fraction of table spaces of *T* which are occupied.

Cost model:

Insertion or deletion of an element causes cost 1, if the table is not filled yet. If the table size is changed, all elements must be copied.

## Initialisation



```
class dynamicTable {
    private int [] table;
    private int size;
    private int num;
    dynamicTable () {
        table = new int [1]; // initialize empty table
        size = 1;
        num = 0;
    }
```

## Expansion strategy: insert



Double the table size whenever an element is inserted in the fully occupied table!

```
public void insert (int x) {
    if (num == size) {
        int[] newTable = new int[2*size];
        for (int i=0; i < size; i++)
            insert table[i] in newTable;
        table = newTable;
        size = 2*size;
    }
    insert x in table;
    num = num + 1;
}</pre>
```

# insert operations in an initially empty table



 $t_i$  = cost of the *i*-th insert operation

### Worst case:

 $t_i$  = 1, if the table was not full before operation *i*  $t_i$  = (*i* – 1) + 1, if the table was full before operation *i* Hence, *n* insert operations require costs of at most

$$\sum_{i=1}^{n} i = O(n^2)$$

## **Tighter analysis**



Let  $t_i$  be the cost of the *i*th insertion

$$t_i = \begin{cases} i & \text{if } i\text{-1 is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

| i                 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |
|-------------------|---|---|---|---|---|---|---|---|----|----|
| size <sub>i</sub> | 1 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 16 |
| t <sub>i</sub>    | 1 | 2 | 3 | 1 | 5 | 1 | 1 | 1 | 9  | 1  |

## **Tighter analysis**



Let  $t_i$  be the cost of the i th insertion

$$t_i = \begin{cases} i & \text{if } i-1 \text{ is an exact power of } 2\\ 1 & \text{otherwise} \end{cases}$$

| i                 | 1 | 2   | 3   | 4 | 5   | 6 | 7 | 8 | 9   | 10 |
|-------------------|---|-----|-----|---|-----|---|---|---|-----|----|
| size <sub>i</sub> | 1 | 2   | 4   | 4 | 8   | 8 | 8 | 8 | 16  | 16 |
| $t_i$             | 1 | 1+1 | 1+2 | 1 | 1+4 | 1 | 1 | 1 | 1+8 | 1  |

## **Tighter analysis**



Cost of the *n* insertions

$$= \sum_{i=1}^{n} t_i$$
$$= n + \sum_{j=0}^{\lfloor \lg(n-1) \rfloor} 2^j$$
$$<= 3n$$

Thus the average cost of each dynamic table operation is 3.

## Amortized analysis



- An *amortized analysis* is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.
- Even though we're taking averages, however, probability is not involved!
- An amortized analysis guarantees the average performance of each operation in the *worst case*.

# Types of amortized analysis



Three common amortization arguments:

- The *aggregate* method,
- The *accounting* method,
- The *potential* method.

We've just seen an aggregate analysis.

 The aggregate method, though simple, lacks the precision of the other two methods. In particular, the accounting and potential methods allow a specific *amortized cost* to be allocated to each operation.

# Accounting method



- Charge *i*-th operation a fictitious *amortized cost* a<sub>i</sub>, where \$1 pays for 1 unit of work (*i.e.*, time). This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in the *bank* for use by subsequent operations. The bank balance must not go negative!
- We must ensure that for all *n*,

$$\sum_{i=1}^n t_i \le \sum_{i=1}^n a_i$$

Thus, the total amortized costs provide an upper bound on the total true costs.



Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.







Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.







Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.







Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.





Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.





Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.





Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.





Charge an amortized cost of  $\mathcal{A}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.





Charge an amortized cost of  $\mathcal{Q}_i$  =\$3 for the *i*-th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.



## **Potential method**



**IDEA:** View the bank account as the potential energy of the dynamic set.

### Framework:

- Start with an initial data structure  $D_0$ .
- Operation i transforms  $D_{i-1}$  to  $D_i$ .
- The cost of operation i is  $t_i$ .
- Define a *potential function*  $\Phi$ :  $\{D_i\} \rightarrow \mathbb{R}$ , such that  $\Phi(D_0) = 0$  and  $\Phi(D_i) \ge 0$  for all i.

The *amortized cost*  $a_i$  with respect to  $\Phi$  is defined to be  $a_i = t_i + \Phi(D_i) - \Phi(D_{i-1})$ .

## Potential method



 $\mathcal{A}_i = t_i + \Phi(D_i) - \Phi(D_{i-1}).$ 

 $\Phi(D_i) - \Phi(D_{i-1})$  is called potential difference.

- If  $\Phi(D_i) \Phi(D_{i-1}) > 0$ , operation *i* stores work in the data structure for later use.
- If  $\Phi(D_i) \Phi(D_{i-1}) < 0$ , the data structure delivers up stored work to help pay for operation i.



$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi(D_i) - \Phi(D_{i-1}))$$
$$= \sum_{i=1}^{n} t_i + \Phi(D_n) - \Phi(D_0)$$
$$\ge \sum_{i=1}^{n} t_i$$
since  $\Phi(D_n) \ge 0$  and  $\Phi(D_0) = 0$ 



## Potential method



T table with

- k = T.num elements and
- *s* = *T.size* spaces

### **Potential function**

$$\phi\left(T\right)=2\,k-s$$

| • • • • • • • $\phi(T) = 2 * 7 - 8 =$ |  |  |
|---------------------------------------|--|--|
|---------------------------------------|--|--|

| 0\$ 0\$ | 0\$ | 0\$ | 2\$ | 2\$ | 2\$ |  |
|---------|-----|-----|-----|-----|-----|--|
|---------|-----|-----|-----|-----|-----|--|

Accounting method

# Properties of the potential function



### **Properties**

- $\phi_0 = \phi(T_0) = \phi$  (empty table) = 0
- For all  $i \ge 1$ :  $\phi_i = \phi(T_i) \ge 0$ Since  $\phi_n - \phi_0 \ge 0$ ,  $\Sigma a_i$  is an upper bound for  $\Sigma t_i$
- Directly before an expansion, k = s, hence φ(T) = k = s.
- Directly after an expansion, k = s/2, hence φ(T) = 2k - s = 0.

# Amortized cost of insert (1)



- $k_i$  = # elements in *T* after the *i*-th operation
- $s_i$  = table size of *T* after the *i*-th operation
- Case 1: [ *i*-th operation does not trigger an expansion]

## Amortized cost of insert (1)



 $k_i$  = # elements in *T* after the *i*-th operation

 $s_i$  = table size of *T* after the *i*-th operation

Case 1: [ *i*-th operation does not trigger an expansion]

$$k_{i} = k_{i-1} + 1, \ s_{i} = s_{i-1}$$

$$a_{i} = t_{i} + 2k_{i} - s_{i} - (2k_{i-1} - s_{i-1})$$

$$= 1 + 2(k_{i} - k_{i-1})$$

$$= 1 + 2 = 3$$



Case 2: [ *i*-th operation triggers an expansion]

 $s_{i} = 2^{*}s_{i-1}, k_{i} = k_{i-1} + 1,$   $a_{i} = t_{i} + 2k_{i} - s_{i} - (2k_{i-1} - s_{i-1})$   $= s_{i-1} + 1 + 2 - 2s_{i-1} + s_{i-1}$ = 3

## Insertion and deletion of elements



Now: contract table, if the load is too small!

### Goals:

- (1) Load factor is always bounded below by a constant
- (2) Amortized cost of a single insert or delete operation is constant.

### First attempt:

- Expansion: same as before
- Contraction: halve the table size as soon as table is less than ½ occupied (after the deletion)!



|                        | Cost            |
|------------------------|-----------------|
| n/2 times insert       | 3 n/2           |
| (table fully occupied) |                 |
| I: expansion           | <i>n/</i> 2 + 1 |
| D, D: contraction      | <i>n/</i> 2 + 1 |
| I, I : expansion       | <i>n/</i> 2 + 1 |
| D, D: contraction      |                 |

Total cost of the sequence  $I_{n/2}$ , I, D, D, I, I, D, D, ... of length n:



Expansion: (as before) double the table size, if an element is inserted in the full table.

**Contraction:** As soon as the load factor is below 1/4, halve the table size.

### Hence:

At least 1/4 of the table is always occupied, i.e.

 $\frac{1}{4} \leq \alpha(T) \leq 1$ 

Cost of a sequence of insert and

delete operations?



$$k$$
 = T.num,  $s$  = T.size,  $\alpha$  =  $k/s$ 

### Potential function $\phi$

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$



$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

Directly after an expansion or contraction of the table:

s = 2k, hence  $\phi(T) = 0$ 



*i*-th operation:  $k_i = k_{i-1} + 1$ 

Case 1:  $\alpha_{i-1} \ge \frac{1}{2}$ 

Case 2:  $\alpha_{i-1} < \frac{1}{2}$ 

Case 2.1:  $\alpha_i < \frac{1}{2}$ 

Case 2.2:  $\alpha_i \ge \frac{1}{2}$ 

## insert



Case 2.1:  $\alpha_{i-1} < \frac{1}{2}$ ,  $\alpha_i < \frac{1}{2}$  (no expansion)

### Potential function $\phi$

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

## insert



Case 2.1:  $\alpha_{i-1} < \frac{1}{2}$ ,  $\alpha_i < \frac{1}{2}$  (no expansion)

## Potential function $\phi$

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$a_{i} = t_{i} + s_{i} / 2 - k_{i} - (s_{i-1} / 2 - k_{i-1})$$

$$s_{i} = s_{i-1}, k_{i} = k_{i-1} + 1$$

$$a_{i} = 1 + k_{i-1} - k_{i}$$

$$a_{i} = 0$$



Case 2.2:  $\alpha_{i-1} < \frac{1}{2}, \alpha_i \ge \frac{1}{2}$  (no expansion)

Potential function 
$$\phi$$
  

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 \\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$



Case 2.2:  $\alpha_{i-1} < \frac{1}{2}, \alpha_i \ge \frac{1}{2}$  (no expansion)

Potential function 
$$\phi$$
  

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 & s_i = s_{i-1} \\ s/2 - k, \text{ if } \alpha < 1/2 & k_i = 1 + k_{i-1} \\ s_i = 2k_i & s_i = 2k_i \end{cases}$$

$$a_i = t_i + 2k_i - s_i - (s_{i-1}/2 - k_{i-1})$$

$$a_i = 1 - (k_i - k_{i-1})$$

$$a_i = 0$$



 $k_i = k_{i-1} - 1$ 

Case 1: *α*<sub>*i*-1</sub> < ½

Case 1.1: deletion causes no contraction  $s_i = s_{i-1}$ 

Potential function  $\phi$  $\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 \\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$ 



 $k_i = k_{i-1} - 1$ 

Case 1:  $\alpha_{i-1} < \frac{1}{2}$ 

Case 1.2:  $\alpha_{i-1} < \frac{1}{2}$  deletion causes a contraction  $2s_i = s_{i-1}$  $k_{i-1} = \frac{s_{i-1}}{4}$ 

Potential function  $\phi$ 

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$



Case 2:  $\alpha_{i-1} \ge \frac{1}{2}$  no contraction

$$s_i = s_{i-1} \quad k_i = k_{i-1} - 1$$

Case 2.1:  $\alpha_{i-1} \ge \frac{1}{2}$ 

Potential function  $\phi$  $\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 \\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$ 



Case 2:  $\alpha_{i-1} \ge \frac{1}{2}$  no contraction

$$s_i = s_{i-1} \quad k_i = k_{i-1} - 1$$

Case 2.2:  $\alpha_i < \frac{1}{2}$ 

Potential function  $\phi$  $\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 \\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$