
1

Prof. Dr. Th. Ottmann

Theory I

Algorithm Design and Analysis

(10 - Text search, part 1)



2WS03/04

Text search

Different scenarios:

Dynamic texts

• Text editors

• Symbol manipulators

Static texts

• Literature databases

• Library systems

• Gene databases

• World Wide Web



3WS03/04

Text search

Data type string:

• array of character

• file of character

• list of character

Operations: (Let T, P be of type string)

Length: length ()

i-th character:    T [i ]

concatenation:  cat (T, P)  T.P



4WS03/04

Problem definition

Input:

Text        t1 t2 .... tn   
n

Pattern   p1p2 ... pm
m

Goal:

Find one or all occurrences of the pattern in the text, 

i.e. shifts i (0 i n – m) such that

p1 =  ti+1

p2 =  ti+2

pm = ti+m



5WS03/04

Problem definition

Text:   t1 t2 ....            ti+1 ....           ti+m ….. tn

Pattern: p1 ....            pm

Estimation of cost (time) :

1. # possible shifts: n – m + 1 # pattern positions: m

 O(n·m)

2.   At least 1 comparison per m consecutive text positions:

 (m + n/m)

i       i+1                      i+m



6WS03/04

Naïve approach

For each possible shift  0 i n – m check at most m pairs of characters.

Whenever a mismatch,  occurs start the next shift.

textsearchbf  := proc (T : : string, P : : string)

#  Input:   Text T und Muster P

# Output:  List L of shifts i, at which P occurs in T 

n := length (T); m := length (P);

L := [];

for i from 0 to n-m {

j := 1;

while j m and T[i+j] = P[j]

do j := j+1 od;

if j = m+1 then L := [L [] , i] fi;

}

RETURN (L)

end;



7WS03/04

Naïve approach

Cost estimation (time):

0  0  ...                 0   ...   0  ...   0  0   ...

0   ...   0  ...   0  1

Worst Case: (m·n)

In practice: mismatch often occurs very early

 running time ~ c·n

i



8WS03/04

Method of Knuth-Morris-Pratt (KMP)

Let ti and pj+1 be the characters to be compared:

t1 t2 ...               ...              ti ...              ...

=   =  =    =      

p1 ...      pj pj+1 ...     pm

If, at a shift, the first mismatch occurs at  

ti and pj+1, then:

• The last j characters inspected in T equal the first j characters in P.

• ti pj+1 



9WS03/04

Method of Knuth-Morris-Pratt (KMP)

Idea:

Determine j´ = next[j] < j such that ti can then be compared with pj´+1.

Determine j´< j such that P1...j´= Pj-j´+1...j.

Find the longest prefix of P that is a proper suffix of P 1... j.

t1 t2 ...               ...              ti ...              ...

=   =  =    =      

p1 ...      pj pj+1 ...     pm



10WS03/04

Method of Knuth-Morris-Pratt (KMP)

Example for determining next[j]:

t1 t2 ... 01011   01011   0              ...

01011   01011   1

01011   01011   1

next[j] = length of the longest prefix of P that is a proper suffix of P1 ...j.



11WS03/04

Method of Knuth-Morris-Pratt (KMP)

for P = 0101101011,  next = [0,0,1,2,0,1,2,3,4,5] :

1 2 3 4 5 6 7 8 9 10

0 1 0 1 1 0 1 0 1 1

0

0 1

0

0 1

0 1 0

0 1 0 1

0 1 0 1 1



12WS03/04

Method of Knuth-Morris-Pratt (KMP)

KMP := proc (T : : string, P : : string)

# Input: text T and pattern P

# Output: list L of shifts i at which P occurs in T

n := length (T); m := length(P);

L :=  []; next := KMPnext(P);

j  :=  0;

for i from 1 to n do

while j>0 and T[i] <> P[j+1] do j := next [j] od;

if T[i]  = P[j+1]  then j := j+1 fi;

if j = m then L := [L[] , i-m] ;

j  := next [j]

fi;

od;

RETURN (L);

end;



13WS03/04

Method of Knuth-Morris-Pratt (KMP)

Pattern: abracadabra, next = [0,0,0,1,0,1,0,1,2,3,4]

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...

|   |   |   |   |   |   |   |   |   |   | 

a  b  r  a  c  a  d  a  b  r  a

next[11] = 4

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...

- - - - | 

a  b  r  a  c

next[4] = 1



14WS03/04

Method of Knuth-Morris-Pratt (KMP)

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...

- |   |   |   |

a  b  r  a  c

next [4] = 1

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...

- |   |

a  b  r  a  c

next [2] = 0

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...

|   |   |   |   |

a  b  r  a  c



15WS03/04

Method of Knuth-Morris-Pratt (KMP)

Correctness:

Situation at start of the for-loop:

P1...j = Ti-j...i-1 and j m

if j = 0: we are at the first character of P

if j 0: P can be shifted while j > 0 and ti pj+1

t1 t2 ...               ...               ti ...              ...

p1 ...      pj pj+1 ...     pm

=   =  =    =      



16WS03/04

Method of Knuth-Morris-Pratt (KMP)

If T[i] = P[j+1], j and i can be increased (at the end of the loop).

When P has been compared completely (j = m), a position was found, 

and we can shift.



17WS03/04

Method of Knuth-Morris-Pratt (KMP)

Time complexity:

• Text pointer i is never reset

• Text pointer i and pattern pointer j are always incremented together

• Always: next[j] < j;  

j can be decreased only as many times as it has been increased. 

The KMP algorithm can be carried out in time O(n), 

if the next-array is known.



18WS03/04

Computing the next-array

next[i] = length of the longest prefix of P that is a proper suffix of P1...i .

next[1] = 0

Let next[i-1] = j:

p1 p2 ...               ...               pi ...              ...

p1 ...      pj pj+1 ...     pm

=   =  =    =      



19WS03/04

Computing the next-array

Consider two cases:

1) pi = pj+1 next[i] = j + 1 

2) pi pj+1 replace j by next[ j ] , until pi = pj+1 or  j = 0.

If pi = pj+1, we can set next[i] = j + 1, 

otherwise next[i] = 0. 



20WS03/04

Computing the next-array

KMPnext := proc (P : : string)

#Input    :  pattern P

#Output :   next-Array for P

m := length (P);

next := array (1..m);

next [1] := 0;

j := 0;

for i from 2 to m do

while j > 0 and P[i] <> P[j+1]

do j := next [j] od;

if P[i] = P[j+1] then j := j+1 fi;

next [i] := j 

od;

RETURN (next);

end;



21WS03/04

Running time of KMP

The KMP algorithm can be carried out in time O(n + m).

Can text search be even faster?



22WS03/04

Method of Boyer-Moore (BM)

Idea: Align the pattern from left to right, but compare the characters 

from right to left.

Example:

e r     s a g t e   a b r a k a d a b r a   a b e r 

|

a b e r

e r     s a g t e   a b r a k a d a b r a   a b e r 

|

a b e r



23WS03/04

Method of Boyer-Moore (BM)

e r     s a g t e    a b r a k a d a b r a   a b e r 

|

a b e r

e r     s a g t e   a b r a k a d a b r a   a b e r 

|

a b e r

e r     s a g t e   a b r a k a d a b r a   a b e r 

|

a b e r 



24WS03/04

Method of Boyer-Moore (BM)

e r     s a g t e   a b r a k a d a b r a   a b e r 

|

a b e r

e r     s a g t e   a b r a k a d a b r a   a b e r 

|

a b e r

e r     s a g t e   a b r a k a d a b r a   a b e r 

|  |  |  |

a b e r

Large jumps:  few comparisons

Desired running time: O(m + n /m)



25WS03/04

BM – Heuristic of occurrence

For c and pattern P let

(c) := index of the first occurrence of c in P from the right

= max {j | pj = c}

= 

What is the cost for computing all -values?

Let | | = l: 

mkj pc pc j

 Pc 

k j for  and  if

 if0



26WS03/04

BM – Heuristic of occurrence

Let

c = the character causing the mismatch

j = index of the current character in the pattern (c pj)



27WS03/04

BM – Heuristic of occurrence

Computation of the pattern shift

Case 1  c does not occur in the pattern P. ( (c) = 0)

Shift the pattern to the right by j characters

text                              c

pattern

i + 1 i + j       i + m

pj

|  |  |

pm

ji)(



28WS03/04

BM – Heuristic of occurrence

Case 2 c occurs in the pattern. ( (c) 0)

Shift the pattern to the right, until the rightmost c in the pattern is 

aligned with a potential c in the text.

text

pattern

i + 1 i + j      i + m

c           pj

|   |   |

c                   

k

c

pm
j - k



29WS03/04

BM – Heuristic of occurrence

Case 2a: (c) > j

text

pattern

Shift of the rightmost c in the pattern to a potential c in the text.

c           c

pj                c

1)()(by  Shift  cmi

  
(c)

                                    
no c



30WS03/04

BM – Heuristic of occurrence

Case 2b: (c) < j

text

pattern

Shift of the rightmost c in the pattern to c in the text:

c

c pj


)((c)

                           
cj

)()(by  shift  cji



31WS03/04

BM algorithm  (1st version)

Algorithm BM-search1

Input: Text T and pattern P

Output: Shifts for all occurrences of P in T

1  n := length(T); m := length(P)

2  compute 

3  i := 0

4  while i n – m do

5      j := m

6       while j > 0 and P[j] = T[i + j] do

7 j := j – 1

8  end while;



32WS03/04

BM algorithm  (1st version)

9 if j = 0

10 then output shift i

11 i := i + 1

12 else if (T[i + j]) > j

13 then i := i + m + 1 - [T[i + j]]

14 else i := i + j - [T[i + j]]

15  end while; 



33WS03/04

BM algorithm  (1st version)

Analysis:

desired running time :  c(m + n/m)

worst-case running time:     (n·m)

i

0  0  ...                     0  0    ...   0   ...   0  ...

1  0     ...   0   ...   0



34WS03/04

Match heuristic

Use the information collected before a mismatch pj ti + j occurs

wrw[j] = position of the end of the closest occurrence of the suffix 

Pj+1 ... m from the right that is not preceded by character Pj .

Possible shift: [j] = m – wrw[j] (wrw[j] >0)

p1 ...      pj ...     pm

i

t1 t2 ...              ti+1 ...      ti+j ...    ti+m

=  =   =  



35WS03/04

Example for computing wrw

wrw[j] = position of the end of the closest occurrence of the suffix 

Pj+1 ... m from the right that is not preceded by character Pj ..

Pattern: banana

wrw[j]

inspected

suffix

forbidden 

character

further

occurrence

posit-

ion

wrw[5] a n banana 2

wrw[4] na a *** bana na 0

wrw[3] ana n banana 4

wrw[2] nana a banana 0

wrw[1] anana b banana 0

wrw[0] banana banana 0



36WS03/04

Example for computing wrw

wrw (banana) = [0,0,0,4,0,2]

a b a a b a b a n a n a n a n a 

= = =

b a n a n a

b a n a n a 



37WS03/04

Match heuristic

Use the information collected before a mismatch pj ti + j occurs

wrw[j] = position of the end of the closest occurrence of the suffix 

Pj+1 ... m from the right that is not preceded by character Pj .

Possible shift: [j] = m – wrw[j] (wrw[j] >0)

[j] = ?? (wrw[j] =0)

p1 ...      pj ...     pm

i

t1 t2 ...              ti+1 ...      ti+j ...    ti+m

=  =   =  



38WS03/04

BM algorithm  (2nd version)

Algorithm BM-search2

Input: Text T and pattern P

Output: shift for all occurrences of P in T

1  n := length(T); m := length(P)

2  compute and 

3  i := 0

4  while i n – m do

5  j := m

6 while j > 0 and P[j] = T[i + j] do

7 j := j – 1

8 end while;



39WS03/04

BM algorithm  (2nd version)

9       if j = 0

10 then output shift i

11 i := i + [0]

12 else i := i + max( [j], j - [T[i + j]])

13  end while;


