
Theory I
Algorithm Design and Analysis

(8 – Dynamic tables)

Dynamic Tables

Problem:
Maintenance of a table under the operations insert and delete such that

•  the table size can be adjusted to the number of elements

•  a fixed portion of the table is always filled with elements

•  the costs for n insert or delete operations are in O(n).

Organisation of the table: hash table, heap, stack, etc.

Load factor αT : fraction of table spaces of T which are occupied.

Cost model:

Insertion or deletion of an element causes cost 1, if the table is not filled yet.
If the table size is changed, all elements must be copied.

Initialisation

 class dynamicTable {

 private int [] table;

 private int size;
 private int num;

 dynamicTable () {

 table = new int [1]; // initialize empty table
 size = 1;
 num = 0;
 }

Expansion strategy: insert

Double the table size whenever an element is inserted in the fully occupied table!

public void insert (int x) {
 if (num == size) {
 int[] newTable = new int[2*size];
 for (int i=0; i < size; i++)
 insert table[i] in newTable;
 table = newTable;
 size = 2*size;
 }
 insert x in table;
 num = num + 1;
}

 insert operations in an initially empty table

ti = cost of the i-th insert operation

Worst case:

ti = 1, if the table was not full before operation i

ti = (i – 1) + 1, if the table was full before operation i

Hence, n insert operations require costs of at most

€

i
i=1

n

∑ =O(n2)

Tighter analysis

Let ti be the cost of the ith insertion

€

ti =
i if i-1 is an exact power of 2
1 otherwise

i 1 2 3 4 5 6 7 8 9 10

sizei
1 2 4 4 8 8 8 8 16 16

ti
1 2 3 1 5 1 1 1 9 1

Tighter analysis

Let ti be the cost of the i th insertion

€

ti =
i if i -1 is an exact power of 2
1 otherwise

i 1 2 3 4 5 6 7 8 9 10

sizei
1 2 4 4 8 8 8 8 16 16

ti
1 1+1 1+2 1 1+4 1 1 1 1+8 1

Tighter analysis

Cost of the n insertions

Thus the average cost of each dynamic table operation is 3.

Amortized analysis

•  An amortized analysis is any strategy for analyzing a
sequence of operations to show that the average cost per
operation is small, even though a single operation within the
sequence might be expensive.

•  Even though we’re taking averages, however, probability is
not involved!

•  An amortized analysis guarantees the average performance
of each operation in the worst case.

Types of amortized analysis

Three common amortization arguments:

–  The aggregate method,

–  The accounting method,

–  The potential method.

We’ve just seen an aggregate analysis.

•  The aggregate method, though simple, lacks the precision of the other two
methods. In particular, the accounting and potential methods allow a specific
amortized cost to be allocated to each operation.

Accounting method

•  Charge i-th operation a fictitious amortized cost ai, where $1 pays for
1 unit of work (i.e., time). This fee is consumed to perform the
operation.

•  Any amount not immediately consumed is stored in the bank for use
by subsequent operations. The bank balance must not go negative!

•  We must ensure that for all n,

Thus, the total amortized costs provide an upper bound on the total true
costs.

€

ti
i=1

n

∑ ≤ ai
i=1

n

∑

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 0$ 0$

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 2$ 0$

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 2$ 2$

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$

overflow

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 0$ 0$ 2$ 0$ 0$ 0$

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 0$ 0$ 2$ 2$ 0$ 0$

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 0$ 0$ 2$ 2$ 2$ 0$

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

0$ 0$ 0$ 0$ 2$ 2$ 2$ 2$

overflow

Accounting analysis

Charge an amortized cost of ai =$3 for the i-th insertion.

•  $1 pays for the immediate insertion.

•  $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old
item.

overflow

0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$

Potential method

IDEA: View the bank account as the potential energy of the dynamic set.

Framework:

•  Start with an initial data structure D0.

•  Operation i transforms Di–1 to Di.

•  The cost of operation i is ti.

•  Define a potential function Φ: {Di} →R, such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all

i.

The amortized cost ai with respect to Φ is defined to be ai = ti + Φ(Di) – Φ(Di–1).

Potential method

ai = ti + Φ(Di) – Φ(Di–1).

Φ(Di) – Φ(Di–1) is called potential difference.

•  If Φ(Di) – Φ(Di–1) > 0, operation i stores work in the data structure for later use.

•  If Φ(Di) – Φ(Di–1) < 0, the data structure delivers up stored work to help pay for

operation i.

Total amortized cost of n operation

€

ai
i=1

n

∑ = (ti
i=1

n

∑ +Φ(Di) −Φ(Di − 1))

= ti
i=1

n

∑ +Φ(Dn) −Φ(D0)

≥ ti
i=1

n

∑

since Φ(Dn) ≥ 0 and Φ(D0) = 0

Potential method

T table with

•  k = T.num elements and

•  s = T.size spaces

Potential function

 φ (T) = 2 k – s

 φ (T) = 2 *7– 8 = 6

0$ 0$ 0$ 0$ 2$ 2$ 2$ Accounting method

Properties of the potential function

Properties
•  φ0 = φ(T0) = φ (empty table) = 0

•  For all i ≥ 1 : φi = φ (Ti) ≥ 0

 Since φn - φ0 ≥ 0, Σ ai is an upper bound for Σ ti

•  Directly before an expansion, k = s,

 hence φ(T) = k = s.

•  Directly after an expansion, k = s/2,

 hence φ(T) = 2k – s = 0.

Amortized cost of insert (1)

ki = # elements in T after the i-th operation

si = table size of T after the i-th operation

Case 1: [i-th operation does not trigger an expansion]

Amortized cost of insert (1)

ki = # elements in T after the i-th operation

si = table size of T after the i-th operation

Case 1: [i-th operation does not trigger an expansion]

ki = ki-1 +1, si = si-1

ai = ti + 2ki – si – (2ki-1 – si-1)

= 1 + 2(ki –ki-1)
= 1 + 2 = 3

Case 2: [i-th operation triggers an expansion]

si = 2*si-1, ki = ki-1 +1,

ai = ti + 2ki –si –(2ki-1-si-1)

= si-1+1 + 2 – 2si-1 + si-1

=3

Amortized cost of insert (2)

Insertion and deletion of elements

Now: contract table, if the load is too small!

Goals:

(1) Load factor is always bounded below by a constant

(2) Amortized cost of a single insert or delete operation is constant.

First attempt:

•  Expansion: same as before

•  Contraction: halve the table size as soon as table is less than ½ occupied
(after the deletion)!

„Bad“ sequence of insert and delete operations

 Cost

n/2 times insert

(table fully occupied)
3 n/2

I: expansion n/2 + 1

D, D: contraction n/2 + 1

I, I : expansion n/2 + 1

D, D: contraction

Total cost of the sequence
In/2,I,D,D,I,I,D,D,... of length n:

Second attempt

Expansion: (as before) double the table size, if an element is inserted in the full table.

Contraction: As soon as the load factor is below ¼, halve the table size.

Hence:

At least ¼ of the table is always occupied, i.e.

 ¼ ≤ α(T) ≤ 1

 Cost of a sequence of insert and

 delete operations?

Analysis: insert and delete

k = T.num, s = T.size, α = k/s

Potential function φ

Analysis: insert and delete

Directly after an expansion or contraction of the table:

 s = 2k, hence φ(T) = 0

insert

i-th operation: ki = ki-1 + 1

Case 1: αi-1 ≥ ½

Case 2: αi-1 < ½

 Case 2.1: αi < ½

 Case 2.2: αi ≥ ½

 insert

Case 2.1: αi-1 < ½, αi < ½ (no expansion)

Potential function φ

 insert

Case 2.1: αi-1 < ½, αi < ½ (no expansion)

Potential function φ

ai = ti + si /2 –ki – (si-1/2 –ki-1)

si = si-1, ki = ki-1 +1

ai = 1 + ki-1 – ki

ai = 0

insert

Case 2.2: αi-1 < ½, αi ≥ ½ (no expansion)

Potential function φ

insert

Case 2.2: αi-1 < ½, αi ≥ ½ (no expansion)

Potential function φ

ai = ti + 2ki – si – (si-1/2 –ki-1)

ai = 1 – (ki –ki-1)

ai = 0

si=si-1
ki=1+ki-1

si=2ki

delete

ki = ki-1 - 1

Case 1: αi-1 < ½

Case 1.1: deletion causes no contraction
 si = si-1

Potential function φ

delete

Case 1.2: αi-1 < ½ deletion causes a contraction
 2si = si –1

 ki-1 = si-1/4

ki = ki-1 - 1

Case 1: αi-1 < ½

Potential function φ

delete

Case 2: αi-1 ≥ ½ no contraction

 si = si –1 ki = ki-1 - 1

Case 2.1: αi-1 ≥ ½

Potential function φ

delete

Case 2: αi-1 ≥ ½ no contraction

 si = si –1 ki = ki-1 - 1

Case 2.2: αi < ½

Potential function φ

