
1

Theory I
Algorithm Design and Analysis

(12 - Text search: suffix trees)

Prof. Dr. Th. Ottmann

2

Text search

Different scenarios:

Dynamic texts
• Text editors
• Symbol manipulators

Static texts
• Literature databases
• Library systems
• Gene databases
• World Wide Web

3

Properties of suffix trees

Search index
for a text σ in order to search for patterns α

Properties:

1. Substring search in time O(|α |).

2. Queries to σ itself, e.g.:
Longest substring in σ occurring at least twice.

3. Prefix search: all positions in σ with prefix α.

4

Properties of suffix trees

4. Range search: all positions in σ in interval [α, β] with α ≤lex β, e.g.

abracadabra, acacia ∈ [abc, acc],
abacus ∉ [abc, acc] .

5. Linear complexity:
Required space and time for construction in O(|σ |)

5

Tries

Trie: tree for representing keys.

alphabet Σ, set S of keys, S ⊂ Σ*

Key String ∈ Σ*

Edge of a trie T: label with a single character from Σ

Neighboring edges: different characters

=̂

6

Tries

Example:
a

a

a

c

b

b

c

b

b c

c

c

7

Tries

Each leaf represents a key:

corresponds to the labeling of the edges on the path
from the root to the leaf

! Keys are not stored in nodes !

8

Suffix tries

Trie for all suffixes of a text

Example: σ = ababc

suffixes: ababc = suf1
babc = suf2
abc = suf3
bc = suf4

c = suf5

a

a

a

c

b

b

c

b

b c

c

c

9

Suffix tries

Internal nodes of a suffix trie = substrings of σ.

Each proper substring of σ is represented as an internal node.

Let σ = anbn : ∃ n2 + 2n + 1 different substrings = internal nodes

⇒ Space requirement in O(n2).

10

Suffix tries

A suffix trie T fulfills some of the required properties:

1. String matching for α : follow the path with
edge labels α in T in time O(|α |).
#leaves of the subtree #occurrences of α

2. Longest repeated substring: internal node with
the greatest depth which has at least two
children.

3. Prefix search: all occurrences of strings with
prefix α can be found in the subtree below the
internal node corresponding to α in T.

=̂
a

a

a

c

b

b

c

b

b c

c

c

11

Suffix trees

A suffix tree is created from a suffix trie by contraction of unary nodes:

a

a

a

c

b

b

c

b

b c

c

c

ab

abc abc

b

c c

c

suffix tree = contracted suffix trie

12

Internal representation of suffix trees

Child-sibling representation

Substring: pair of numbers (i,j)

ab

abc abc

b

c c

c
T

Example: σ = ababc

13

Internal representation of suffix trees

(∗∗)

(1,2) (2,2) (5,$)

(3,$) (5,$) (3,$) (5,$)

ab

abc abc

c c

Example: σ = ababc

b c

node v = (v.w, v.o, v.sn, v.br)

Further pointers (suffix pointers) are added later

14

Properties of suffix trees

(S1) No suffix is prefix of another suffix;
this holds if (last character of σ) = $ ∉Σ

Search:

(T1) edge non-empty substring of σ.

(T2) neighboring edges: corresponding substrings start with
different characters.

=̂

15

Properties of suffix trees

Size
(T3) each internal node (≠ root) has at least two children
(T4) leaf (non-empty) suffix of σ.

Let n = |σ | ≠ 1

=̂

) (trequiremen Space

 nodes internal of number

 leaves of number

n

n

n
T

T

Ο∈⇒

−≤⇒

⇒
1

)3(

)4(

16

Construction of suffix trees

Definition:

Partial path: path from the root to a node in T

Path: a partial path ending in a leaf

Location of a string α: node at the end of the partial path labeled with α
(if it exists).

ab

abc abc

b

c c

c
T

17

Construction of suffix trees

Extension of a string α: string with prefix α

Extended location of a string α: place of the shortest extension of α,
whose place is defined.

Contracted location of a string α: place of the longest prefix of α,
whose place is defined.

ab

abc abc

b

c c

c
T

18

Construction of suffix trees

Definitions:

sufi: suffix of σ starting at position i, e.g.
suf1 = σ, sufn = $.

headi : longest prefix of sufi which is also a prefix of sufj for a j < i.

Example: σ = bbabaabc α = baa (has no location)
suf4 = baabc

head4 = ba

19

Construction of suffix trees

σ = bbabaabc

a

abc

c

b

b

abcaabc

babaabc
a c

c baabc

20

Naive suffix-tree construction

Begin with the empty tree T0

Tree Ti+1 is created from Ti by inserting suffix sufi+1.

Algorithm suffix tree
Input: a text σ
Output: the suffix tree T for σ

1 n := | σ |; T0 := ∅;
2 for i := 0 to n – 1do
3 insert sufi+1 in Ti , resulting in Ti+1 ;
4 end for

21

Naive suffix-tree construction

In Ti all suffixes sufj (j < i) already have a location.

headi = longest prefix of sufi whose extended location in Ti-1
exists.

Definition:
taili := sufi – headi, i.e. sufi = headitaili.

taili ≠ ε.⇒
)1(S

22

Naive suffix-tree construction

Example: σ = ababc

suf3 = abc
head3 = ab
tail3 = c

T0 =

T1 =

T2 =

ababc

ababc babc

23

Naive suffix-tree construction

Ti+1 ca be constructed from Ti as follows:

1. Determine the extended location of headi+1 in Ti and split the last
edge leading to this location into two new edges by inserting a new
node.

2. Create a new leaf as location for sufi+1

x = erweiterter Ort
von headi+1

x
taili+1

headi+1

v

24

Naive suffix-tree construction

Example: σ = ababc

T3

babc

c

T2 ababc

abc

ab

head3 = ab
tail3 = c

babc

25

Naive suffix-tree construction

Algorithm suffix insertion
Input: tree Ti and suffix sufi+1

Output: tree Ti+1

1 v := root of Ti

2 j := i
3 repeat
4 find child w of v with σw.u = σj+1

5 k := w.u – 1;
6 while k < w.o and σk+1 = σj+1 do
7 k := k +1; j := j + 1
8 end while

26

Naive suffix-tree construction

9 if k = w.o then v := w
10 until k <w.o or w = nil
11 /* v is the contracted location of headi+1 */
12 insert the location of headi+1 and taili+1 in Ti below v

Running time for suffix insertion: O()
Total time for naive suffix-tree construction: O()

27

The algorithm M

(Mc Creight, 1976)

When the extended location of headi+1 in Ti has been found: creation of
a new node and edge splitting in O(1) time.+

Idea: Extended location of headi+1 is determined in constant amortized
time in Ti . (Additional information is required!)

28

Analysis of algorithm M

Theorem 1

Algorithm M constructs a suffix tree for σ with |σ | leaves
and at most |σ | - 1 internal nodes in time O(|σ |).

Remark:
Ukkonen (1992) found an O(n) on-line algorithm for the construction
of suffix trees, i.e. after each step i, the resulting structure is a correct
suffix tree for t1…ti (where σ = t1…tn).

29

Suffix tree: application

Usage of suffix tree T:

1 Search for string α: follow the path with edge labeling α
in T in time O(|α |).
leaves of the subtree occurrences of α

2 Search for longest repeated substring:
Find the location of a substring with the greatest weighted depth
that is an internal node

3 Prefix search: All occurrences of strings with prefix α can be found
in the subtree below the „location“ of α in T.

=̂

30

Suffix tree: application

4 Range query for [α, β] :

Range boundaries

31

Suffix tree: example

T0 = T1 = bbabaabc

suf1 = bbabaabc suf2 = babaabc
head2 = b

32

Suffix tree: example

T2 = T3 =b
abaabc b

abaabc babaabbc
abaabc babaabbc

suf3 = abaabc suf4 = baabc
head3 = ε head4 = ba

33

Suffix tree: example

T4 = abaabc b

babaabbc
a

abc
baabc location of head4

suf5 = aabc
head5 = a

34

Suffix tree: example

babaabbc
a

abc
baabc

T5 =

abc

a b

baabc

location of head5

suf6 = abc
head6 = ab

35

Suffix tree: example

babaabbc
a

abc
baabc

T6 =

abc

a b

b

c aabc

location of head6

suf7 = bc
head7 = b

36

Suffix tree: example

babaabbc
a

abc
baabc

abc

a b
T7 =

b

c aabc

c

suf8 = c

37

Suffix tree: example

babaabbc
a

abc
baabc

abc

a b
T8 =

b

c aabc

c

c

	Text search
	Properties of suffix trees
	Properties of suffix trees
	Tries
	Tries
	Tries
	Suffix tries
	Suffix tries
	Suffix tries
	Suffix trees
	Internal representation of suffix trees
	Internal representation of suffix trees
	Properties of suffix trees
	Properties of suffix trees
	Construction of suffix trees
	Construction of suffix trees
	Construction of suffix trees
	Construction of suffix trees
	Naive suffix-tree construction
	Naive suffix-tree construction
	Naive suffix-tree construction
	Naive suffix-tree construction
	Naive suffix-tree construction
	Naive suffix-tree construction
	Naive suffix-tree construction
	The algorithm M
	Analysis of algorithm M
	Suffix tree: application
	Suffix tree: application
	Suffix tree: example
	Suffix tree: example
	Suffix tree: example
	Suffix tree: example
	Suffix tree: example
	Suffix tree: example
	Suffix tree: example

