Theory |
Algorithm Design and Analysis

(9 — Randomized algorithms)

Prof. Dr. Th. Ottmann

Randomized algorithms

Classes of randomized algorithms
Randomized Quicksort
Randomized primality test

Cryptography

1. Classes of randomized algorithms

Las Vegas algorithms
always correct; expected running time (“probably fast”)

Example: randomized Quicksort

Monte Carlo algorithms (mostly correct):

probably correct; guaranteed running time

Example: randomized primality test

)

2. Quicksort

Unsorted range A[/, r] in array A

Quicksort Quicksort

Quicksort

Algorithm: Quicksort

Input: unsorted range [/, r] in array A
Output: sorted range [/, r] in array A
1 ifr>1
2 then choose pivot element p = A[r]
3 m = divide(A, I, r)
/* Divide A according to p:
All,.....AIm—-1]1=p < Ajm + 1],...,Al"]
*/
4 Quicksort(A, I, m- 1)
Quicksort (A, m+ 1, r)

The divide step nr
| r
1 II 1 | I . | I]
| I

, :
||I||I.|II
t I

The divide step nr
i II 1] I . | I |
i !

|.I||II|II
: :

The divide step l'u:
I | | | | | I |

.|I||||||
1

The divide step

divide(A, I, r):

* returns the index of the pivot element in A
 can be done in time O(r—1)

Worst-case input

n elements:

Running time: (n-1) + (n-2) + ... + 2+ 1 =n-(n-1)/2

10

3. Randomized Quicksort

Algorithm: Quicksort
Input: unsorted range [/, r] in array A
Output: sorted range [/, r] in array A

1

2
3
4

if r>1

)

then randomly choose a pivot element p = A[i] in range [/, 1]

Alll,....,AIm—=1]<p < Alm + 1],... Alr]

*/

swap Afi] and A[r]
m = divide(A, I, r)
/* Divide A according to p:

Quicksort(A, I, m - 1)
Quicksort(A, m+ 1, r)

11

Analysis 1

n elements; let S, be the /-th smallest element

S, is chosen as pivot with probability 1/n:
Sub-problems of sizes 0 and n-1

S, is chosen as pivot with probability 1/n:
Sub-problems of sizes k-1 and n-k

S, is chosen as pivot with probability 1/n:
Sub-problems of sizes n-1 and 0

12

Analysis 1

Expected running time:

T(n) = lHE_(T(k) +T(n-k-1))+0O(n)

n k=0

- ERET(k) + O(n)
n k=0

=0(nlgn)

13

4. Primality test

Definition:
Anintegerp =2is primeiff(a|p > a=1ora=p).

Algorithm: deterministic primality test (naive)
Input: integern =2
Output: answer to the question: Is n prime?
if n =2 then return true
if n even then return false
fori=1to+/n/2 do
if 2i + 1 divides n
then return false
return true

Complexity: ©(~/n/2)

14

Primality test l!r

Goal:

Randomized method

« Polynomial time complexity (in the length of the input)
» If answer is “not prime”, then n is not prime

« Ifanswer is “prime”, then the probability that n is not prime is at most
p>0

k iterations: probability that n is not prime is at most p*

15

Primality test

Observation:
Each odd prime number p divides 2°-7— 1.

65535 = 17 * 3855
4194303 = 23 * 182361

Examples: p=17, 2101
p=23, 2% -1

Simple primality test:

1 Calculate z= 2"""mod n

2 ifz=1

3 then nis possibly prime

4 else nis definitely not prime

Advantage: This only takes polynomial time

16

Simple primality test

Definition:
n is called pseudoprime to base 2, if n is not prime and
2-"mod n = 1.

Example: n=11%*31 =341

2340 mod 341 = 1

17

Randomized primality test

Theorem: (Fermat's little theorem)
If p prime and 0 < a < p, then
a>"modp = 1.

Definition:
n is pseudoprime to base a, if n not prime and
a~"modn = 1.

Example: n=341, a=3
3340 mod 341 = 56 = 1

18

Randomized primality test

Algorithm: Randomized primality test 1

1 Randomly choose a € [2, n-1]
2 Calculate @' mod n

3 ifa~"modn="1

4 then nis possibly prime

5 else nis definitely not prime

Prob(n is not prim, but a™' modn=1) ?

19

Carmichael numbers

Problem: Carmichael numbers

Definition: An integer nis called Carmichael number if
a~"modn=1
for all a with GCD(a, n) = 1. (GCD = greatest common divisor)

Example:
Smallest Carmichael number: 561 =3 * 11 * 17

20

Randomized primality test 2 ’.'.r

Theorem:

If p prime and 0 < a < p, then the only solutions to the equation
a‘modp = 1

area=1anda=p-1.

Definition:
a is called non-trivial square root of 1 mod n, if

a?modn=1 and a=1,n-1.

Example: n=35
62 mod 35 = 1

21

Fast exponentiation l.'u:

Idea:

During the computation of @™’ (0 < a < n randomly chosen), test
whether there is a non-trivial square root mod n.

Method for the computation of a":

Case 1: [nis even]
an - an/2 * an/2

Case 2: [n is odd]
an - a(n-1)/2 * a(n-1)/2 * a

22

Fast exponentiation

Example:
a2 = (331)2
ad! = (a’%)2 * g
a’®=(a’)2*a
a’ =(a%2*a
a® =(a)*a

Complexity: O(log?a” log n)

23

Fast exponentiation

boolean isProbablyPrime;

power (1nt a, int p, int n) {
/* computes aP mod n and checks during the
computation whether there 1s an x with

x* mod n =1 and x = 1, n-1 */

1f (p == 0) return 1;
x = power(a, p/2, n)

result = (x * xX) % n;

24

Fast exponentiation

/* check whether x? mod n =1 and x = 1, n-1 */
1f (result == 1 && x =1 && x !'= n -1)
1sProbablyPrime = false;
1f (p % 2 == 1)
result = (a * result) % n;

return result;

Complexity: O(log2n log p)

25

Randomized primality test 2

primalityTest (int n) {
/* carries out the randomized primality test for
a randomly selected a */

a = random (2, n-1);

isProbablyPrime = true;

result = power(a, n-1, n);

1f (result != 1 || !isProbablyPrime)

return false;

else
return true;

26

Randomized primality test 2 l.'u

Theorem:

If nis not prime, there are at most

n-9
4

integers 0 < a < n, for which the algorithm primalityTest fails.

27

Application: cryptosystems nr

Traditional encryption of messages with secret keys
Disadvantages:

1. The key k has to be exchanged between A and B before the
transmission of the message.

2. For messages between n parties n(n-1)/2 keys are required.

A B

C

».‘i
X '. éé’)
Wz~

g
e

Advantage:

Encryption and decryption can be computed very efficiently.

28

Duties of security providers

Guarantee...
= confidential transmission
» integrity of data
= authenticity of the sender
= reliable transmission

29

Public-key cryptosystems

Diffie and Hellman (1976)
Idea: Each participant A has two keys:

1. a public key P, accessible to every other participant

2. a private (or: secret) key S, only known to A.

30

Public-key cryptosystems

D = set of all legal messages,
e.g. the set of all bit strings of finite length

P,.,S,:D=D

Three conditions:
1. P, and S, can be computed efficiently

2. Sp(Pa(M)) =M and P,(S,(M)) =M
(P4, S, are inverse functions)

3. S, cannot be computed from P, (without unreasonable effort)

31

Encryption in a public-key system

A sends a message M to B.

Dear Bob, #k- + 532, Dear Bob,
| just N @) #5<9 < f /@ | just
checked {o7::-8$3 \% checked

the new (##1]28 the new

32

Encryption in a public-key system ’.'u:

1. A accesses B’s public key Pg (from a public directory or directly
from B).

2. A computes the encrypted message C = Pg(M) and sends C to B.

3. After B has received message C, B decrypts the message with

his own private key Sg: M = Sg(C)

33

Generating a digital signature ’.'u:

A sends a digitally signed message M to B:
1. A computes the digital signature o for M~ with her own private
key:
0 = Su(M")
2. A sends the pair (M",0) to B.

3. After receiving (M',0), B verifies the digital signature:
Pj(o) =M

o can by verified by anybody via the public P,.

34

RSA cryptosystems

R. Rivest, A. Shamir, L. Adleman

Generating the public and private keys:

1. Randomly select two primes p and g of similar size,
each with /+7 bits (/= 500).

2. Letn=pq

3. Let e be an integer that does not divide (p - 1)-(q - 1).

4. Calculate d =e'mod (p - 1)(q - 1)

l.e.:
d-e = 1Tmod(p-1)qg-1)

35

RSA cryptosystems

5. Publish P = (e, n) as public key

6. Keep S = (d, n) as private key

Divide message (represented in binary) in blocks of size 2-/.
Interpret each block M as a binary number: 0 < M < 22/

P(M) = Mé mod n S(C) = C?mod n

36

