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Randomized algorithms 

•  Classes of randomized algorithms 
•  Randomized Quicksort 
•  Randomized primality test 
•  Cryptography 
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1. Classes of randomized algorithms 

•  Las Vegas algorithms 
     always correct; expected running time (“probably fast”) 

 Example: randomized Quicksort 

•  Monte Carlo algorithms (mostly correct):  
 probably correct; guaranteed running time 

 Example: randomized primality test  
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2. Quicksort 

A[l … r-1] p 

p A[l...m – 1] A[m + 1...r] 

Quicksort Quicksort 

Unsorted range A[l, r] in array A 
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Quicksort 

Algorithm: Quicksort 

Input: unsorted range [l, r] in array A 
Output: sorted range [l, r] in array A 
1  if r > l 
2     then choose pivot element p = A[r] 
3         m = divide(A, l , r) 
               /* Divide A according to p: 

        A[l],....,A[m – 1] ≤ p ≤ A[m + 1],...,A[r] 
    */ 

4  Quicksort(A, l , m - 1) 
Quicksort (A, m + 1, r) 
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The divide step 

l r 

l r 
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The divide step 

l r 
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The divide step 
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The divide step 

divide(A, l , r): 

•  returns the index of the pivot element in A 
•  can be done in time O(r – l) 
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Worst-case input 

n elements: 

Running time: (n-1) + (n-2) + … + 2 + 1 = n·(n-1)/2 
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3. Randomized Quicksort 

Algorithm: Quicksort 
Input: unsorted range [l, r] in array A 
Output: sorted range [l, r] in array A 
1  if   r > l 
2            then randomly choose a pivot element p = A[i] in range [l, r] 
3                   swap A[i] and A[r] 
4                    m = divide(A, l, r) 
                      /* Divide A according to p: 

   A[l],....,A[m – 1] ≤ p ≤ A[m + 1],...,A[r] 
           */ 

5             Quicksort(A, l, m - 1)   
6              Quicksort(A, m + 1, r) 
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Analysis 1 

n elements; let Si be the i-th smallest element 
S1 is chosen as pivot with probability 1/n:  
Sub-problems of sizes  0  and  n-1 

Sk is chosen as pivot with probability 1/n: 
Sub-problems of sizes  k-1  and  n-k 

Sn is chosen as pivot with probability 1/n: 
Sub-problems of sizes  n-1  and  0 
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Analysis 1 

Expected running time: 

€ 

T(n) =
1
n

(T(k) + T(n − k −1))+Θ(n)
k= 0

n−1

∑

=
2
n

T(k) +Θ(n)
k= 0

n−1

∑

=O(n lgn)



14 

4. Primality test 

Definition: 
An integer p ≥ 2 is prime iff (a | p  a = 1 or a = p). 

Algorithm: deterministic primality test (naive) 
Input: integer n ≥ 2 
Output: answer to the question: Is n prime? 

 if n = 2 then return true 
 if n even then return false 
 for i = 1 to           do 
  if 2i + 1 divides n 
  then return false 

     return true 

Complexity: Θ(           ) 

€ 

n /2

€ 

n /2
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Primality test 

Goal:  
Randomized method 
•  Polynomial time complexity (in the length of the input) 
•  If answer is “not prime”, then n is not prime 
•  If answer is “prime”, then the probability that n is not prime is at most 

p>0 

k iterations: probability that n is not prime is at most pk  
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Primality test 

Observation: 
Each odd prime number p divides 2p-1 – 1. 

Examples:  p = 17,   216 – 1  =  65535 = 17 * 3855 
                p = 23,   222  – 1 =  4194303 = 23 * 182361 

Simple primality test: 
1  Calculate z = 2n-1 mod n  
2  if z = 1 
3     then n is possibly prime 
4   else n is definitely not prime 

Advantage: This only takes polynomial time 
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Simple primality test 

Definition:  
n is called pseudoprime to base 2, if n is not prime and 
                                      2n-1 mod n = 1. 

Example:   n = 11 * 31 = 341 
   
       2340 mod 341 = 1 
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Randomized primality test 

Theorem: (Fermat‘s little theorem) 
If p prime and 0 < a < p, then  

   ap-1 mod p  =  1. 

Definition:  
n is pseudoprime to base a, if n not prime and 
                                      an-1 mod n  =  1. 

Example: n = 341,  a = 3   
               3340 mod 341 = 56 ≠ 1 
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Randomized primality test 

Algorithm: Randomized primality test 1 

1  Randomly choose a ∈ [2, n-1] 
2  Calculate an-1 mod n 
3  if an-1 mod n = 1  
4      then n is possibly prime 
5      else n is definitely not prime 

Prob(n is not prim, but an-1 mod n = 1 )  ?  



20 

Carmichael numbers 

Problem: Carmichael numbers 

Definition: An integer n is called Carmichael number if 
     an-1 mod n = 1 

for all a with GCD(a, n) = 1.  (GCD = greatest common divisor) 

Example:  
Smallest Carmichael number: 561 = 3 * 11 * 17 
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Randomized primality test 2 

Theorem: 
If p prime and 0 < a < p, then the only solutions to the equation  

   a2 mod p  =  1 
are a = 1 and a = p – 1. 

Definition: 
a is called non-trivial square root of 1 mod n, if 

   a2 mod n = 1  and  a ≠ 1, n – 1. 

Example: n = 35  
      62 mod 35 =  1 
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Fast exponentiation 

Idea:  
During the computation of an-1 (0 < a < n randomly chosen), test 

whether there is a non-trivial square root mod n. 

Method for the computation of an: 

Case 1: [n is even] 
 an = an/2 * an/2 

Case 2: [n is odd] 
    an = a(n-1)/2 * a(n-1)/2  * a 
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Fast exponentiation 

Example: 
  a62 = (a31)2 

  a31 = (a15)2 * a 
  a15 = (a7)2 * a 
  a7   = (a3)2 * a 
  a3   = (a)2 * a 

Complexity: O(log2an log n) 
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Fast exponentiation 

boolean isProbablyPrime; 

power(int a, int p, int n) { 

    /* computes ap mod n and checks during the 
       computation whether there is an x with  

       x2 mod n = 1 and x ≠ 1, n-1 */ 

    if (p == 0) return 1; 

    x = power(a, p/2, n) 
    result = (x * x) % n; 
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Fast exponentiation 

    /* check whether x2 mod n = 1 and x ≠ 1, n-1 */ 
    if (result == 1 && x != 1 && x != n –1 )  

        isProbablyPrime = false; 

    if (p % 2 == 1)  

        result = (a * result) % n; 

    return result;  

} 

Complexity: O(log2n log p) 
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Randomized primality test 2 

primalityTest(int n) { 
    /* carries out the randomized primality test for 
       a randomly selected a */ 

    a = random(2, n-1); 

    isProbablyPrime = true; 

    result = power(a, n-1, n); 

    if (result != 1 || !isProbablyPrime) 
        return false; 
    else  
        return true; 
} 
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Randomized primality test 2 

Theorem: 

If n is not prime, there are at most   

integers 0 < a < n, for which the algorithm primalityTest fails. 
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Application: cryptosystems 

Traditional encryption of messages with secret keys 
Disadvantages:  
1.  The key k has to be exchanged between A and B before the 

transmission of the message. 
2.  For messages between n parties n(n-1)/2 keys are required.  

Advantage: 
Encryption and decryption can be computed very efficiently. 
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Duties of security providers 

Guarantee…  
  confidential transmission 
  integrity of data 
  authenticity of the sender 
  reliable transmission 
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Public-key cryptosystems 

Diffie and Hellman (1976) 

Idea: Each participant A has two keys: 

1.  a public key PA accessible to every other participant 

2.  a private (or: secret) key SA only known to A. 
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Public-key cryptosystems 

D = set of all legal messages,  
 e.g. the set of all bit strings of finite length 

Three conditions: 
1. PA and SA can be computed efficiently 

2. SA(PA(M)) = M  and  PA(SA(M)) = M   
(PA, SA are inverse functions) 

3. SA cannot be computed from PA  (without unreasonable effort) 

€ 

PA ,SA :D→ D1-1 
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Encryption in a public-key system 

A sends a message M to B.  

Dear Bob, 

I just  

checked 

the new 
... 

Dear Bob, 

I just  

checked 

the new 
... 

#*k- + ;}?, 

@-) #$<9 

{o7::-&$3 

(-##!]?8 
... 
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Encryption in a public-key system 

1.  A accesses B’s public key PB  (from a public directory or directly 
from B). 

2.  A computes the encrypted message C = PB(M) and sends C to B. 

3.  After B has received message C, B decrypts the message with 
his own private key SB: M = SB(C) 



34 

Generating a digital signature 

A sends a digitally signed message M´ to B: 

1.  A computes the digital signature σ for M´ with her own private 
key:   

   σ = SA(M´) 

2.  A sends the pair (M´,σ) to B. 

3.  After receiving (M´,σ), B verifies the digital signature:  

   PA(σ) = M´ 

σ  can by verified by anybody via the public PA. 
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RSA cryptosystems 

R. Rivest, A. Shamir, L. Adleman 

Generating the public and private keys: 

1.  Randomly select two primes p and q of similar size,  
each with l+1 bits (l ≥ 500). 

2.  Let n = p·q 

3.  Let e be an integer that does not divide (p - 1)·(q - 1). 

4.  Calculate d = e-1 mod (p - 1)(q - 1) 

 i.e.:   
   d · e  ≡  1 mod (p - 1)(q - 1) 
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RSA cryptosystems 

5. Publish P = (e, n) as public key 

6. Keep S = (d, n) as private key 

Divide message (represented in binary) in blocks of size 2·l.  
Interpret each block M as a binary number: 0 ≤ M < 22·l 

 P(M) = Me mod n   S(C) = Cd mod n 


