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Dynamic Tables n
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Problem:
Maintenance of a table under the operations insert and delete such that

* the table size can be adjusted to the number of elements
» a fixed portion of the table is always filled with elements

» the costs for n insert or delete operations are in O(n).

Organisation of the table: hash table, heap, stack, etc.
Load factor a5 : fraction of table spaces of T which are occupied.
Cost model:

Insertion or deletion of an element causes cost 1, if the table is not filled yet.
If the table size is changed, all elements must be copied.



Initialisation N
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class dynamicTable {
private int [] table;

private int size;

private int num;

dynamicTable () {
table = new int [1]; // initialize empty table
size = 1;

num = 0;



Expansion strategy: insert A4
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Double the table size whenever an element is inserted in the fully occupied table!

public void insert (int x) {

i1f (num == size) {
int[] newTable = new int[2*size];
for (int 1=0; 1 < size; 1i++)

insert table[i] in newTable;

table = newTable;
size = 2*size;

}

insert x 1n table;

num = num + 1;



Insert operations in an initially empty table l'
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t; = cost of the i-th insert operation
Worst case:

t;= 1, if the table was not full before operation i
t.=(i—1)+ 1, if the table was full before operation i

Hence, n insert operations require costs of at most

n

Ei - O(n?)

=1



Tighter analysis

Let £, be the cost of the ith insertion
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i 1if i-1 1s an exact power of 2
li= ’
1 otherwise
; 1 2 3 4 5 6 7 9 10
size, 1 2 4 4 8 8 8 16 16
9 1




Let £, be the cost of the I th insertion

Tighter analysis

i 1fi-11s an exact power of 2
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li=
1 otherwise
j 2 3 5 9 10
Sizel- 2 4 8 16 16
1+1 142 1+4 1+8 1




Tighter analysis "
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Cost of the 7 insertions

Thus the average cost of each dynamic table operation is 3.



Amortized analysis "
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 An amortized analysis is any strategy for analyzing a
sequence of operations to show that the average cost per
operation is small, even though a single operation within the
sequence might be expensive.

« Even though we're taking averages, however, probability is
not involved!

« An amortized analysis guarantees the average performance
of each operation in the worst case.



Types of amortized analysis N

INFORMATIK

FREIBURG

Three common amortization arguments:
— The aggregate method,
— The accounting method,
— The potential method.

We've just seen an aggregate analysis.

« The aggregate method, though simple, lacks the precision of the other two
methods. In particular, the accounting and potential methods allow a specific
amortized cost to be allocated to each operation.



Accounting method "
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« Charge i-th operation a fictitious amortized cost a., where $1 pays for
1 unit of work (i.e., time). This fee is consumed to perform the
operation.

* Any amount not immediately consumed is stored in the bank for use
by subsequent operations. The bank balance must not go negative!

« We must ensure that for all n,

n

EtiS Edi
i=1

i=1

Thus, the total amortized costs provide an upper bound on the total true
costs.



Accounting analysis

Charge an amortized cost of d; =$3 for the i-th insertion.

« $1 pays for the immediate insertion.

« $2is stored for later table doubling.
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When the table doubles, $1 pays to move a recent item, and $1 pays to move an old

item.
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Accounting analysis

Charge an amortized cost of d; =$3 for the i-th insertion.

« $1 pays for the immediate insertion.

« $2is stored for later table doubling.
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Charge an amortized cost of d; =$3 for the i-th insertion.
« $1 pays for the immediate insertion.

« $2is stored for later table doubling.

Accounting analysis
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When the table doubles, $1 pays to move a recent item, and $1 pays to move an old

item.

overflow
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Charge an amortized cost of d; =$3 for the i-th insertion.
« $1 pays for the immediate insertion.

« $2is stored for later table doubling.

Accounting analysis
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Charge an amortized cost of d; =$3 for the i-th insertion.
« $1 pays for the immediate insertion.

« $2is stored for later table doubling.

Accounting analysis
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Charge an amortized cost of d; =$3 for the i-th insertion.
« $1 pays for the immediate insertion.

« $2is stored for later table doubling.

Accounting analysis
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Charge an amortized cost of d; =$3 for the i-th insertion.
« $1 pays for the immediate insertion.

« $2is stored for later table doubling.

Accounting analysis
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When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
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Charge an amortized cost of d; =$3 for the i-th insertion.
« $1 pays for the immediate insertion.

« $2is stored for later table doubling.

Accounting analysis
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When the table doubles, $1 pays to move a recent item, and $1 pays to move an old

item.
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Potential method (A
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IDEA: View the bank account as the potential energy of the dynamic set.

Framework:

- Start with an initial data structure D,

» Operation i transforms D, | to D..

« The cost of operation I is l‘l-.

- Define a potential function ®: {D} —R, such that ®(D,) = 0 and O(D,) = 0 for all
l.

The amortized cost A ; with respect to @ is defined tobe A, = £, + O(D,) - DD, , ).



Potential method (A
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a; = ti + (D(Dl-) — (D(Dl-_l ).
O(D) - DD, , ) is called potential difference.

- If®D,)-D(D, ) >0, operation I stores work in the data structure for later use.

- If®D,)-D(D,,)<0, the data structure delivers up stored work to help pay for

operation 1.



Total amortized cost of n operation A
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iai = S(ti + O(Di) — D(Di-1))

= i ti+ O(Drn) — D(Do)

> Eti
i=1

since P(D») =0 and P(Do) =0



Potential method

T table with
k= T.num elements and
s = T.size spaces
Potential function

d(T)=2k-s

=

y(T)=2*7-8=6

0$/0$ | 05| 0% (2% RS

2%

Accounting method
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Properties of the potential function [\
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Properties
¢, = ¢(T,) = ¢ (empty table) = 0

Foralli=z1:¢,=¢(T)=0
Since ¢,- ¢,=0, X a, is an upper bound for Xt

Directly before an expansion, k = s,
hence ¢(T) =k =s.

Directly after an expansion, k = s/2,
hence ¢(T) = 2k—s = 0.



Amortized cost of insert (1) A
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k;= # elements in T after the i-th operation
S; = table size of T after the i-th operation

Case 1: [ i-th operation does not trigger an expansion]



Amortized cost of insert (1) A
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k;=# elements in T after the i-th operation
S; = table size of T after the /i-th operation

Case 1: [ i-th operation does not trigger an expansion]
Ki =K. *1, 8=,
a; =t + 2K —s;— (2K.1 — Si.4)

=1+ 2(ki k)
=1+2=3



Amortized cost of insert (2) A
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Case 2: [ i-th operation triggers an expansion]
s, =2"s ., k =k 4 +1,

a; =t + 2k, —s; ~(2K;_4-S;.4)
=84t1+2-2s5., + 5

=3



Insertion and deletion of elements l'
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Now: contract table, if the load is too small!

Goals:

(1) Load factor is always bounded below by a constant

(2) Amortized cost of a single insert or delete operation is constant.
First attempt:

 Expansion: same as before

« Contraction: halve the table size as soon as table is less than 2 occupied
(after the deletion)!



,Bad“ sequence of insert and delete operations €

n/2 times insert EEEE ----- mm

(table fully occupied)

I: expansion EEEN -----EEN
D, D: contraction EEEE ----- B0
[, | : expansion EEEE ----- EEE
D, D: contraction EEEE ----- W0

Total cost of the sequence
l.,5.,D,D,1,1,D,D,... of length n:

Cost

3n/2

n/2 +1

n/2 + 1

n/2 +1

STITUT FOR
...........
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Second attempt "
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Expansion: (as before) double the table size, if an element is inserted in the full table.
Contraction: As soon as the load factor is below V4, halve the table size.

Hence:

At least V4 of the table is always occupied, i.e.

Va < o(T) <1

Cost of a sequence of insert and

delete operations?




Analysis: insert and delete "
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k=Tnum, s=Tsize, a=k/s

Potential function ¢

2k-s,ifa=1/2

O(T) =
&) {S/Z—k,ifa<1/2




Analysis: insert and delete "
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2k—-s,ifa=1/2

D(T) =
() {S/2—k,if0(<1/2

Directly after an expansion or contraction of the table:

S = 2k, hence ¢(T) =0



insert (A

...........

I-th operation: k; = k., + 1

Case1: a = 7%

Case 2: o, < 2

Case 2.1: a;< %
Case 2.2: o= />



insert (A
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Case 2.1: a;,< 72, o;< "2 (no expansion)

Potential function ¢

2k-s,ifa=1/2

D(T) =
) {S/Z—k,ifa<1/2




insert l'
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Case 2.1: a;,< 72, o;< "2 (no expansion)

Potential function ¢

2k-s,ifa=1/2

D(T) =
) {s/2—k,ifa<1/2

S; =S¢, ki =Kk 4 +1
a=1+k, —k

a=0



insert (A

...........

Case 2.2: a, ;<72 a;= "2 (NO expansion)

Potential function ¢

2k-s,ifa=1/2

D(T) =
() {S/2—k,if0!<1/2




insert "
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Case 2.2: a, ;<72 a;= "2 (NO expansion)

Potential function ¢
2k-s,ifaa=1/2 Si=S;_1
D(T) = .
s/2-k,ifa<1/2 ki=1+ki—1
s =2k

a; =t + 2k; — 5;— (s;.4/2 =K1 )
a; =1 —(ki—ki.)

a =0



delete (A
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kI=kI-1 = 1

Case 1: a;, <2

Case 1.1: deletion causes no contraction
S; = Si.q

Potential function ¢
2k-s,ifa=1/2

D(7T) =
&) {S/2—k,if0(<1/2




delete '\
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kl = kl-1 = 1
Case 1: a;, <2

Case 1.2: a;,< "2 deletion causes a contraction
28; = 8;_4
K., =S;../4

|-

Potential function ¢

2k—s,ifa=1/2
s/2-k,ifa<1/2

<I>(T)={




delete (A

...........

Case 2: o, ,= 72 no contraction
S =Si_1 K=k -1

Case 2.1: q;,= 7%

Potential function ¢

2k—-s,ifa=1/2

O(T) =
&) {S/2—k,if0(<1/2




delete (A

...........

Case 2: o, ,= 72 no contraction
S =Si_1 K=k -1

Case 2.2: ;< )%

Potential function ¢

2k-s,ifa=1/2
s/2-k,ifa<1/2

D(T) = {




