Theory I Algorithm Design and Analysis
(10 - Text search, part 1)

Prof. Dr. Th. Ottmann

Text search

Different scenarios:

Dynamic texts

- Text editors
- Symbol manipulators

Static texts

- Literature databases
- Library systems
- Gene databases
- World Wide Web

Text search

Data type string:

- array of character
- file of character
- list of character

Operations: (Let T, P be of type string)

Length: i-th character:
concatenation:
length ()
T [i]
cat (T, P) T.P

Problem definition

Input:
Text $\quad t_{1} t_{2} \ldots t_{n} \in \Sigma^{n}$
Pattern $p_{1} p_{2} \ldots p_{m} \in \Sigma^{m}$

Goal:

Find one or all occurrences of the pattern in the text, i.e. shifts $i(0 \leq i \leq n-m)$ such that

$$
\begin{aligned}
& p_{1}=t_{i+1} \\
& p_{2}=t_{i+2} \\
& \vdots \\
& p_{m}=t_{i+m}
\end{aligned}
$$

Problem definition

Pattern: $\quad \longrightarrow \quad p_{1} \quad \ldots \quad p_{m}$
Estimation of cost (time) :

1. \# possible shifts: $n-m+1$ \# pattern positions: m
$\rightarrow O(n \cdot m)$
2. At least 1 comparison per m consecutive text positions:
$\rightarrow \Omega(m+n / m)$

Naïve approach

For each possible shift $0 \leq i \leq n-m$ check at most m pairs of characters. Whenever a mismatch, occurs start the next shift.

```
textsearchbf := proc (T : : string, P : : string)
# Input: Text T und Muster P
# Output: List L of shifts i, at which P occurs in T
    n := length (T); m := length (P);
    L := [];
    for i from 0 to n-m {
        j:= 1;
        while j }\leqm\mathrm{ and T[i+j] = P[j]
            do j:= j+1 od;
        if j = m+1 then L := [L[], i] fi;
    }
    RETURN (L)
end;
```


Naïve approach

Cost estimation (time):

Worst Case: $\Omega(m \cdot n)$

In practice: mismatch often occurs very early
\rightarrow running time $\sim c \cdot n$

Method of Knuth-Morris-Pratt (KMP)

Let t_{i} and p_{j+1} be the characters to be compared:

If, at a shift, the first mismatch occurs at
t_{i} and p_{j+1}, then:

- The last j characters inspected in T equal the first j characters in P.
- $t_{i} \neq p_{j+1}$

Method of Knuth-Morris-Pratt (KMP)

Idea:

Determine $j^{\prime}=n \operatorname{ext}[j]<j$ such that t_{i} can then be compared with $p_{j^{\prime}+1}$.
Determine $j^{\prime \prime}<j$ such that $P_{1 . . . j^{\prime}}=P_{j-j j^{\prime}+1 . . . j}$.
Find the longest prefix of P that is a proper suffix of $P_{1 \ldots j}$.

Method of Knuth-Morris-Pratt (KMP)

Example for determining next[]]:

$t_{1} t_{2} \ldots 01011$	01011	0	\ldots
01011 01011 1 01011 01011 1			

$n e x[[]]=$ length of the longest prefix of P that is a proper suffix of $P_{1 \ldots \text {.... }}$.

Method of Knuth-Morris-Pratt (KMP)

\Rightarrow for $P=0101101011$, next $=[0,0,1,2,0,1,2,3,4,5]:$

1	2	3	4	5	6	7	8	9	10
0	1	0	1	1	0	1	0	1	1
		0							
		0	1						

0				
0	1			
0	1	0		
0	1	0	1	
0	1	0	1	1

Method of Knuth-Morris-Pratt (KMP)

KMP := proc (T : : string, P : : string) \# Input: text T and pattern P
\# Output: list L of shifts i at which P occurs in T
$\mathrm{n}:=$ length (T); $\mathrm{m}:=$ length (P);
L := []; next :=KMPnext(P);
j := 0;
for ifrom 1 to n do
while $j>0$ and $T[i]$ <> $P[j+1]$ do $j:=$ next [j] od;
if $T[i]=P[j+1]$ then $j:=j+1 \mathrm{fi}$;
if $j=m$ then $L:=[L[], i-m]$;
$\mathrm{j}:=$ next $[\mathrm{j}]$
fi;
od;
RETURN (L);
end;

Method of Knuth-Morris-Pratt (KMP)

Pattern: abracadabra, next $=[0,0,0,1,0,1,0,1,2,3,4]$

```
a b r a c a d a b r a b r a b a b r a c...
| | | | | | | | | | |
a b r a c a d a b r a
```

$n e x t[11]=4$
a bracadabrabrababrac...

$$
\begin{array}{llll}
- & - & - \\
\text { a b r a c } \\
\text { next[4] }=1
\end{array}
$$

Method of Knuth-Morris-Pratt (KMP)

Method of Knuth-Morris-Pratt (KMP)

Correctness:

Situation at start of the for-loop:
$P_{1 \ldots . . j}=T_{\mathrm{i}-\mathrm{j} . . \mathrm{i}-1}$ and $j \neq m$
if $j=0$: we are at the first character of P
if $j \neq 0$: P can be shifted while $j>0$ and $t_{i} \neq p_{j+1}$

Method of Knuth-Morris-Pratt (KMP)

If $\left.T_{i}\right]=P[j+1]$, j and i can be increased (at the end of the loop).

When P has been compared completely $(j=m)$, a position was found, and we can shift.

Method of Knuth-Morris-Pratt (KMP)

Time complexity:

- Text pointer i is never reset
- Text pointer i and pattern pointer j are always incremented together
- Always: nex[j] < j; j can be decreased only as many times as it has been increased.

The KMP algorithm can be carried out in time $O(n)$, if the next-array is known.

Computing the next-array

next[i] $=$ length of the longest prefix of P that is a proper suffix of $P_{1} \ldots ;$.
next[1] $=0$
Let $\operatorname{next}[j-1]=j$:

p_{1}	p_{2}	\ldots	\ldots		p_{i}
		\ldots	$\ldots=$	$=$	\neq
		p_{1}	\ldots	p_{i}	p_{i+1}
		\ldots	p_{m}		

Computing the next-array

Consider two cases:

1) $p_{i}=p_{j+1} \rightarrow n e x t[]=j+1$
2) $p_{i} \neq p_{j+1} \rightarrow$ replace j by next[j], until $p_{i}=p_{j+1}$ or $j=0$.

If $p_{i}=p_{j+1}$, we can set next[[]$=j+1$, otherwise next[]] $=0$.

Computing the next-array

```
KMPnext := proc (P : : string)
#Input : pattern P
#Output: next-Array for P
    m := length (P);
    next := array (1..m);
    next [1] := 0;
    j := 0;
    for i from 2 to m do
        while j > 0 and P[i] <> P[j+1]
            do j := next [j] od;
        if P[i] = P[j+1] then j := j+1 fi;
        next [i]:= j
    od;
    RETURN (next);
end;
```


Running time of KMP

The KMP algorithm can be carried out in time $\mathrm{O}(n+m)$.

Can text search be even faster?

Method of Boyer-Moore (BM)

Idea: Align the pattern from left to right, but compare the characters from right to left.

Example:
er sagte abrakadabra aber
χ
aber
er sagte abrakadabra aber

$$
\stackrel{y}{a b e r}
$$

Method of Boyer-Moore (BM)

er sagte abrakadabra aber f aber
er sagte abrakadabra aber

$$
\begin{array}{r}
\nmid \\
a b e r
\end{array}
$$

er sagte abrakadabra aber

Method of Boyer-Moore (BM)

er sagte abrakadabra aber

er sagte abrakadabra aber

er sagte abrakadabra aber

aber

Large jumps: few comparisons
Desired running time: $O(m+n / m)$

BM - Heuristic of occurrence

For $c \in \Sigma$ and pattern P let
$\delta(c):=$ index of the first occurrence of c in P from the right

$$
\begin{aligned}
& =\max \left\{j \mid p_{\mathrm{j}}=c\right\} \\
& =\left\{\begin{array}{lc}
0 & \text { if } c \notin P \\
j & \text { if } c=p_{j} \text { and } c \neq p_{k} \text { for } j<k \leq m
\end{array}\right.
\end{aligned}
$$

What is the cost for computing all δ-values?
Let $|\Sigma|=l$:

BM - Heuristic of occurrence

Let
$c=$ the character causing the mismatch
$j=$ index of the current character in the pattern $\left(c \neq p_{j}\right)$

BM - Heuristic of occurrence

Computation of the pattern shift

Case $1 c$ does not occur in the pattern $P .(\delta(c)=0)$ Shift the pattern to the right by j characters

$$
\Delta(i)=j
$$

BM - Heuristic of occurrence

Case $2 c$ occurs in the pattern. $(\delta(c) \neq 0)$
Shift the pattern to the right, until the rightmost c in the pattern is aligned with a potential c in the text.

BM - Heuristic of occurrence

Case 2a: $\delta(c)>j$

Shift of the rightmost c in the pattern to a potential c in the text.
\Rightarrow Shift by $\Delta(i)=m-\delta(c)+1$

BM - Heuristic of occurrence

Case 2b: $\delta(c)<j$
text
pattern

Shift of the rightmost c in the pattern to c in the text:
\Rightarrow shift by $\Delta(i)=j-\delta(c)$

BM algorithm (1st version)

Algorithm BM-search1
Input: Text T and pattern P
Output: Shifts for all occurrences of P in T
$1 n:=\operatorname{length}(T) ; m:=\operatorname{length}(P)$
2 compute δ
$3 i:=0$
4 while $i \leq n-m$ do
$5 \quad j:=m$
6 while $j>0$ and $P[j]=T i+j]$ do
$7 \quad j:=j-1$
8 end while;

BM algorithm (${ }^{\text {st }}$ version)

9 if $j=0$
10 then output shift i
$11 \quad i:=i+1$
12 else if $\delta(T i+j])>j$
13 then $i:=i+m+1-\delta[T i+j]]$
14 else $i:=i+j-\delta[7 i+j]]$
15 end while;

BM algorithm (${ }^{\text {st }}$ version)

Analysis:

desired running time : $c(m+n / m)$ worst-case running time: $\quad \Omega(n \cdot m)$

Match heuristic

Use the information collected before a mismatch $p_{j} \neq t_{i+j}$ occurs

$w r w[]=$ position of the end of the closest occurrence of the suffix
$P_{j+1} \ldots m$ from the right that is not preceded by character P_{j}.

Possible shift: $\gamma[]=m-w r w[](\operatorname{wrw}[j]>0)$

Example for computing wrw

$w r w[]=$ position of the end of the closest occurrence of the suffix
$P_{j+1 \ldots m}$ from the right that is not preceded by character P_{j}.
Pattern: banana

wrw[j]	inspected suffix	forbidden character	further occurrence	position
wrw[5]	a	n	bąnana	2
wrw[4]	na	a	*** bana na	0
wrw[3]	ana	n	banana	4
wrw[2]	nana	a	banana	0
wrw[1]	anana	b	banana	0
wrw[0]	banana	ε	banana	0

Example for computing wrw

\Rightarrow wrw (banana) $=[0,0,0,4,0,2]$

abaababanananana
 $$
\neq==
$$

banana
banana

Match heuristic

Use the information collected before a mismatch $p_{j} \neq t_{i+j}$ occurs

$w r w[]=$ position of the end of the closest occurrence of the suffix
$P_{j+1} \ldots m$ from the right that is not preceded by character P_{j}.

Possible shift: $\gamma[]]=m-w r w[]](w r w[j]>0)$
$\gamma[j]=? ?(w r w[j]=0)$

BM algorithm (2 ${ }^{\text {nd }}$ version)

Algorithm BM-search2
Input: Text T and pattern P
Output: shift for all occurrences of P in T
$1 n:=\operatorname{length}(T) ; m:=\operatorname{length}(P)$
2 compute δ and γ
$3 i:=0$
4 while $i \leq n-m$ do
$5 \quad j:=m$
$6 \quad$ while $j>0$ and $P[J]=\pi i+j$ do
$7 \quad j:=j-1$
8 end while;

BM algorithm (2 ${ }^{\text {nd }}$ version)

9
$10 \quad$ if $j=0$
11
11
12

13
end $\quad i:=i+\gamma[0]$
ensile;

