
1

Theory I
Algorithm Design and Analysis

(11 - Edit distance and approximate string matching)

Prof. Dr. Th. Ottmann

2

Dynamic programming

• Algorithm design technique often used for optimization problems

• Generally usable for recursive approaches if the same partial
solutions are required more than once

• Approach: store partial results in a table

• Advantage: improvement of complexity, often polynomial instead of
exponential

3

Two different approaches

Bottom-up:
+ controlled efficient table management, saves time
+ special optimized order of computation, saves space
- requires extensive recoding of the original program
- possible computation of unnecessary values

Top-down: (Note-pad method)
+ original program changed only marginally or not at all
+ computes only those values that are actually required
- separate table management takes additional time
- table size often not optimal

4

Problem: similarity of strings

Edit distance

For two given A and B, compute, as efficiently as possible, the edit
distance D(A,B) and a minimal sequence of edit operations which
transforms A into B.

i n f - - - o r m a t i k -
i n t e r p o l - a t i o n

5

Problem: similarity of strings

Approximate string matching

For a given text T, a pattern P, and a distance d,
find all substrings P´ in T with D(P,P´) ≤ d

Sequence alignment

Find optimal alignments of DNA sequences

G A G C A - C T T G G A T T C T C G G
- - - C A C G T G G - - - - - - - - -

6

Edit distance

Given: two strings A = a1a2 am and B = b1b2 ... bn

Wanted: minimal cost D(A,B) for a sequence of edit operations
to transform A into B.

Edit operations:

1. Replace one character in A by a character from B
2. Delete one character from A
3. Insert one character from B

7

Edit distance

Cost model:

possible ,
 if0

 if 1
),(

εε ==
⎩
⎨
⎧

=
≠

=

ba
ba
ba

bac

We assume the triangle inequality holds for c:

c(a,c) ≤ c(a,b) + c(b,c)

Each character is changed at most once

8

Edit distance

Trace as representation of edit sequences

A = b a a c a a b c

B = a b a c b c a c

or using indels

A = - b a a c a - a b c

B = a b a - c b c a - c

Edit distance (cost): 5

Division of an optimal trace results in two optimal sub-traces
dynamic programming can be used

9

Computation of the edit distance

Let Ai = a1...ai and Bj = b1....bj

Di,j = D(Ai,Bj)

A

B

10

Computation of the edit distance

Three possibilities of ending a trace:

1. am is replaced by bn :
Dm,n = Dm-1,n-1 + c(am, bn)

2. am is deleted: Dm,n = Dm-1,n + 1

3. bn is inserted: Dm,n = Dm,n-1 + 1

11

Computation of the edit distance

Recurrence relation, if m,n ≥ 1:

Computation of all Di,j is required, 0 ≤ i ≤ m, 0 ≤ j ≤ n.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
+
+

=

−

−

−−

1
,1

),,(
min

1,

,1

1,1

,

nm

nm

nmnm

nm

D
D

bacD
D

Di-1,j-1 Di-1,j

Di,jDi,j-1

+d

+1

+1

12

Recurrence relation for the edit distance

Base cases:
D0,0 = D(ε, ε) = 0
D0,j = D(ε, Bj) = j
Di,0 = D(Ai,ε) = i

Recurrence equation:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
+
+

=

−

−

−−

1
,1

),(
min

1,

,1

1,1

,

ji

ji

jiji

ji

D
D

bacD
D

13

Order of computation for the edit distance
b1 b2 b3 b4 bn

a1

am

Di-1,j

Di,j

Di-1,j-1

Di,j-1

a2

14

Algorithm for the edit distance

Algorithm edit_distance
Input: two strings A = a1 am and B = b1 ... bn

Output: the matrix D = (Dij)
1 D[0,0] := 0
2 for i := 1 to m do D[i,0] = i
3 for j := 1 to n do D[0,j] = j
4 for i := 1 to m do
5 for j := 1 to n do
6 D[i,j] := min(D[i - 1,j] + 1,
7 D[i,j - 1] + 1,
8 D[i –1, j – 1] + c(ai,bj))

15

Example

a b a c

b

a

a

c

0 1 2 3 4

1

2

3

4

16

Computation of the edit operations
Algorithm edit_operations (i,j)
Input: matrix D (computed)
1 if i = 0 and j = 0 then return
2 if i ≠ 0 and D[i,j] = D[i – 1 , j] + 1
3 then „delete a[i]“
4 edit_operations (i – 1, j)
5 else if j ≠ 0 and D[i,j] = D[i, j – 1] + 1
6 then „insert b[j]“
7 edit_operations (i, j – 1)
8 else

/* D[i,j] = D[i – 1, j – 1] + c(a[i], b[j]) */
9 „replace a[i] by b[j] “
10 edit_operations (i – 1, j – 1)

Initial call: edit_operations(m,n)

17

Trace graph of the edit operations

0

1

2

3

4

1 2 3 4

1 1 2 3

1 2 2 3

2 2 2 3

3 3 3 2

B = a b a c

A=

b

a

a

c

18

Sub-graph of the edit operations

Trace graph: Overview of all possible traces for the transformation
of A into B, directed edges from vertex (i, j) to (i + 1, j), (i, j + 1) and
(i + 1, j + 1).
Weights of the edges represent the edit costs.

Costs are monotonic increasing along an optimal path.

Each path with monotonic increasing cost from the upper left corner
to the lower right corner represents an optimal trace.

19

Approximate string matching

Given: two strings P = p1p2 ... pm (pattern) and
T = t1t2 ... tn (text)

Wanted: an interval [j´, j], 1 ≤ j´ ≤ j ≤ n, such that the substring
Tj´ , j = tj´ ... tj of T is the one with the greatest similarity to
pattern P, i.e. for all other intervals [k´ , k], 1 ≤ k´ ≤ k ≤ n:

D(P,Tj´, j) ≤ D(P, Tk´, k)

T

P

j

20

Approximate string matching

Naïve approach:

for all 1 ≤ j´ ≤ j ≤ n do
compute D(P,Tj´, j)

choose minimum

21

Approximate string matching

Consider a related problem:

T
j

i
E(i, j)

P

For each text position j and each pattern position i
compute the edit distance of the substring Tj´,j of T
ending at j which has the greatest similarity to Pi.

22

Approximate string matching

Method:
for all 1 ≤ j ≤ n do

compute j´ such that D(P,Tj´, j) is minimal

For 1 ≤ i ≤ m and 0 ≤ j ≤ n let:

Optimal trace:

Pi = b a a c a a b c

Tj´, j = b a c b c a c

),(min ,1´1, jjijjji TPDE ′+≤′≤
=

23

Approximate string matching

Recurrence relation:

Remark:
j´ can be completely different for Ei-1, j-1, Ei – 1,j and Ei, j – 1.
A subtrace of an optimal trace is an optimal subtrace.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
+

+
=

−

−

−−

1
,1

),,(
min

1,

,1

1,1

,

ji

ji

jiji

ji

E
E

tpcE
E

24

Approximate string matching

Base cases:

E0,0 = E(ε, ε) = 0
Ei,0 = E(Pj ,ε) = i

but
E0,j = E(ε ,Tj) = 0

Observation:
The optimal edit sequence from P to Tj´, j does not start
with an insertion of tj´ .

25

Approximate string matching

0

1

2

3

4

0 0 0 0

0 1 1 1

1 1 2 1

2 1 1 2

3 2 1 2

0

0

1

2

3

0 0 0 0

1 1 1 1

0 1 2 2

1 1 1 2

2 2 1 2

5 4 3 2 2 3 3 2 2 1

T = a b b d a d c b c
P

=

a

d

b

b

c

Dependency graph

26

Approximate string matching

Theorem

If there is a path from E0, j´- 1 to Ei, j in the dependency graph, then
Tj´, j is a substring of T ending in j with the greatest similarity to Pi

and

D(Pi, Tj´,j) = Ei, j

	Theory I�Algorithm Design and Analysis���(11 - Edit distance and approximate string matching)
	Dynamic programming
	Two different approaches
	Problem: similarity of strings
	Problem: similarity of strings
	Edit distance
	Edit distance
	Edit distance
	Computation of the edit distance
	Computation of the edit distance
	Computation of the edit distance
	Recurrence relation for the edit distance
	Order of computation for the edit distance
	Algorithm for the edit distance
	Example
	Computation of the edit operations
	Trace graph of the edit operations
	Sub-graph of the edit operations
	Approximate string matching
	Approximate string matching
	Approximate string matching
	Approximate string matching
	Approximate string matching
	Approximate string matching
	Approximate string matching
	Approximate string matching

