

Universität Freiburg Institut für Informatik Dr. F. Wei T. Hornung

Georges-Köhler-Allee, Geb. 051 D-79110 Freiburg i. Br. Freiburg, 23. Juni 2009

Theory I - Exercise sheet 5

Submission due Tuesday, July 7

Exercise 1: (4 points) Membership-Test The following axioms are considered ($r \in SAT(V, \mathcal{F})$):

Reflexivity (A1) $Y \subseteq X \subseteq V \Longrightarrow r$ satisfies also $X \to Y$.

Augmentation(A2) r satisfies $X \to Y, Z \subseteq V \Longrightarrow r$ satisfies also $XZ \to YZ$.

Transitivity (A3) r satisfies $X \to Y, Y \to Z \Longrightarrow r$ satisfies $X \to Z$.

Decomposition (A6) r satisfies $X \to Y, Z \subseteq Y \Longrightarrow r$ satisfies also $X \to Z$

Reflexivity (A7) r satisfies $X \to X$

Accumulation (A8) r satisfies $X \to YZ, Z \to AW \Longrightarrow r$ satisfies also $X \to YZA$

Show the equivalence of the axiomatic systems (A1) - (A3) and (A6) - (A8).

Exercise 2: (6 points) BCNF

 $R = (V, \mathcal{F})$ is a relational schema. Show the following coherences:

- a) R is in BCNF, iff for every non-trivial functional dependency $X \to A \in \mathcal{F}^+ X$ is a superkey.
- b) R is in BCNF, iff $R' = (V, \mathcal{F}^+)$ is in BCNF.
- c) R has exactly one key. R is in BCNF, iff R is in 3NF.
- d) $\mathcal{F} = \{X_1 \to Y_1, \dots, X_p \to Y_p\}$. *R* has an unambiguous key, iff $V \setminus Z_1 \dots Z_p$ is a superkey, whereas $Z_i = Y_i \setminus X_i, 1 \le i \le p$.

Exercise 3: (4 points) Complexity of Functional Dependencies

- a) Show that sets of attributes $V, X \subseteq V$ and a set of functional dependencies \mathcal{F} exist, where \mathcal{F} contains 2n + 1 functional dependencies, such that $\pi[x]\mathcal{F}$ has at least 2^n elements.
- b) Discuss the consequences of a).

Exercise 4: (6 points) Formal Design

R(A, B, C) is a relational schema and r a relation to R.

- a) Give an r such that $r \models X \to Y$ iff $X \to Y$ is trivial.
- b) Given $\mathcal{F} = \{A \to B, B \to C\}$. Give an r such that $r \models X \to Y$ iff $X \to Y \in \mathcal{F}^+$.
- c) Given $\mathcal{F} = \{ \emptyset \to A, \emptyset \to C \}$. Give a relation r which does not fulfill \mathcal{F} .
- d) Given $\mathcal{F} = \{A \to \emptyset, C \to \emptyset\}$. Give a relation r which fulfills \mathcal{F} .