
Universiẗat Freiburg Georges-K̈ohler-Allee, Geb. 051
Institut für Informatik D-79110 Freiburg i. Br.
Dr. F. Wei Freiburg, 4. Mai 2009
T. Hornung

Theory I - Exercise sheet 2

Submission due Tuesday, May 19

Exercise 1:(0 + 3 + 1 points) AVL trees

Discuss whether an AVL treet with Fk leaves (whereFk is a Fibonacci number andk ≥ 7) has theinternal
path length l(t) ≤ Fk · (k − 4). Proceed as follows:

a) (Discussion Topic) Try to determine the maximum heighth of an AVL tree withFk leaves. Has an AVL
tree with maximum height in this case also the maximum internal path length?
In the following part, we assume that this is proved.

b) Using induction, show the above inequality.
Hint: Be sure you start with the right base case(s). For the induction step use the definition of the internal
path length and your knowledge about the number of internal nodes in the tree.

c) What does this tell us about theaverage search path length D(t) in such a tree (in terms of its height)?

Exercise 2:(2 + 2 + 1 points) AVL trees

a) Insert sequentially the keys1, 2, ..., 7 into the initial empty AVL tree. Show after each insertion the origi-
nated tree. Which structure has the originated AVL tree?

b) Insert further the keys8, 9, ..., 15 into the constructed tree and show the resulting tree.

c) Do you have a presumption, which structure the insertion operation for AVL trees produces, if2n−1 keys
were inserted into the initial empty tree?

Exercise 3:(5 points) Fibonacci trees
Given a fibonacci treeth with heighth andFib(h + 2) leaves.
Show the fibonacci treet5 and the originated tree, if the delete operation for AVL trees is applied to the root of
t5.
(th can be defined inductive: A variant of a binary tree where a treeth (h > 1) has a left subtreeth−1 and a right
subtreeth−2. The fibonacci treet0 has no nodes, and treet1 has1 node.)



Exercise 4:(4 + 2 points) Representation of trees
In ak-ary tree each node may have up tok child nodes. In order to handle such trees, two different representati-
ons are commonly used:

• In thestandard representation, each node stores the pointers to its children in an arraychildren[] of size
k, plus a variablerank that indicates the actual number of children.

• In the child-sibling representation, we also have therank variable indicating the number of children.
However, each node stores only one pointerchild to its leftmost child. Each node also has a pointer
sibling pointing to its right sibling (ornull, if there is no such sibling).

a) For both representations, describe (in your words, pseudo-code, or Java) efficient methods for

– accessing thei-th child (from the left) of a given nodeN

– inserting a new child for nodeN (assumingN has less thank children before the insertion)

– deleting a given child nodeC of nodeN

For each method, determine the worst-case time complexity (lowest asymptotic bound in O-notation).
Explain your answers.

b) Can we improve any of the worst-case times in the child-sibling representation by usingdoubly-linked
lists (i.e. each node contains pointers to its left and right sibling)?


