
Theory I
Algorithm Design and Analysis

 (9 – Randomized algorithms)

Prof. Dr. Th. Ottmann

2

Randomized algorithms

•  Classes of randomized algorithms
•  Randomized Quicksort
•  Randomized primality test
•  Cryptography

3

1. Classes of randomized algorithms

•  Las Vegas algorithms
 always correct; expected running time (“probably fast”)

 Example: randomized Quicksort

•  Monte Carlo algorithms (mostly correct):
 probably correct; guaranteed running time

 Example: randomized primality test

4

2. Quicksort

A[l … r-1] p

p A[l...m – 1] A[m + 1...r]

Quicksort Quicksort

Unsorted range A[l, r] in array A

5

Quicksort

Algorithm: Quicksort

Input: unsorted range [l, r] in array A
Output: sorted range [l, r] in array A
1 if r > l
2  then choose pivot element p = A[r]
3 m = divide(A, l , r)
 /* Divide A according to p:

 A[l],....,A[m – 1] ≤ p ≤ A[m + 1],...,A[r]
 */

4  Quicksort(A, l , m - 1)
Quicksort (A, m + 1, r)

6

The divide step

l r

l r

7

The divide step

l r

8

The divide step

9

The divide step

divide(A, l , r):

•  returns the index of the pivot element in A
•  can be done in time O(r – l)

10

Worst-case input

n elements:

Running time: (n-1) + (n-2) + … + 2 + 1 = n·(n-1)/2

11

3. Randomized Quicksort

Algorithm: Quicksort
Input: unsorted range [l, r] in array A
Output: sorted range [l, r] in array A
1 if r > l
2 then randomly choose a pivot element p = A[i] in range [l, r]
3  swap A[i] and A[r]
4 m = divide(A, l, r)
 /* Divide A according to p:

 A[l],....,A[m – 1] ≤ p ≤ A[m + 1],...,A[r]
 */

5  Quicksort(A, l, m - 1)
6 Quicksort(A, m + 1, r)

12

Analysis 1

n elements; let Si be the i-th smallest element
S1 is chosen as pivot with probability 1/n:
Sub-problems of sizes 0 and n-1

Sk is chosen as pivot with probability 1/n:
Sub-problems of sizes k-1 and n-k

Sn is chosen as pivot with probability 1/n:
Sub-problems of sizes n-1 and 0

13

Analysis 1

Expected running time:

€

T(n) =
1
n

(T(k) + T(n − k −1))+Θ(n)
k= 0

n−1

∑

=
2
n

T(k) +Θ(n)
k= 0

n−1

∑

=O(n lgn)

14

4. Primality test

Definition:
An integer p ≥ 2 is prime iff (a | p  a = 1 or a = p).

Algorithm: deterministic primality test (naive)
Input: integer n ≥ 2
Output: answer to the question: Is n prime?

 if n = 2 then return true
 if n even then return false
 for i = 1 to do
 if 2i + 1 divides n
 then return false

 return true

Complexity: Θ()

€

n /2

€

n /2

15

Primality test

Goal:
Randomized method
•  Polynomial time complexity (in the length of the input)
•  If answer is “not prime”, then n is not prime
•  If answer is “prime”, then the probability that n is not prime is at most

p>0

k iterations: probability that n is not prime is at most pk

16

Primality test

Observation:
Each odd prime number p divides 2p-1 – 1.

Examples: p = 17, 216 – 1 = 65535 = 17 * 3855
 p = 23, 222 – 1 = 4194303 = 23 * 182361

Simple primality test:
1 Calculate z = 2n-1 mod n
2 if z = 1
3 then n is possibly prime
4  else n is definitely not prime

Advantage: This only takes polynomial time

17

Simple primality test

Definition:
n is called pseudoprime to base 2, if n is not prime and
 2n-1 mod n = 1.

Example: n = 11 * 31 = 341

 2340 mod 341 = 1

18

Randomized primality test

Theorem: (Fermat‘s little theorem)
If p prime and 0 < a < p, then

 ap-1 mod p = 1.

Definition:
n is pseudoprime to base a, if n not prime and
 an-1 mod n = 1.

Example: n = 341, a = 3
 3340 mod 341 = 56 ≠ 1

19

Randomized primality test

Algorithm: Randomized primality test 1

1 Randomly choose a ∈ [2, n-1]
2 Calculate an-1 mod n
3 if an-1 mod n = 1
4 then n is possibly prime
5 else n is definitely not prime

Prob(n is not prim, but an-1 mod n = 1) ?

20

Carmichael numbers

Problem: Carmichael numbers

Definition: An integer n is called Carmichael number if
 an-1 mod n = 1

for all a with GCD(a, n) = 1. (GCD = greatest common divisor)

Example:
Smallest Carmichael number: 561 = 3 * 11 * 17

21

Randomized primality test 2

Theorem:
If p prime and 0 < a < p, then the only solutions to the equation

 a2 mod p = 1
are a = 1 and a = p – 1.

Definition:
a is called non-trivial square root of 1 mod n, if

 a2 mod n = 1 and a ≠ 1, n – 1.

Example: n = 35
 62 mod 35 = 1

22

Fast exponentiation

Idea:
During the computation of an-1 (0 < a < n randomly chosen), test

whether there is a non-trivial square root mod n.

Method for the computation of an:

Case 1: [n is even]
 an = an/2 * an/2

Case 2: [n is odd]
 an = a(n-1)/2 * a(n-1)/2 * a

23

Fast exponentiation

Example:
 a62 = (a31)2

 a31 = (a15)2 * a
 a15 = (a7)2 * a
 a7 = (a3)2 * a
 a3 = (a)2 * a

Complexity: O(log2an log n)

24

Fast exponentiation

boolean isProbablyPrime;

power(int a, int p, int n) {

 /* computes ap mod n and checks during the
 computation whether there is an x with

 x2 mod n = 1 and x ≠ 1, n-1 */

 if (p == 0) return 1;

 x = power(a, p/2, n)
 result = (x * x) % n;

25

Fast exponentiation

 /* check whether x2 mod n = 1 and x ≠ 1, n-1 */
 if (result == 1 && x != 1 && x != n –1)

 isProbablyPrime = false;

 if (p % 2 == 1)

 result = (a * result) % n;

 return result;

}

Complexity: O(log2n log p)

26

Randomized primality test 2

primalityTest(int n) {
 /* carries out the randomized primality test for
 a randomly selected a */

 a = random(2, n-1);

 isProbablyPrime = true;

 result = power(a, n-1, n);

 if (result != 1 || !isProbablyPrime)
 return false;
 else
 return true;
}

27

Randomized primality test 2

Theorem:

If n is not prime, there are at most

integers 0 < a < n, for which the algorithm primalityTest fails.

28

Application: cryptosystems

Traditional encryption of messages with secret keys
Disadvantages:
1.  The key k has to be exchanged between A and B before the

transmission of the message.
2.  For messages between n parties n(n-1)/2 keys are required.

Advantage:
Encryption and decryption can be computed very efficiently.

29

Duties of security providers

Guarantee…
  confidential transmission
  integrity of data
  authenticity of the sender
  reliable transmission

30

Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A has two keys:

1.  a public key PA accessible to every other participant

2.  a private (or: secret) key SA only known to A.

31

Public-key cryptosystems

D = set of all legal messages,
 e.g. the set of all bit strings of finite length

Three conditions:
1. PA and SA can be computed efficiently

2. SA(PA(M)) = M and PA(SA(M)) = M
(PA, SA are inverse functions)

3. SA cannot be computed from PA (without unreasonable effort)

€

PA ,SA :D→ D1-1

32

Encryption in a public-key system

A sends a message M to B.

Dear Bob,

I just

checked

the new
...

Dear Bob,

I just

checked

the new
...

#*k- + ;}?,

@-) #$<9

{o7::-&$3

(-##!]?8
...

33

Encryption in a public-key system

1. A accesses B’s public key PB (from a public directory or directly
from B).

2. A computes the encrypted message C = PB(M) and sends C to B.

3. After B has received message C, B decrypts the message with
his own private key SB: M = SB(C)

34

Generating a digital signature

A sends a digitally signed message M´ to B:

1. A computes the digital signature σ for M´ with her own private
key:

 σ = SA(M´)

2. A sends the pair (M´,σ) to B.

3. After receiving (M´,σ), B verifies the digital signature:

 PA(σ) = M´

σ can by verified by anybody via the public PA.

35

RSA cryptosystems

R. Rivest, A. Shamir, L. Adleman

Generating the public and private keys:

1. Randomly select two primes p and q of similar size,
each with l+1 bits (l ≥ 500).

2. Let n = p·q

3. Let e be an integer that does not divide (p - 1)·(q - 1).

4. Calculate d = e-1 mod (p - 1)(q - 1)

 i.e.:
 d · e ≡ 1 mod (p - 1)(q - 1)

36

RSA cryptosystems

5. Publish P = (e, n) as public key

6. Keep S = (d, n) as private key

Divide message (represented in binary) in blocks of size 2·l.
Interpret each block M as a binary number: 0 ≤ M < 22·l

 P(M) = Me mod n S(C) = Cd mod n

