

Universität Freiburg
Institut für Informatik
Georges-Köhler-Allee, Geb. 051
Dr. Fang Wei
D-79110 Freiburg i. Br.
T. Hornung

## Theory I - Exercise sheet 3

Submission due Tuesday, June 9

Exercise 1: $(2+2$ points) Hashing: chaining
a) Insert the key sequence $7,18,2,3,14,25,1,11,12,1332$ with hashing by chaining in a hash table with size 11. Please show the final table by using the hash function $h(k)=k \bmod 11$.
b) Consider a hash table that is an array of length 31 with overflow lists (for chaining) and the hash function

$$
h(n)=\left\lfloor n \cdot \log _{2} n\right\rfloor \quad \bmod 31
$$

Is this a good hash function? Assume that the keys to be inserted are integers between 1 and 1000 and that they are equally distributed.
Hint: You may want to write a short program in order to solve this exercise.

Exercise 2: $(2+2+2+2$ points) Hashing: open addressing
Give the allocation for a hash table of size 17, if sequentially the keys

$$
2,32,43,16,77,51,1,17,42,111
$$

were inserted with hash function $h(k)=k \bmod 17$ used by
(i) linear probing

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

(ii) quadratic probing

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

(iii) double hashing with $h^{\prime}(k)=1+k \bmod 13$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

(iv) double hashing with Brent's algorithm $\left(h^{\prime}(k)=1+k \bmod 13\right)$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Exercise 3: $(1+2+2$ points) Universal Hashing

We consider universal hashing for the universe $U=\{0, \cdots, 10\}$ of size $N=11$. For a hash table of size $m=4$ we draw randomly the hash function

$$
h_{a, b}(x)=((a x+b) \bmod N) \bmod m
$$

with $a=8$ and $b=3$.
a) Please describe in your own words the idea of universal hashing.
b) Please give for the key sequence $S=\{1,5,8,9\}$ the allocation of the hash table. Use hashing by chaining.
c) Find the "worst" hash function $h_{a, b}$ for $S$, meaning the values $a$ and $b$, so that by hashing with $h_{a, b}$ at least 3 elements of the key sequence $S=\{1,5,8,9\}$ will be mapped to the same place in the hash table.

Exercise 4: (3 points) Fibonacci numbers
Consider the function $S: \mathbf{N} \rightarrow \mathbf{N}$, defined as follows:

$$
S(n)= \begin{cases}1 & \text { if } n=0 \\ 2+\sum_{i=2}^{n} S(i-2) & \text { if } n \geq 1\end{cases}
$$

(If $n<2$ in the summation on the right, the sum is empty and hence, equals 0 .)

Show that $S(n)=F_{n+2}$ for all $n \geq 0$, where $F_{k}$ is the $k$-th Fibonacci number.

