Theory I
 Algorithm Design and Analysis

(9 - Randomized algorithms)

Prof. Dr. Th. Ottmann

Randomized algorithms

- Classes of randomized algorithms
- Randomized Quicksort
- Randomized primality test
- Cryptography

1. Classes of randomized algorithms

- Las Vegas algorithms
always correct; expected running time ("probably fast")

Example: randomized Quicksort

- Monte Carlo algorithms (mostly correct): probably correct; guaranteed running time

Example: randomized primality test

2. Quicksort

Unsorted range $A[I, r]$ in array A

$A[I \ldots r-1]$		p
$A[I \ldots m-1]$ p $A[m+1 \ldots r]$		

Quicksort Quicksort

Quicksort

Algorithm: Quicksort

Input: unsorted range $[l, r]$ in array A
Output: sorted range $[I, r]$ in array A
1 if $r>1$
2 then choose pivot element $p=\mathrm{A}[r]$
$3 m=\operatorname{divide}(A, I, r)$
/* Divide A according to p :

$$
\mathrm{A}[\Lambda, \ldots, \mathrm{~A}[m-1] \leq p \leq \mathrm{A}[m+1], \ldots, \mathrm{A}[r]
$$

*/
4 Quicksort(A, I, m-1) Quicksort ($A, m+1, r$)

The divide step

The divide step

The divide step

$\uparrow \uparrow$

The divide step

..."ाاा

divide(A, I, r):

- returns the index of the pivot element in A
- can be done in time $O(r-l)$

Worst-case input

n elements:

Running time: $(n-1)+(n-2)+\ldots+2+1=n \cdot(n-1) / 2$

3. Randomized Quicksort

Algorithm: Quicksort
Input: unsorted range $[l, r]$ in array A
Output: sorted range $[I, r]$ in array A
1 if $r>1$
2 then randomly choose a pivot element $p=A[i]$ in range $[l, r]$ swap A[i] and A[r]
$m=\operatorname{divide}(A, I, r)$
/* Divide A according to p :

$$
A[I], \ldots, A[m-1] \leq p \leq A[m+1], \ldots, A[r]
$$

*/
$5 \quad$ Quicksort(A, I, m-1)
6
Quicksort(A, $m+1, r$)

Analysis 1

n elements; let S_{i} be the i-th smallest element
S_{1} is chosen as pivot with probability $1 / n$:
Sub-problems of sizes 0 and $n-1$
S_{k} is chosen as pivot with probability $1 / n$:
Sub-problems of sizes $k-1$ and $n-k$
S_{n} is chosen as pivot with probability $1 / n$: Sub-problems of sizes $n-1$ and 0

Analysis 1

Expected running time:

$$
\begin{aligned}
T(n) & =\frac{1}{n} \sum_{k=0}^{n-1}(T(k)+T(n-k-1))+\Theta(n) \\
& =\frac{2}{n} \sum_{k=0}^{n-1} T(k)+\Theta(n) \\
& =O(n \lg n)
\end{aligned}
$$

4. Primality test

Definition:
An integer $p \geq 2$ is prime iff $(a \mid p \rightarrow a=1$ or $a=p)$.
Algorithm: deterministic primality test (naive)
Input: integer $n \geq 2$
Output: answer to the question: Is n prime?
if $n=2$ then return true
if n even then return false
for $i=1$ to $\sqrt{n / 2}$ do
if $2 i+1$ divides n
then return false
return true

Complexity: $\Theta(\sqrt{n / 2})$

Primality test

Goal:

Randomized method

- Polynomial time complexity (in the length of the input)
- If answer is "not prime", then n is not prime
- If answer is "prime", then the probability that n is not prime is at most $p>0$
k iterations: probability that n is not prime is at most p^{k}

Primality test

Observation:

Each odd prime number p divides $2^{p-1}-1$.
Examples: $p=17,2^{16}-1=65535=17$ * 3855

$$
p=23,2^{22}-1=4194303=23 * 182361
$$

Simple primality test:
1 Calculate $z=2^{n-1} \bmod n$
2 if $z=1$
3 then n is possibly prime
4 else n is definitely not prime

Advantage: This only takes polynomial time

Simple primality test

Definition:

n is called pseudoprime to base 2 , if n is not prime and

$$
2^{n-1} \bmod n=1
$$

Example: $n=11$ * $31=341$

$$
2^{340} \bmod 341=1
$$

Randomized primality test

Theorem: (Fermat's little theorem)
If p prime and $0<a<p$, then

$$
a^{p-1} \bmod p=1 .
$$

Definition:

n is pseudoprime to base a, if n not prime and

$$
a^{n-1} \bmod n=1
$$

Example: $n=341, \quad a=3$

$$
3^{340} \bmod 341=56 \neq 1
$$

Randomized primality test

Algorithm: Randomized primality test 1

1 Randomly choose $a \in[2, n-1]$
2 Calculate $a^{n-1} \bmod n$
3 if $a^{n-1} \bmod n=1$
4 then n is possibly prime
5 else n is definitely not prime
$\operatorname{Prob}\left(n\right.$ is not prim, but $\left.a^{n-1} \bmod n=1\right) ?$

Carmichael numbers

Problem: Carmichael numbers

Definition: An integer n is called Carmichael number if

$$
a^{n-1} \bmod n=1
$$

for all a with $\operatorname{GCD}(a, n)=1 . \quad(G C D=$ greatest common divisor)

Example:

Smallest Carmichael number: $561=3$ * 11 * 17

Randomized primality test 2

Theorem:

If p prime and $0<a<p$, then the only solutions to the equation

$$
a^{2} \bmod p=1
$$

are $a=1$ and $a=p-1$.

Definition:

a is called non-trivial square root of $1 \bmod n$, if

$$
a^{2} \bmod n=1 \text { and } a \neq 1, n-1
$$

Example: $n=35$

$$
6^{2} \bmod 35=1
$$

Fast exponentiation

Idea:

During the computation of a^{n-1} ($0<a<n$ randomly chosen), test whether there is a non-trivial square root $\bmod n$.

Method for the computation of a^{n} :

Case 1: [n is even]

$$
a^{n}=a^{n / 2 *} a^{n / 2}
$$

Case 2: [n is odd]

$$
a^{n}=a^{(n-1) / 2 *} a^{(n-1) / 2} * a
$$

Fast exponentiation

Example:

$$
\begin{aligned}
& a^{62}=\left(a^{31}\right)^{2} \\
& a^{31}=\left(a^{15}\right)^{2} a \\
& a^{15}=\left(a^{7}\right)^{2} * a \\
& a^{7}=\left(a^{3}\right)^{2} * a \\
& a^{3}=(a)^{2} a
\end{aligned}
$$

Complexity: $O\left(\log ^{2} a^{n} \log n\right)$

Fast exponentiation

```
boolean isProbablyPrime;
```

```
power(int a, int p, int n) {
    /* computes a a mod n and checks during the
        computation whether there is an x with
        x 2 mod n = 1 and }x\not=1,n-1 *
    if (p == 0) return 1;
    x = power(a, p/2, n)
    result = (x * x) % n;
```


Fast exponentiation

```
/* check whether }\mp@subsup{x}{}{2}\operatorname{mod}n=1\mathrm{ and }x\not=1,n-1 *
if (result == 1 && x != 1 && X != n - 1 )
        isProbablyPrime = false;
if (p % 2 == 1)
    result = (a * result) % n;
return result;
```

\}

Complexity: $\mathrm{O}\left(\log ^{2} n \log p\right)$

Randomized primality test 2

```
primalityTest(int n) {
    /* carries out the randomized primality test for
        a randomly selected a */
    a = random(2, n-1);
    isProbablyPrime = true;
    result = power(a, n-1, n);
    if (result != 1 || !isProbablyPrime)
    return false;
    else
    return true;
}
```


Randomized primality test 2

Theorem:

If n is not prime, there are at most

$$
\frac{n-9}{4}
$$

integers $0<a<n$, for which the algorithm primalityTest fails.

Application: cryptosystems

Traditional encryption of messages with secret keys

Disadvantages:

1. The key k has to be exchanged between A and B before the transmission of the message.
2. For messages between n parties $n(n-1) / 2$ keys are required.

Advantage:
Encryption and decryption can be computed very efficiently.

Duties of security providers

Guarantee...

- confidential transmission
- integrity of data
- authenticity of the sender
- reliable transmission

Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A has two keys:

1. a public key P_{A} accessible to every other participant
2. a private (or: secret) key S_{A} only known to A.

Public-key cryptosystems

D = set of all legal messages, e.g. the set of all bit strings of finite length

$$
P_{A}, S_{A}: D \xrightarrow{\frac{1-1}{\longrightarrow}} D
$$

Three conditions:

1. P_{A} and S_{A} can be computed efficiently
2. $S_{A}\left(P_{A}(M)\right)=M$ and $P_{A}\left(S_{A}(M)\right)=M$
(P_{A}, S_{A} are inverse functions)
3. S_{A} cannot be computed from P_{A} (without unreasonable effort)

Encryption in a public-key system

A sends a message M to B.

Encryption in a public-key system

1. A accesses B 's public key P_{B} (from a public directory or directly from B).
2. A computes the encrypted message $C=P_{B}(M)$ and sends C to B.
3. After B has received message C, B decrypts the message with his own private key $S_{B}: M=S_{B}(C)$

Generating a digital signature

A sends a digitally signed message M^{\prime} to B :

1. A computes the digital signature σ for M^{\prime} with her own private key:

$$
\sigma=S_{A}\left(M^{\prime}\right)
$$

2. \boldsymbol{A} sends the pair $\left(M^{\prime}, \sigma\right)$ to \boldsymbol{B}.
3. After receiving $\left(M^{\prime}, \sigma\right), \boldsymbol{B}$ verifies the digital signature:

$$
P_{A}(\sigma)=M^{\prime}
$$

σ can by verified by anybody via the public P_{A}.

RSA cryptosystems

R. Rivest, A. Shamir, L. Adleman

Generating the public and private keys:

1. Randomly select two primes p and q of similar size, each with $/+1$ bits $(I \geq 500)$.
2. Let $n=p \cdot q$
3. Let e be an integer that does not divide $(p-1) \cdot(q-1)$.
4. Calculate $d=e^{-1} \bmod (p-1)(q-1)$
i.e.:

$$
d \cdot e \equiv 1 \bmod (p-1)(q-1)
$$

RSA cryptosystems

5. Publish $P=(e, n)$ as public key
6. Keep $S=(d, n)$ as private key

Divide message (represented in binary) in blocks of size 2% Interpret each block M as a binary number: $0 \leq M<2^{2 \cdot l}$

$$
P(M)=M^{e} \bmod n \quad S(C)=C^{d} \bmod n
$$

