Agenda

- Organization
- Recommender Systems
- Topics
 - Cross-domain recommendations in RecSesame
 - Scientific Paper recommendation
- Agenda for next week
Requirements

- Study regulations (Studienordnung)
 - 16 ECTS → 480 hours

- Master project
 - Team size: 1-3 students
 - Project report: 40 pages
 - Short presentations: 2-3 (individual as needed)
 - Final presentation: 25 min

- Some preconditions
 - Prior knowledge in Java programming
 - Recommended lecture “Data Analysis and Query Language”
Organization

- **Time & Place**
 - Monday 14-16 (c.t.)
 - Geb. 51 – SR 01 029

- **Website** (http://dbis.informatik.uni-freiburg.de)
 - Apply via HISinOne
 - Startseite › Lehre › Lehrangebot › Wintersemester2016/17 › Various Aspects of Recommender Systems
General goals

- Collective work on a project
- Gain experience in research and development method
- Improve individual programming skills
- Incorporate in new topics (Semantic Web, Recommender systems,...)
- Learn about problems of larger projects
Grading

- Workload of every student must be clearly distinguishable
- Some Criteria
 - The scope and difficulty of the work / implementation
 - Individual contribution
 - Team performance: a successful project has a positive effect
 - Role and participation in the team (coordination, etc.)
 - Quality of code (formatting, documentation)
 - Individual report (project report)
 - Presentations (especially the final presentation)
Master projects

1. Cross-domain recommendations on RecSesame (Anthony)

2. Mining and integrating conference meta-data (Anas)
Cross-domain RS- 1st project
Cross-domain RS

[Diagram showing a person with thumbs up leading to movies and books]
Knowledge Linkage

Movies

Books

U

Ds

Dt

Dc

Dτ

reccsystem

target domain recommendations
Knowledge Linkage

Movies

Books

D_s

D_t

D_c

D_T

recosys_T

target domain recommendations
Linked open Data

295 datasets
31B triples
503M out links

Linked open Data

- Example:

 - http://www.visualdataweb.org/reelfinder/reelfinder.php

Knowledge Linkage

Movies

Books

\[D_s \]

\[D_t \]

\(U \)

\(D_c \)

\(D_{\tau} \)

recsys\(_\tau \)

target domain recommendations
Knowledge Linkage
The project

1. Understand the data
2. Design a cross-domain RS
3. Integrate the recommender into RecSesame
4. Evaluate the recommender
Data

- Collection of Likes (Facebook)
 - Domains: music, movies, books
- Challenge ESWC’15
- We extracted data from Dbpedia
- Items are interconnected
Design

Sample for $(u_i, p_t) = \begin{align*}
\text{Feat. 1} & \quad \text{Feat. 2} & \quad \text{Feat. 3} & \quad \ldots & \quad \text{Feat. n}
\end{align*}

Features

Class

Like | Non like
RecSesame - models
RecSesame – learning models
Evaluation – supported metrics

- Ranking Metrics
 - Precision, Recall, F-Measure, Mean Reciprocal Rank, Normalized Discounted Cumulative Gain, Area Under Curve

- Prediction Metrics
 - Mean Absolute Error, Root Mean Squared Error
Submission of task (compulsory)

- 2 teams, 2 students each
- Deadline: 07.11.2016
- Pre-requisite to participation
Submission of task (compulsory)

1. Get started with RecSesame
 - Submit evaluation results for small dataset
2. Implement a dummy recommender and evaluate it
3. Report
 - Design proposal (1 page)
 - Related work (3 pages)
Scientific Paper recommendation - 2nd project

- Recommend Scientific papers to scholars
- Content-Based recommendation
- Publication history
- Exploiting publicly available meta-data
 - Title
 - Abstract
 - Keyword list
 - Publication year
Scientific Paper recommendation

- For a researcher \((r)\)
 - \(m\) Publications
 - \(n\) Keywords
 - \(p'\): A candidate paper

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(\ldots)</th>
<th>(p_m)</th>
<th>(p')</th>
<th>(p'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous/relevant publications</td>
<td></td>
<td></td>
<td>Candidate papers</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
\rightarrow & k_1 & k_2 & k_3 & \ldots & k_n \\
\rightarrow & w_{1,1} & w_{1,2} & w_{1,3} & \ldots & w_{1,n} \\
\rightarrow & w_{m,1} & w_{m,2} & w_{m,3} & \ldots & w_{m,n} \\
\rightarrow & w'_1 & w'_2 & w'_3 & \ldots & w'_n \\
\rightarrow & w''_1 & w''_2 & w''_3 & \ldots & w''_n \\
\end{array}
\]
Mining and integrating conference meta-data

- Extracting structured information of conference papers
 - Title
 - Abstract
 - Authors
 - Keywords list
 - Year
 - Date & time
 - Pdf file

- Design a tool for an existing recommendation app that can generically deal with various conferences websites

- Mine meta-data for
 - Main track papers
 - Workshops papers

- Integrate existing tools/systems
 - jsoup
 - GROBID (for pdf files)
Mining and integrating conference meta-data

- Example of Conference websites:
 - http://2016.eswc-conferences.org/program
 - http://iswc2015.semanticweb.org/program
 - http://www.www2015.it/program/
 - http://2015.eswc-conferences.org/program/accepted-papers
Recommendation web app - demo

Jsoup

https://try.jsoup.org/

ISWC 2015
URL: http://iswc2015.semanticweb.org/papers
CSS selectors:
 List tag: .views-field
 Paper Name: strong
 Author: em
 PDF: a[href]

ESWC 2014
URL: http://2014.eswc-conferences.org/program/accepted-papers.html
CSS selectors:
 List tag: .field-item li
 Paper Name: em
 Authors: span

ESWC 2015
URL: http://2015.eswc-conferences.org/program/accepted-papers
CSS selectors: same as ESWC 2014
Submission of task (compulsory)

- Team of 2 students (1 student is also accepted)
- Deadline: 07.11.2016
- Pre-requisite to participation
Submission of task (compulsory)

1. Get started with [Jsoup](http://jsoup.org), [GROBID](https://github.com/GROBID)

2. Implement a dummy crawler for [ISWC 2015](https://iswc2015.semanticweb.org)
 1. Crawl paper names, authors, pdf files, and abstracts from pdfs

3. Report
 - Design proposal (1 page)
 - Related work (3 pages) report on existing systems/tools/methods to solve this problem
Thank you!

Any questions?