
Theory I 
Algorithm Design and Analysis 

(8 – Dynamic tables) 



Dynamic Tables 

Problem:  
Maintenance of a table under the operations insert and delete such that 

•  the table size can be adjusted to the number of elements  

•  a fixed portion of the table is always filled with elements  

•  the costs for n insert or delete operations are in O(n). 

Organisation of the table: hash table, heap, stack, etc. 

Load factor αT : fraction of table spaces of T which are occupied. 

Cost model:  

Insertion or deletion of an element causes cost 1, if the table is not filled yet.  
If the table size is changed, all elements must be copied. 



Initialisation 

 class dynamicTable { 

     private int [] table; 

     private int size; 
    private int num; 

     dynamicTable () { 

        table = new int [1];  // initialize empty table 
        size = 1; 
        num = 0;  
    } 



Expansion strategy: insert 

Double the table size whenever an element is inserted in the fully occupied table! 

public void insert (int x) { 
    if (num == size) { 
        int[] newTable = new int[2*size]; 
        for (int i=0; i < size; i++) 
            insert table[i] in newTable; 
        table = newTable; 
        size = 2*size;  
    } 
    insert x in table; 
    num = num + 1;  
} 



 insert operations in an initially empty table 

ti = cost  of the i-th insert operation 

Worst case: 

ti = 1, if the table was not full before operation i  

ti = (i – 1) + 1, if the table was full before operation i 

Hence, n insert operations require costs of at most  

€ 

i
i=1

n

∑ =O(n2)



Tighter analysis 

Let ti be the cost of the ith insertion 

€ 

ti =
i   if i-1 is an exact power of 2
1   otherwise
 
 
 

i 1 2 3 4 5 6 7 8 9 10 

sizei 
1 2 4 4 8 8 8 8 16 16 

ti 
1 2 3 1 5 1 1 1 9 1 



Tighter analysis 

Let ti be the cost of the i th insertion 

€ 

ti =
i   if i -1 is an exact power of 2
1   otherwise
 
 
 

i 1 2 3 4 5 6 7 8 9 10 

sizei 
1 2 4 4 8 8 8 8 16 16 

ti 
1 1+1 1+2 1 1+4 1 1 1 1+8 1 



Tighter analysis 

Cost of the n insertions 

Thus the average cost of each dynamic table operation is 3. 



Amortized analysis 

•  An amortized analysis is any strategy for analyzing a 
sequence of operations to show that the average cost per 
operation is small, even though a single operation within the 
sequence might be expensive. 

•  Even though we’re taking averages, however, probability is 
not involved! 

•  An amortized analysis guarantees the average performance 
of each operation in the worst case. 



Types of amortized analysis 

Three common amortization arguments: 

–  The aggregate method, 

–  The accounting method, 

–  The potential method. 

We’ve just seen an aggregate analysis.  

•  The aggregate method, though simple, lacks the precision of the other two 
methods. In particular, the accounting and potential methods allow a specific 
amortized cost to be allocated to each operation. 



Accounting method 

•  Charge i-th operation a fictitious amortized cost ai, where $1 pays for 
1 unit of work (i.e., time). This fee is consumed to perform the 
operation. 

•  Any amount not immediately consumed is stored in the bank for use 
by subsequent operations. The bank balance must not go negative!  

•  We must ensure that for all n, 

Thus, the total amortized costs provide an upper bound on the total true 
costs. 

€ 

ti
i=1

n

∑ ≤ ai
i=1

n

∑



Accounting analysis 

Charge an amortized cost of ai =$3 for the i-th insertion. 

•  $1 pays for the immediate insertion. 

•  $2 is stored for later table doubling.  

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old 
item. 

0$ 0$ 0$ 0$ 
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Accounting analysis 

Charge an amortized cost of ai =$3 for the i-th insertion. 

•  $1 pays for the immediate insertion. 

•  $2 is stored for later table doubling.  

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old 
item. 

overflow 

0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 



Potential method 

IDEA: View the bank account as the potential energy of the dynamic set. 

Framework: 

•  Start with an initial data structure D0. 

•  Operation i transforms Di–1 to Di.  

•  The cost of operation i is ti. 

•  Define a potential function Φ: {Di} →R, such that Φ(D0 ) = 0 and Φ(Di) ≥ 0 for all 

i.  

The amortized cost ai with respect to Φ is defined to be ai = ti + Φ(Di) – Φ(Di–1 ).  



Potential method 

ai = ti + Φ(Di) – Φ(Di–1 ).  

Φ(Di) – Φ(Di–1 ) is called potential difference. 

•  If Φ(Di) – Φ(Di–1 ) > 0, operation i stores work in the data structure for later use. 

•  If Φ(Di) – Φ(Di–1 ) < 0,  the data structure delivers up stored work to help pay for 

operation i. 



Total amortized cost of n operation 

€ 

ai
i=1

n

∑ = (ti
i=1

n

∑ +Φ(Di) −Φ(Di − 1))

= ti
i=1

n

∑ +Φ(Dn) −Φ(D0)

≥ ti
i=1

n

∑

since Φ(Dn) ≥ 0 and Φ(D0) = 0



Potential method 

T  table with 

•  k = T.num  elements  and  

•  s = T.size  spaces 

Potential function 

   φ (T) = 2 k – s 

         φ (T) = 2 *7– 8 = 6   

0$ 0$ 0$ 0$ 2$ 2$ 2$ Accounting method 



Properties of the potential function 

Properties 
•  φ0  =  φ(T0) = φ (empty table) = 0 

•  For all i ≥ 1 : φi = φ (Ti) ≥ 0  

 Since φn - φ0 ≥ 0,  Σ ai  is an upper bound for  Σ ti  

•  Directly before an expansion, k = s,  

 hence  φ(T) = k = s. 

•  Directly after an expansion, k = s/2, 

 hence φ(T) = 2k – s = 0. 

         



Amortized cost of insert (1) 

ki = # elements in T after the i-th operation 

si = table size of T after the i-th operation 

Case 1: [ i-th operation does not trigger an expansion] 



Amortized cost of insert (1) 

ki = # elements in T after the i-th operation 

si = table size of T after the i-th operation 

Case 1: [ i-th operation does not trigger an expansion] 

ki = ki-1 +1, si = si-1 

ai = ti + 2ki – si – (2ki-1 – si-1) 

= 1 + 2(ki –ki-1)  
= 1 + 2 = 3 



Case 2: [ i-th operation triggers an expansion] 

si = 2*si-1, ki = ki-1 +1, 

ai = ti + 2ki –si –(2ki-1-si-1) 

= si-1+1 + 2 – 2si-1 + si-1 

=3 

Amortized cost of insert (2) 



Insertion and deletion of elements 

Now: contract table, if the load is too small! 

Goals:  

(1) Load factor is always bounded below by a constant 

(2) Amortized cost of a single insert or delete operation is constant. 

First attempt:  

•  Expansion: same as before 

•  Contraction: halve the table size as soon as table is less than ½ occupied  
(after the deletion)! 



„Bad“ sequence of insert and delete operations 

    Cost 

n/2 times insert 

(table fully occupied) 
3 n/2 

I: expansion n/2 + 1 

D, D: contraction n/2 + 1 

I, I : expansion n/2 + 1 

D, D: contraction 

Total cost of the sequence  
In/2,I,D,D,I,I,D,D,... of length n: 



Second attempt 

Expansion: (as before) double the table size, if an element is inserted in the full table. 

Contraction: As soon as the load factor is below ¼, halve the table size. 

Hence: 

At least ¼ of the table is always occupied, i.e. 

    ¼  ≤  α(T) ≤ 1 

 Cost of a sequence of insert and   

 delete operations? 



Analysis: insert and delete 

k = T.num,   s = T.size, α = k/s 

Potential function  φ  



Analysis: insert and delete 

Directly after an expansion or contraction of the table: 

 s = 2k, hence φ(T) = 0 



insert 

i-th operation: ki = ki-1 + 1   

Case 1: αi-1 ≥ ½ 

Case 2: αi-1 < ½ 

 Case 2.1: αi < ½ 

 Case 2.2: αi ≥ ½ 



 insert 

Case 2.1: αi-1 < ½, αi < ½  (no expansion) 

Potential function  φ 



 insert 

Case 2.1: αi-1 < ½, αi < ½  (no expansion) 

Potential function  φ 

ai = ti + si /2 –ki – (si-1/2 –ki-1 ) 

si = si-1, ki = ki-1 +1 

ai = 1 + ki-1 – ki 

ai = 0 



insert 

Case 2.2:  αi-1 < ½, αi ≥ ½  (no expansion) 

Potential function  φ 



insert 

Case 2.2:  αi-1 < ½, αi ≥ ½  (no expansion) 

Potential function  φ 

ai = ti + 2ki – si – (si-1/2 –ki-1 ) 

ai = 1 – (ki –ki-1) 

ai = 0 

si=si-1  
ki=1+ki-1 

si=2ki 



delete 

ki = ki-1 - 1 

Case 1: αi-1 < ½  

Case 1.1: deletion causes no contraction 
     si = si-1 

Potential function  φ 



delete 

Case 1.2:  αi-1 < ½  deletion causes a contraction 
       2si = si –1    

      ki-1 = si-1/4 

ki = ki-1 - 1 

Case 1: αi-1 < ½  

Potential function  φ 



delete 

Case 2: αi-1 ≥ ½  no contraction 

 si  = si –1   ki = ki-1 - 1 

Case 2.1: αi-1 ≥ ½ 

Potential function  φ 



delete 

Case 2: αi-1 ≥ ½  no contraction 

 si  = si –1   ki = ki-1 - 1 

Case 2.2: αi < ½ 

Potential function  φ 


