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Theory I
Algorithm Design and Analysis

(12 - Text search: suffix trees)

Prof. Dr. Th. Ottmann
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Text search

Different scenarios:

Dynamic texts
• Text editors
• Symbol manipulators

Static texts
• Literature databases
• Library systems
• Gene databases
• World Wide Web
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Properties of suffix trees

Search index
for a text σ in order to search for patterns α

Properties:

1. Substring search in time O(|α |).

2.  Queries to σ itself, e.g.:
Longest substring in σ occurring at least twice.

3.  Prefix search: all positions in σ with prefix α.
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Properties of suffix trees

4.  Range search: all positions in σ in interval [α, β] with α ≤lex β, e.g.

abracadabra, acacia ∈ [abc, acc],
abacus ∉ [abc, acc] .

5.  Linear complexity:
Required space and time for construction in O(|σ |)



5

Tries

Trie: tree for representing keys.

alphabet Σ, set S of keys, S ⊂ Σ*

Key String ∈ Σ* 

Edge of a trie T: label with a single character from Σ

Neighboring edges: different characters

=̂
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Tries

Example:
a

a

a

c

b

b

c

b

b c

c

c
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Tries

Each leaf represents a key:

corresponds to the labeling of the edges on the path 
from the root to the leaf 

! Keys are not stored in nodes !
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Suffix tries

Trie for all suffixes of a text

Example: σ = ababc

suffixes:      ababc = suf1
babc = suf2
abc = suf3
bc = suf4

c = suf5
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Suffix tries

Internal nodes of a suffix trie = substrings of σ.

Each proper substring of σ is represented as an internal node.

Let σ = anbn : ∃ n2 + 2n + 1  different substrings = internal nodes

⇒ Space requirement in O(n2).
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Suffix tries

A suffix trie T fulfills some of the required properties:

1. String matching for α : follow the path with 
edge labels α in T in time O(|α |).
#leaves of the subtree      #occurrences of α

2. Longest repeated substring: internal node with 
the greatest depth which has at least two
children.

3. Prefix search: all occurrences of strings with
prefix α can be found in the subtree below the
internal node corresponding to α in T.

=̂
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Suffix trees

A suffix tree is created from a suffix trie by contraction of unary nodes:

a

a

a

c

b

b

c

b

b c

c

c

ab

abc abc

b

c c

c

suffix tree = contracted suffix trie
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Internal representation of suffix trees

Child-sibling representation

Substring: pair of numbers (i,j)

ab

abc abc

b

c c

c
T

Example: σ = ababc



13

Internal representation of suffix trees

(∗∗)

(1,2) (2,2) (5,$)

(3,$) (5,$) (3,$) (5,$)

ab

abc abc

c c

Example: σ = ababc

b c

node v = (v.w, v.o, v.sn, v.br)

Further pointers (suffix pointers) are added later
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Properties of suffix trees

(S1) No suffix is prefix of another suffix;
this holds if (last character of σ ) = $ ∉Σ

Search:

(T1) edge     non-empty substring of σ.

(T2)   neighboring edges: corresponding substrings start with 
different characters.

=̂
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Properties of suffix trees

Size
(T3) each internal node ( ≠ root) has at least two children
(T4) leaf      (non-empty) suffix of σ.

Let n = |σ |  ≠ 1

=̂
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Construction of suffix trees

Definition: 

Partial path: path from the root to a node in T

Path: a partial path ending in a leaf

Location of a string α: node at the end of the partial path labeled with α
(if it exists).

ab

abc abc

b

c c

c
T
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Construction of suffix trees

Extension of a string α: string with prefix α

Extended location of a string α: place of the shortest extension of α, 
whose place is defined.

Contracted location of a string α: place of the longest prefix of α, 
whose place is defined.

ab

abc abc

b

c c

c
T



18

Construction of suffix trees

Definitions:

sufi: suffix of σ starting at position i, e.g. 
suf1 = σ, sufn = $.

headi : longest prefix of sufi which is also a prefix of sufj for a j < i.

Example:            σ = bbabaabc α = baa  (has no location)
suf4 = baabc

head4 = ba
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Construction of suffix trees

σ = bbabaabc

a

abc

c

b

b

abcaabc

babaabc
a c

c baabc
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Naive suffix-tree construction

Begin with the empty tree T0

Tree Ti+1 is created from Ti by inserting suffix sufi+1.

Algorithm suffix tree
Input: a text σ
Output: the suffix tree T for σ

1 n := | σ |; T0 := ∅;
2 for i := 0 to n – 1do
3 insert sufi+1 in Ti , resulting in Ti+1 ;
4 end for
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Naive suffix-tree construction

In Ti all suffixes sufj (j < i) already have a location.

headi =  longest prefix of sufi whose extended location in Ti-1
exists.

Definition:
taili := sufi – headi, i.e. sufi = headitaili.

taili ≠ ε.⇒
)1(S
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Naive suffix-tree construction

Example: σ = ababc

suf3 =     abc
head3 =      ab
tail3 =    c

T0 = 

T1 = 

T2 = 

ababc

ababc babc
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Naive suffix-tree construction

Ti+1 ca be constructed from Ti as follows:

1. Determine the extended location of headi+1 in Ti and split the last
edge leading to this location into two new edges by inserting a new 
node.

2.  Create a new leaf as location for sufi+1

x = erweiterter Ort
von headi+1

x
taili+1

headi+1

v
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Naive suffix-tree construction

Example: σ = ababc

T3

babc

c

T2 ababc

abc

ab

head3 = ab
tail3 =  c

babc
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Naive suffix-tree construction

Algorithm suffix insertion
Input: tree Ti and suffix sufi+1

Output: tree Ti+1

1 v := root of Ti

2 j := i
3 repeat
4 find child w of v with σw.u = σj+1

5 k := w.u – 1;
6 while k < w.o and σk+1 = σj+1 do
7 k := k +1; j := j + 1
8 end while
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Naive suffix-tree construction

9 if k = w.o then v := w
10 until k <w.o or w = nil
11    /* v is the contracted location of headi+1 */
12    insert the location of headi+1 and taili+1 in Ti below v

Running time for suffix insertion: O(    )
Total time for naive suffix-tree construction: O(   )
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The algorithm M

(Mc Creight, 1976)

When the extended location of headi+1 in Ti has been found: creation of 
a new node and edge splitting in O(1) time.+

Idea: Extended location of headi+1 is determined in constant amortized
time in Ti . (Additional information is required!)
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Analysis of algorithm M

Theorem 1

Algorithm M constructs a suffix tree for σ with |σ | leaves 
and at most |σ | - 1 internal nodes in time O(|σ |). 

Remark:
Ukkonen (1992) found an O(n) on-line algorithm for the construction 
of suffix trees, i.e. after each step i, the resulting structure is a correct 
suffix tree for t1…ti (where σ = t1…tn).
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Suffix tree: application

Usage of suffix tree T:

1 Search for string α: follow the path with edge labeling α
in T in time O(|α |).
leaves of the subtree        occurrences of α

2 Search for longest repeated substring: 
Find the location of a substring with the greatest weighted depth
that is an internal node

3 Prefix search: All occurrences of strings with prefix α can be found 
in the subtree below the „location“ of α in T. 

=̂
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Suffix tree: application

4 Range query for [α, β] :

Range boundaries
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Suffix tree: example

T0 = T1 =                     bbabaabc

suf1 = bbabaabc suf2 = babaabc
head2 =  b
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Suffix tree: example

T2 =  T3 =b
abaabc b

abaabc babaabbc
abaabc babaabbc

suf3 = abaabc suf4 = baabc
head3 = ε head4 = ba
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Suffix tree: example

T4 = abaabc b

babaabbc
a

abc
baabc location of head4

suf5 = aabc
head5 = a
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Suffix tree: example

babaabbc
a

abc
baabc

T5 = 

abc

a b

baabc

location of head5

suf6 = abc
head6 = ab
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Suffix tree: example

babaabbc
a

abc
baabc

T6 = 

abc

a b

b

c aabc

location of head6

suf7 = bc
head7 = b
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Suffix tree: example

babaabbc
a

abc
baabc

abc

a b
T7 = 

b

c aabc

c

suf8 = c
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Suffix tree: example

babaabbc
a

abc
baabc

abc

a b
T8 = 

b

c aabc

c

c
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