SFLORID

User Manual
Version 3.0 (FLOXML)

Wolfgang May

mayQ@informatik.uni-freiburg.de

Institut fir Informatik, Universitat Freiburg
Germany

October 2000

This manual is based on the former versions by Jiirgen Frohn, Rainer Himmerdder, Paul-Th.
Kandzia, Christian Schlepphorst, and Heinz Uphoff.

CONTENTS

Contents

Preface

1

Installation

1.1 Installation of the Source Distribution
1.2 Installation of the Binary Distribution
1.3 Environment Variables,
1.4 Settings for FLORID in Emacs

Florid in the UNIX Shell
Running Florid in Emacs

Programming with Florid

4.1 Programs and Evaluation
4.2 Blocks and Stratification oL

Output

5.1 Output Formatting
5.2 Output Handling
53 OM-Browsing

Debugging

6.1 Debugging the Evaluation
6.2 Tracing the System Input
6.3 Tracing of Object Equating

Invoking Florid: Command Line Options

The Structure of the Florid System

8.1 The User Interface
8.2 Imterface Objects
8.3 Restrictions for System Commands
8.4 System Configuration in config.flp

Florid System Commands

B Readline and History Commands

Example Sessions

C.1 Evaluating
C.2 Help mechanism
C.3 System commandsinfiles

References

OU Ot

Ne

12
12
15
15

15
16
17
17

18

19
20
20
21
22

25

26

27
27
30
34

35

CONTENTS 3

Preface

With FLORID (F-LOgic Reasoning In Databases) an implementation of a programming system
based on the concepts of F-Logic is presented. Proposed by Kifer, Lausen and Wu [KLW95],
F-Logic is designed as a logical language accounting in a clean, declarative fashion for most
of the structural aspects of object-oriented data modeling. Contrasting other approaches,
e.g., [Law93], GULOG [DT95] and ROL [Liu96], nearly all of the distinctive F-Logic features
are realized in FLORID. In particular we emphasize that the system supports data driven
schema definition, multiple, non—monotonic inheritance and furthermore path expressions
[FLU94] which can also be used for anonymous object creation. The evaluation of programs
is based on a set-oriented bottom-up computation, as an extension of the algorithm well known
from Datalog [AHV95, CGT90, UlI89]; also a semi-naive evaluation component is provided.
With version 2.0, FLORID has been extended with Web access (see tutorial [FHM100] for
details).

The FLORID system was developed at the universities of Mannheim and Freiburg as part of
a research project granted by the DFG (Deutsche Forschungsgemeinschaft) under leadership
of Georg Lausen.

The aim of this manual is to demonstrate the usage of the FLORID system. We assume
that the reader is familiar with the basic notions of F-Logic. For details about the language
and data modeling with F-Logic the reader is referred to the FLORID programming tutorial
[FHM™00] and the F-Logic report [KLW95].

The structure of this manual is as follows:

The first part describes the installation and the environment of FLORID: First, we give
describe the installation of Florid for working from the unix shell or from within emacs.
Section 2 gives a short example of how to run FLORID and in the unix shell. Working with
FLORID in emacs is described in Section 3.

The second part serves as user manual to FLORID for everyday’s use as F-Logic engine:
Section 4 is a manual to programming with FLORID from the user’s point of view, describing
the evaluation of programs and the main system commands for user interaction and controlling
evaluation. Section 5 describes how the output of FLORID can be handled. Section 6 illustrates
how programs can be debugged.

The third part addresses the more involved users which want to experiment with FLORID,
including changing its behavior (nevertheless, it should also be of interest for “simple” users):
Section 7 describes command-line options for invoking FLORID as an experimental system.
Section 8 describes the system itself, its object-oriented design, and the deeper background
of system commands. Also, it is explained how the user can change the configuration of an
experimental system.

Recent Changes

Versions 2.1 and 2.2 contain internal modifications (enabling compilation with glibc6/egcs)
and enhanced installation and compilation features. Versions 2.3 to 3.0 stepwise implemented
the XML functionality (for documentation, see [May00]).

1 INSTALLATION 4

1 Installation

1.1 Imnstallation of the Source Distribution

Not yet available.

1.2 Installation of the Binary Distribution

The binary distribution of FLORID comes as a packed and compressed file
florid-<version—number>-<operating-system>.tar.gz.

In the following we refer to this file simply as florid.tar.gz. The file is uncompressed by

the command

gunzip florid.tar.gz
The resulting file florid. tar has to be unpacked by entering
tar -xvf florid.tar
Now the directory florid is created. It has the following subdirectories:

florid/bin/
florid/environment/
florid/sgml/

florid/doc/
florid/examples/
florid/examples/tutorial/

The directory florid/bin contains the binary, florid/environment contains several files
defining the FLORID environment:
e config.flp.in: the source of the configuration file (see Section 8.4)
e default.his: history lines to preload
e flp.el: the emacs flp-mode definition file
First, the FLORID configuration has to be adapted to the local system by changing to the configure
directory florid/environment/ and calling ./configure — this generates config.flp from FLORID
config.flp.in.
The directory florid/sgml contains several definitions needed when using SGML docu-
ments. The directory florid/doc contains postscript files of the user manual (manual.ps)
and the FLORID tutorial (tutorial.ps). Additional publications related to F-Logic and
FLORID are available from http://www.informatik.uni-freiburg.de/"dbis/Publications/.
In florid/examples a number of F-Logic example programs are found. For the examples
from the tutorial there is an extra subdirectory, florid/examples/tutorial
Please send enquiries, comments, suggestions, and bug reports to

florid@informatik.uni.freiburg.de

1 INSTALLATION 9

1.3 Environment Variables

Shell environment variables are used to set paths leading to FLORID’s configuration files which

are needed when Florid is called. It is also possible to specify the paths by command line

options when calling FLORID (see Sec. 7). The following variables should be set before starting

FLORID:

e DEFAULTCFG

e DEFAULTHIS

DEFAULTCFG tells how to find the configuration file and DEFAULTHIS points to the history file

to preload. The configuration file is a sequence of system commands that create the objects

needed for a working system and then pass control to the user. See Section 8.4 for details.
If one of these variables is not set and the respective command line option is missing, the

system will print a warning. In case of a missing DEFAULTCFG, the FLORID system has to be

built “by hand”. UNIX En-
In the following we assume that FLORID’s main directory florid/ is located at /home/db/. vironment
Then, the environment variables have to be set to Variables

e DEFAULTCFG : /home/db/florid/environment/config.flp
e DEFAULTHIS : /home/db/florid/environment/default.his

You can set the variables either directly from the shell or automatically in an operating system
file; e.g., for the bash shell add the commands

export DEFAULTCFG="/home/db/florid/environment/config.flp"
export DEFAULTHIS="/home/db/florid/environment/default.his"

to .bashrc. If you want to check if your settings are working, proceed with Section 2 now
for a first example.
The XML functionality [May00] is only available when the environment variables

SP_ENCODING=XML and
SGML_CATALOG_FILES=/home/db/florid/sgml/xml.soc

are set.

1.4 Settings for Florid in Emacs

Additionally to the shell, emacs provides a very user-friendly interface to FLORID via the

emacs flp-mode. The emacs flp-mode is defined in the file f1p.el which is located in in .emacs:

florid/environment/. To make emacs load and use this mode, the local .emacs file has to mode
be extended by the following lines:

;5; enter flp mode if a file with the suffix ".flp" is loaded
(setq auto-mode-alist (cons ’("\.flp$" . flp-mode) auto-mode-alist))

;;; autoload "flp.el" if the functions flp-mode or run-flp are executed
(autoload ’flp-mode "flp" "" t)
(autoload ’run-flp "flp" "" t)

To be sure that emacs actually finds f1p.el, either the lines

(setq load-path
(cons "/home/db/florid/environment/" load-path))

fip

2 FLORID IN THE UNIX SHELL 6

have to be added to the .emacs file or f1p.el has to be put into a directory where emacs

looks for files.

In flp.el it has to be specified where to find the florid executable. If the florid/bin/ .emacs: flp
directory is in the binary search path, mode

(defvar flp-program-name "florid"
"xProgram name for invoking an inferior Flp with ‘run-flp’.")

is sufficient. Otherwise, change it to the actual path.

Additionally, florid/environment/default.his has to be copied to “/.florid-history history file
for the private readline history. After these installation steps, emacs has to be started again

to let the changes take effect.

2 Florid in the UNIX Shell

FLORID is started from the shell by simply typing florid at the unix prompt. When FLORID
is started in the unix shell, command line options can be given (see Section 7); e.g., florid
-v yields the version number. To give an impression of the FLORID system and its usage
we present a short example session in the unix shell. More example sessions are included in
appendix C.

Let the file first_example.flp contain the following program:

eagle::bird[fly *-> yes;
brood *-> eggs].
bob : eagle.

(which defines that eagles are birds; birds fly and lay eggs. Additionally, bob is an eagle). We
want to evaluate the program first example.flp and query the database which is defined
by this program database (for the program’s semantics, see [FHMT00]).

naxos:~/florid/bin> florid invoke FLORID from the shell
This is Florid
Type ’sys.help.’ for further information.

7- sys.consult@("first_example.flp"). system command to load file

?7- sys.eval. start evaluation of current program
7- X[fly->yes]. logical query to the model computed
Answer to query : ?7- X[fly -> yes]. answer set is printed

X/bob

1 output(s) printed

7- sys.end. quit FLORID

Bye

naxos:~/flogic/bin>

In the above example, FLORID entered the interactive mode after having processed the com-
mand line. Now the prompt “?-" is displayed, indicating that queries can be entered. The
queries starting with “?- sys.” are system commands which allow user interaction with the
system (see Section 4). Here, the program first_example.flpisloaded by 7- sys.consult@(‘‘first_exa
Then, it is evaluated by 7- sys.eval. Other queries refer to the evaluated model; in this

3 RUNNING FLORID IN EMACS

case, the answer set is printed (stating that bob is the only object which flies). See Section 8.1
for a detailed description of the interactive mode. To leave FLORID, enter “?- sys.end.”.

If FLORID is started with the option -q, it quits after execution of the command line
instead of entering the interactive mode. This is helpful if the user wants to call florid in
batch mode, e.g., from a shell script: florid -q test.flp.

3 Running Florid in Emacs

Running the system from the emacs not only offers high-level editing facilities but also inte-
grates FLORID into an environment where all kinds of tools (mailreader, newsreader, several
compilers, TeX etc.) are used in a uniform way. In order to use FLORID from emacs, the
configuration steps in Section 1.4 must have been executed. When a file ending with .£f1p is
loaded into emacs, emacs automatically enters the F-Logic mode (Figure 1). For editing, the
flp-mode provides syntax highlighting facility to make F-Logic programs, using the font-lock
package shipped with XEmacs 19.13 or higher (it is recommended to set Syntax Highlight-
ing:Colors and Auto-Fontify in the XEmacs Options menu). If font-lock is not available,
syntax highlighting does not work.

1{X,.¥):np[det=->W1l rnoun->W2]
1(X,Z)sdet[w-—>W1].,

1(%.%

L{X, ¥):np[np->1(X,2) ;pp->1(2.Y)]
liX.2):np, 1{2.¥):pp.

Jrnoun[w->W2].

1(Z, ¥)ipp[prep->Weinp->1(2
1(X,2)sprep[w->W]

1{X, Ty:vp[verb->W;np->1(2
1{X.,2)sverb[w->W]

// dictionary:

john:noun.
sans

: amos.flp

£y

L{Z.¥)inp.

7)1
L(Z,T)inp.

(Flp)——--46%

=] emacs: amos.flp (==
Fife Edit Apps Opifons Buffers Tools Help
| = S REEEEE i G
open |_Dired | _save | Print | _cut | copy | res®e | undo | Spell | Replace| el | info | compile] oebug | tews
det: determiner =
Dy
1(Z, Tyse[np->1(X,2)svp—>1(Z2,¥)] -
1(X,2)np, 1(Z,.¥):vp.
1(X,¥):s[e->1(X,2) ;pp->1(%,¥)] -]
1(X,Z2)z=, 1{(Z.¥):pp.
nouns: inp.

minibuffer

program buffer

Figure 1: XEmacs 19.13

Additionally to editing capabilities, the flp-mode defines several key codes for interaction

between the editor and FLORID

(see Table 1).

3 RUNNING FLORID IN EMACS

Reset System and consult buffer as file

Consult additional (same as C-c C-c but without system reset)
Consult marked region (without reset)

System reset (clear OM and program)

Consult whole buffer as region (without reset)

Display buffer *flp* and jump there

Break evaluation or output

Quit FLORID process

Table 1: Special keycodes in the flp-mode

When the key combination Control-c Control-c is pressed in the program buffer, a
new buffer is created in the lower half of the current buffer. In this buffer FLORID is started
and consults and evaluates the program given in the program buffer (see Figure 2). Then,
the user can interact in the same way with FLORID as described before for the unix shell.
Additionally, it is possible to step through the history by Meta-P (Previous) and Meta-N
(Next). The difference between C-c C-a and C-c C-b is that in the second case, the buffer’s

contents is

not saved before calling FLORID.

= emacs: *flp™ [[
File Edir Apps Options Buffers Tools Comintl Coming2 History Help
D= H S e BB 8% i3 2
nnnnnnnnnnnnnn i | cut | copy | peste | undo | Spell | Replace| el | nfo | compile| Cebug | bews

1(X,¥Y)es[np->1(X,2) ;vp->1(2,¥)]

1(X.%):np,

1(H.T)se[s->1(X.2);pp->1(5,¥)] =

1(2,¥)ivp.

1

1(X,Z):=2. 1(2.¥):pp-
nouan: tnpe.
1(X,T)enp[det->W1 rnoun->W21] -

1({X,2)tdet[w—>W1], 1(%.¥):noun[w->W2].
1(X.T)snplnp->1(X.2) ;pp->L(Z2.%)] :—

1({X.%):inp, 1L(Z.Y):pp-
1(X,¥):pplprep->Winp->1(2,¥)] :- -
————— ¥Emacs: amos.flp (Flp Font)===-L34==48%==——=—————oe————————cc—o———=—aa--|
This iz FLORID, Versicn 2.0 <September 1997 A
Type 'eys=.help[].' for further informaticn.
= 1
————— XEmacs: *flp* (Infericr-Flp: runj=—---Ld==All---——o-m—mmmm oo mmmmm oo

prototype buffer program buffer

Figure 2: XEmacs 19.13 in flp mode

If the edited file does not end with .flp, the system can be started manually by the
command Meta-x run-flp (when pressing Meta-x the emacs cursor jumps into the minibuffer
where the command is entered). Then again a new buffer is created.

4 PROGRAMMING WITH FLORID 9

4 Programming with Florid

Programs are collections of facts and rules, similar to Prolog programs. In addition to logical
facts and rules, system commands can be used for user interaction with FLORID.
The evaluation of programs is based on two concepts:

e The ObjectManager (OM) represents a set of derived facts. The object manager can
be emptied by calling “?- sys.forgetIDB.”; facts are added by “?- sys.tp.”, or “7-
sys.eval.” (see below).

e The FLogicInterpreter interp holds a current program. The interp interface object serves

as an encapsulation for all logical operations dealing with programs and queries.
To add new facts and rules to the current program, a program file has to be consulted.
Typing “?- sys.showProgram.” displays the current program (note that this is not neces-
sarily the complete program file, see Section 4.2) and “?- sys.forgetProgram.” discards
it.

Note that the current program is independent of the contents of the object manager; the link

between these two is the evaluation of the current program wrt. the OM which changes the
OM.

4.1 Programs and Evaluation

Consulting a program. After entering “?- sys.consult@("foo.f1lp").” (or typing C-c
C-c in an emacs program buffer holding the program), the following happens: The user
interface reads foo.flp rulewise using the F-Logic parser.

e Facts und rules are added to the current program held by the FLogicInterpreter interp.
Note that no evaluation takes place until the system query “?- sys.eval.” isencountered.
e Queries are answered immediately:
— System queries are executed by sending messages to interface objects. Syntactically,
system commands are scalar path expressions of the form:
?- sys.expression.
Most system commands which are relevant to the user are directly applied to the user
interface object called sys; e.g., for “?- sys.eval.”, the current program is evaluated
wrt. the current state of the OM.
Additionally, interface objects (see Section 8.2) can be manipulated and queried by the
user via system commands.
— Other queries are passed to interp which answers them according to the current state
of the OM.

e In case of a syntax error, the consult process is terminated and the error is reported at the
text shell.

When the end of the program is reached, control is given back to the calling level (interactive
mode or another consult). The OM then contains a model of the program evaluated so far.

Program evaluation. As already mentioned, FLORID uses a bottom-up evaluation strat-
egy. This algorithm iteratively deduces new facts from already established facts using a
forward chaining technique [CGT90]: A program P gives rise to an operator Tp on partial

4 PROGRAMMING WITH FLORID 10

models (for F-Logic defined in [KLW95]). This operator adds all those facts to the model
which can be derived from the already existing facts by a single application of a program rule
(no recursion). To evaluate recursive rules, it is necessary to iterate this operator. Starting
with the empty model (or a given finite object world), a fixpoint Tp°(()) is reached after a
finite! number of applications of Tp.

After that, FLORID tries to deduce a new fact by inheritance. If such a fact is found,
Tp is applied again until another fixpoint is reached. This process continues until no new
information can be inherited. The resulting partial model is a model for the program P.
When there are several possible facts inheritable at the same time, FLORID chooses one of
them nondeterministically. Thus, the model of P is not unique. For a formal treatment of
the semantics of F-Logic and implemented algorithm see [KLW95].

A single application of Tp can be achieved with “?- sys.tp.”, although, the user will
in general use “?- sys.eval.” for complete evaluation (which means iteration of deductive
fixpoints and inheritance).

Note that the object manager is not cleared before applying Tp, that is, the evaluation
does not start with the empty set, by default. This is an important feature for dividing
large programs into smaller parts or for user-stratification (using “sys.strat.dolt”, see
Section 4.2).

3

Sometimes the user may want to cancel a running evaluation without terminating the
whole system. This can be done by pressing Control-\. This key sends a QUIT signal to the
system which causes a break flag to be set. In order to return a somewhat consistent object
world, the current Tp-round has to be finished, so that it possibly takes some time before the
system actually halts. After canceling, the partial model evaluated up to this point can be
examined by querying. Calling “?- sys.eval.” again will continue the evaluation process
where it was halted.

The pretty printer checks the QUIT signal, too, so that printing huge answer sets can be
stopped.

Semi-naive Evaluation: FLORID includes an evaluation component providing a semi-naive
evaluation mode. The evaluation mode can be set by a system command:

?7- sys.theEval.mode@("seminaive").
7- sys.theEval.mode@("naive").

Naive evaluation is the default setting. Evaluating in semi-naive mode is promising for recur-
sive programs with many TP rounds to make up for the overhead due to program analysis,
rewriting and delta predicate maintainance.

Semi-naive evaluation will probably be slow for programs that derive new hierarchy facts
or equate objects often because this makes dependancy analysis very hard. See [Sch97] for
details about semi-naive evaluation for F-Logic. To see the rewritten program, set the debug
mode "program" (see Section 6.1).

'Due to the existence of function symbols and object creating path expressions, some programs need
countably many iterations to reach a fixpoint. Such programs will not terminate in FLORID. See the tutorial
for examples.

4 PROGRAMMING WITH FLORID 11

Everyday’s System Commands.

?- sys.consult@("foo.flp"). read the program file foo. see Sec. 4.1
y p prog D

?7- sys.load@("foo.flp"). load a program file containing only
facts directly into the OM

?7- sys.eval. evaluate the current program, i.e.
calculate a model

?7- sys.strat.dolt. evaluate a stratum (see Sec. 4.2)

?- sys.echo@("..."). print argument string

?7- sys.break.dolt. stop program execution and get into
interactive mode

?7- sys.return. continue program (entered in interactive mode
after sys.break.dolt.)

?- sys.end. exit FLORID

System commands are also used for output formatting and redirection, see Sec. 5.

Appendix A lists all system commands, and Appendix C contains a number of exam-
ple sessions that demonstrate the use of system commands more explicitly. A number of
frequently used system commands are loaded to the readline history.

Comments. FLORID program files may contain comments. There are three different com-
ment formats available in FLORID: As in C and C++, text between “/*” and “x/” is ignored.
In this case, the text may extend over more than one line. When a “//” (C++-Style) or
a “% (logic programming, WTEX) is found, the rest of the line is considered as a comment.
These formats may be mixed deliberately.

Nested Programs. File consulting can be nested without restriction. The interface vari-
ables may serve as a kind of parameters here. Consider a file ezecute.flp containing the
following lines:

?7- sys.consult@(filename) .

?- sys.eval.

?7- sys.echo@(filename).

7- sys.echo@("The answer set is:").
?7- result(X). // Querying the model
?7- sys.forgetProgram.

In another file, you can define filename and call ezecute:

7- sys[filename->"myfile.flp"].
?7- sys.consult@("execute.flp").
7- sys[filename->"yourfile.flp"].
7- sys.consult@("execute.flp").

4.2 Blocks and Stratification

Sequences of queries (in practice, this concerns mainly system commands) can be combined in
a block: A block is an interface object providing the method doIt. This executes the queries
contained in the block. Of course, the same effect could be achieved by consulting a file with

5 OUTPUT 12

the commands or queries. But for short command series often recurring it is more convenient
to use a block as a shorthand without having to consult external files.

Syntactically, a block declaration is a multivalued method definition with host object sys.
Between the curly braces stands a sequence of goals, i.e., queries (without “?-"). Note that
in contrast to the F-Logic semantics of multi-valued methods, the goals form a list here,
not a set, i.e., the order is relevant. Note that you can use logical queries (besides system
commands) in blocks, too, as far as they contain only one goal.

Stratification. The interplay between the OM and the current program allows a user-
stratification of programs: a set of rules which is a part of a larger program, can be executed
by the two system queries

some rules ...
?- sys.eval.
?7- sys.forgetProgram.
some more rules ...
?- sys.eval.

First, the first set of rules is evaluated by “?- sys.eval.”, computing an OM. Then, the
method forgetProgram clears the current program, the contents of the OM remain unchanged
and the second set of rules is evaluated wrt. this OM.

Thus, an important example is the definition of a block strat which makes stratification
of programs more readable. (This is done in config.flp by default, cf. Sec. 8.4.)

?7- sys[strat->>{sys.eval,
sys.forgetProgram}] .

Thus, calling
?- sys.strat.dolt.

executes “?7- sys.eval.” and “?- sys.forgetProgram.” sequentially: to separate the
strata of a program, simply put the command between them.

Besides the method doIt, a block has the method display. It lists the contents of the
block as a list of queries (adding the query prompt “?-"). In the example above calling the
method “?- sys.strat.display.” will print

Block("
?7- sys.eval.
?7- sys.forgetProgram.

II)

5 Output

5.1 Owutput Formatting

There are several possibilities of printing answer sets, depending on the desired representa-
tion style and whether maximum speed or readability is preferred. The display modes are
customized by the following methods of the pretty printer (represented by the interface object
prn) providing the methods

5 OUTPUT 13

?- sys.prn.style@("<argument>"). and
?7- sys.prn.mode@("<argument>").

style@(String): The parameter determines whether answers should be printed as fully in-
stantiated molecules or in prolog style as variable bindings to objects:

“instance”: Display answers as fully instantiated molecules. E.g., for our introductory
example,
7- X[fly->yes].
Answer to query : ?7- X[fly -> yes].
bob[fly->yes].
“bound”: Display answers in prolog-like style with variables and objects bound to them:
?7- X[fly->yes].
Answer to query : 7- X[fly -> yes].
X/bob
“html”: Same as “bound”, but writes answers to an html file and sends this file to a
netscape browser.
The html style is in particularly useful when dealing with Web queries (see also [FHM*00]).
In the html file, the resulting urls are tagged as links, so you can access them directly
from the browser. To clear the html file, type “?- sys.prn.clear.”.

mode@(String): Here the lexical representation of internal names can be customized. This
matters if more than one such representation exists, for example when using path expres-
sions or equating objects. The parameter may be:

“poor”: Display internal names.

“const”: Constants will be printed with their lexical representation and other objects
(path expression and complex IdTerms) as internal names.

“first”: Shows the first lexical representation found.

“best”: For each object, the best (that is: shortest) existing lexical representation is

printed. Of course, all possible representations have to be found and compared, so this
is the slowest output mode.

Example:

peter [father->mary.husband].

?7- sys.eval.

?7- sys.prn.mode@("poor").

7- X[father->Y].
Answer to query : ?- X[father -> Y].
X/05 Y/09

?- sys.prn.mode@("const").

?7- X[father->Y].
Answer to query : ?- X[father -> Y].
X/peter Y/09

?7- sys.prn.mode@("first").

5

OUTPUT

Figure 3: Answer display in html style

X[father->Y].
Answer to query : ?- X[father -> Y].
X/peter Y/peter.father

sys.prn.mode@("best") .

X[father->Y].

Answer to query : ?- X[father -> Y].
X/peter Y/mary.husband

sys.prn.style@("instance").
X[father->Y].

14

6 DEBUGGING 15

Answer to query : ?- X[father -> Y].
peter[father -> mary.husband]

5.2 Output Handling

All output from FLORID is communicated via output channels. Output channels wrap stan-
dard C++ output streams and can be redirected centrally. There are six predefined channels:

answerChannel: for query results. Main output of pretty printer.
errorChannel: for error messages and warnings.

statisticChannel: for runtime statistics generated by the statisticHandler.
helpChannel: for output of help methods.

debugChannel: for debug information if some debug mode is enabled.
systemChannel: for all other output generated by the system.

Default output for all display and print methods.

To redirect the output sent to a channel, the output stream wrapped by an output channel
can be changed with setStream, e.g., “?- sys.errorChannel.setStream@(cout).”. Initially,
answerChannel, helpChannel, and statisticChannel write to cout, the other channels to
cerr. The command resetStream will restore this setting for a channel. E.g., all output can
be sent to the file myfile.flp in the current directory:

?7- sys[output->sys.open@("myfile.flp")].
?- sys.answerChannel.setStream@(output) [].

-- produce some output --

7- sys.answerChannel.resetStream[].
7- sys.remove@("output").

By removing the interface object output, the file is automatically closed. This also happens
when leaving FLORID.

To suppress printing, it is also possible to direct unwanted output to the stream devnul
available at the user interface, e.g., “?~ sys.systemChannel.setStream@(devnul).”.

5.3 OM-Browsing

The complete OM can be output framewise — i.e., every stored object has a frame which
contains all its properties — by “?- sys.theOM.dump”. The OM dumping is written to a file
by ?- sys.theOM.saveAs@(String). For additional output formatting, see [May00]. The
output can then be again consulted by another F-Logic program.

For more detailed OM browsing for debugging see Section 6.1.

6 Debugging

Several components of the system provide a debug mode which can independently turned
on or off. All debug output is sent to the debug channel so it can be easily redirected (see
Sec. 5.2).

6 DEBUGGING 16

6.1 Debugging the Evaluation

Of course, the most important thing to debug is evaluation of programs. The basic debug
mode of the evaluation component theEval is enabled with the command

?- sys.theEval.debugOn.

Then, Tp applications and reached fixpoints are reported. Every time a rule is matched, a
dot is printed. So the progress of complex programs or programs dealing with large models
can be followed.

Additionally, parameters can be added to the debugOn command, telling the evaluation
component what to monitor:

“program”: The program to evaluate is printed at the beginning. This is especially useful
when dealing with nested consults, collecting rules and facts. Also, in the case of semi-naive
evaluation, the outcome of the program transformation may be of interest.

“dump”: After each Tp round, the contents of the object manager is printed. This makes
sense only in the case of very small models. Otherwise, the frames to be watched can be
specified (see below).

“insert”: If this parameter is given, all inserts to the object model are reported. The re-
spective rule is displayed together with the set of variable bindings.

“delta”: This is a special mode for semi-naive evaluation. After each T round, the contents
of all delta predicates needed for the actual program are printed.

“trigger”: In this mode, all facts derived by firing inheritance triggers are reported when
they are inserted into the object model.

“frame”: Any other string is interpreted as the name of an object frame to monitor. The
frame is printed after each Tp round.

“frame” ,n: If an integer follows after a string, the string is considered as the name of a
predicate frame with arity n. The frame is printed after each Tp round.

These parameters may be combined deliberately, e.g.,

?7- sys.theEval.debugOn@("program","delta","sales","expenditures").
Debugging is turned off by the command

7- sys.theEval.debugOff.
Additionally it is possible to apply the Tp operator by hand with the command

?7- sys.tp.
and to examine the OM state afterwards by querying or browsing. Subsequent calls of the
methods tp and eval will continue the evaluation with the current state of the OM.
The contents of the OM (i.e., all object and predicate frames) can be displayed through

?- sys.theOM.dump.
This command is useful if only a small number of frames are stored in the OM. For larger
models, it is preferable to directly inspect the frames of interest. An object frame can be
printed with the command

?7- sys.theOM.showFrame@("arg") .
where arg is the lexical representation of the object. If showFrame has two parameters, the
string is considered as the name of a predicate frame with arity given as second parameter,

?7- sys.the0OM.showFrame@("ancestor",2).

6 DEBUGGING 17

prints the contents of the predicate frame corresponding to the binary predicate ancestor.
Any Web action (see tutorial [FHM™00]), can be monitored with

?7- sys.theOMAccess.debugOn.

6.2 Tracing the System Input

If the parser reports errors or problems with consulting files and system commands occur, it
may be helpful to see what the parser actually reads. After setting the debug mode of the
user interface sys by the command

?7- sys.debugOn.
every line of input to the parser is echoed to the debug channel. Note that you can also enter
this mode by starting florid with the -d option. The command

?7- sys.debugOff.
turns the system debug mode off.

6.3 Tracing of Object Equating

During evaluation of a program the application of the scalarity constraint, a cyclic class
hierarchy, or explicit use of equality in a rule head can force objects to be equated. If this
is unintended it may lead to an unexpected behavior of the program. In the equating trace
mode set by

?7- sys.theOM.eqTraceOn.
any equating of objects is reported;
?- sys.theOM.eqTraceOff.

leaves this mode again.
Example:

peter[father->mary.husband].
peter[father->john] .

Evaluation with eqTraceOn yields:
Equality: mary.husband (o7) made equal to john (08)

The OIDs of the equated objects are shown in parentheses. Equating two objects may cause
other equatings (e.g., in the case of scalar methods). With path expressions, such equatings
may seem superfluous because the objects already have identical names. Listing the OIDs
reveals that those equatings are indeed necessary.

michael.father.
mike.father.
michael = mike.

Evaluation with eqTraceOn yields:

Equality: michael (o5) made equal to mike (08)
Equality: mike.father (o7) made equal to mike.father (09)

7 INVOKING FLORID: COMMAND LINE OPTIONS 18

7 Invoking Florid: Command Line Options

When FLORID is started in the unix shell by entering florid, command line options can be
given. A list of possible options is printed with florid -h. If -h or an undefined option is
given, FLORID terminates after printing an appropriate message.

naxos:”/florid/bin> florid -h
This is Florid
Type ’sys.help[].’ for further information.

Florid - Options :

-h : display all options

-c¢ <fileName> : use non-default configuration file

-his <fileName> : use non-default history file

-d : start in trace mode

-e <Integer> : set output level for errors
<list<fileName>> : start and consult files (separated by blank)
-q : quit after executing (no interactive mode)
-v : prints version number

The option -c denotes a configuration file to be used instead of the standard configuration
file specified in the environment variable DEFAULTCFG (cf. Section 8.4). Similarly, the option
-his loads the given file into the readline-history instead of the default in DEFAULTHIS. For
operating FLORID with non-standard configuration files regularly, it is more convenient to
change the environment variables (cf. Appendix 1.3).

In addition to the options, a list of filenames of F-Logic-programs can be given. FLORID
consults them in a left-to-right order (see Section 4.1 for details about consulting). In the
example from Section 2 one could reduce typing by invoking florid first_example.flp.
Then the consult command is automatically executed.

With option -d (debug), all rules read will be echoed to the console. This is useful for
tracing configuration errors and locating errors in program files.

Option -e (errormode) followed by a number customizes the system error messages. Pos-
sible values are listed in Table 2. The option -q causes FLORID to quit after execution of
the command line instead of entering the interactive mode. If option -q is not given, FLORID
enters the interactive mode after having processed the command line.

‘ Number ‘ Meaning ‘

0 No kind of system message is displayed

1 Only messages but no warnings and errors are displayed
2 Warnings are displayed

4 Errors are displayed

127 Any kind of system message is displayed

Table 2: Parameters for Option -e

8 THE STRUCTURE OF THE FLORID SYSTEM 19

8 The Structure of the Florid System

The FLORID system is implemented in C++ [Str92]. Due to the object-oriented programming
style in C++, it seemed reasonable to transfer this modeling style to the user interface, too
([Pfe95]). This resulted in a flexibly configurable system. Important internal classes and
objects of the system are directly accessible from the user interface and are combined from
there. Thus the structure of the FLORID system is reflected by the user interface (Fig. 4).

At the bottom is the so-called Object Manager which handles the data storage. The User
Interface on top is the front-end and communicates with the user, processes queries, and
sends the appropriate messages to other components of the system. Additionally, it manages
a list of interface objects (see Section 8.2) which the user can access by sending messages
to them (cf. system commands, Appendix A). All modules shown in Figure 4 are interface
objects, their names are given in parentheses.

Pretty-
UserlInterface Pri
rinter
Parser
Syntactical Analysis Normalizer SemAnalyzer
LogicEval
Translator (RuleBodies)
Creator
Algebraic 1 t
AlgebraicEval gebraic Inser
[terators (Semantic Level) ‘ NsgmlHandler ‘
OMAccess | DTDParser |
Tterators (Frame Level) ‘ DatabaseExport ‘

Object Manager | Name Table

Figure 4: Structure of the FLORID system

The system is generated in the configuration file (see Section 8.4). If users are interested
in changing the FLORID system itself, e.g., for investigating evaluation strategies, they are
provided with very flexible and declarative methods to configure their system.

8 THE STRUCTURE OF THE FLORID SYSTEM 20

8.1 The User Interface

The user interface sys has two main functions. Firstly, it manages the system components
and their interaction, and secondly, it communicates with the user. It encapsulates the
FLORID system providing a single and uniform way of access: queries in F-Logic syntax.
That means that all user input, whether he wants to load a database, evaluate a program,
examine the calculated object model, or customize the system, has strictly to follow F-Logic
syntax. System commands can be distinguished from data queries, facts, or rules as they
are queries to sys, a virtual host object representing the user interface. Of course, regarding
their semantics, such queries differ considerably from logical queries.

8.2 Interface Objects

The components of the FLORID system in Figure 4, as well as some other objects (e.g., inte-
gers, strings, or blocks, cf. Section 4.2), are available at the user interface. Since FLORID is
an object-oriented system, all operations on system components are carried out by invoking
methods on them. In F-Logic syntax, this gives rise to path expressions of the form ob-
ject.method or object.method@(attribute,. .. attribute). The interface objects can be accessed
as (virtual) methods of sys?. The path expression sys.objname yields the object associated
with the method objname. Furthermore, sys. objname.method would invoke method on this
object.

The existing objects can be listed by entering “?- sys.display.” (that means, sending
the method display to the host object sys). A new interface object, that is, a new method
of sys, is defined by a query of the form

»

?7- syslobjname -> ezpression].
Note, that this is syntactically a query (as every system command) but semantically it plays
the role of a fact®. If objname is unknown to the user interface (not in the list printed after
the display command), a new method is added and bound to the value of expression (which
is an object), otherwise the old value is replaced by the new one.
In the method definition, ezpression may stand for:
e methname (i.e., an identifier starting with lower case letter denoting a method)
e Integer
e String
e cxpression.methname
e cxpression.methname@(expression,. . . expression)
Here are some examples for definitions of interface objects:
?7- sys[loops->3].
?7- sys[filename->"config.flp"].
?- sys[newWorld->classOM.new] .
?7- sys[debugfile->sys.open@("logfile")].
An interface object can be deleted by
?7- sys.remove@('"thisobject").
There are also a number of class objects available at the user interface. They provide a
construction kit to build a FLORID system according to individual needs. Class objects have

2In conventional systems, this would be done by environment variables.
3In conventional systems, this would be an environment variable assignment.

8 THE STRUCTURE OF THE FLORID SYSTEM 21

the single method new to generate instances. By convention, the names of such objects begin
with the prefix class.

Using class objects opens up the possibility to configure FLORID in various ways, for exam-
ple with different evaluation components (e.g., the semi-naive evaluation module). FLORID
can even hold several separate systems at the same time. The standard configuration of
FLORID is build by the file config.flp which is automatically consulted after startup (if
DEFAULTCFG is set and the -c option is not used). See Section 8.4 for details of the system
building process. Normally, the class objects are only used in configuration files.

Interface objects can be manipulated and queried by the user. These commands are of
the form

?7- sys.<which_object>.<expr>. , e.g.,
?- sys.centralStatistic.show.

which is interpreted as follows: The method centralStatistic is sent to the object sys which

will return the respective interface object. This in turn gets the method call show, causing

the statistics handler to print the runtime statistics table.

All interface objects (except the class objects) have the following basic methods in common:
display@(outputChannel) Display the actual contents or state
print@(outputChannel) Print class or type of the object
help List all methods understood by the object

The parameter specifying the output channel may be omitted (systemChannel is used by
default).

8.3 Restrictions for System Commands

For system commands, only a subset of the full F-Logic syntax [FHM™00] is allowed. The
restrictions are listed below. On violation, the respective error message is reported.

1. No function symbols are allowed, i.e., complex terms like functor(varname). Use methods
with parameters instead:
methname@(param,. . .).
?- sys.consult("test.flp").
Function symbols with arguments are not allowed in system commands.
Maybe a @ is missing.
2. The called method must be defined for the host object.
?7- sys.theEval.foo.
Unknown method : foo
Sending the help method to any interface object lists the methods that are defined for
this object.
3. Additionally, sys treats the interface objects as methods (yielding themselves), so these
must exist before calling. Otherwise, sys reports an unknown method call.
7- sys.anotherEval.help.
Unknown method : anotherEval

4. No variables, i.e., names beginning with upper case letters, are allowed.

?7- sys.Eval.
Variables are not allowed in system commands.

8 THE STRUCTURE OF THE FLORID SYSTEM 22

Use identifiers starting with lower case characters.
5. Set-valued path expressions are forbidden.

?7- sys..eval.
Only simple scalar paths are allowed in system commands.
Use format ?7- sys.object.method@(args).

6. System queries have to consist of a single goal.
?7- sys.eval, sys.forgetProgram.
System query with more than one literal in body.
Split the query into simple ones.

7. If a goal starting with “sys.” is not the leftmost goal of a query, it is not recognized as a
system command and treated as a query to the model instead.

7- john[age->X], sys.end.
Answer to query : 7- john[age -> X], sys.end.

false

8.4 System Configuration in config.flp

The system is generated in the configuration file. If users are interested in changing the
FLORID system itself, e.g., for investigating evaluation strategies, they are provided with very
flexible and declarative methods to configure their system. Writing or modifying configuration
files requires a detailed knowledge of internals of the system and should be used with care.

If FLORID is called without the -c option it first consults the file pointed to by the
environment variable DEFAULTCFG. (normally this is the file config.f1p). This generates the
components of a standard FLORID system and links them. The process is echoed if the option
-d was given.

In addition to building the system, the config file can also be used to configure some
interface objects differently than by default. To have semi-naive evaluation instead of the
default (naive) evaluation, append “?- sys.theEval.mode@("seminaive").” to the config
file. It is useful to add all permanent customizations to the config file instead of typing them
again and again at the FLORID shell.

config.flp:
// Configuration file

?7- sys.centralErrorHandler.setOutputFilter@(2). // short error messages

7- sys[theOM->classOM.new].

?7- sys[theOMAccess->classWebOMAccess.new@(theOM)].

7- sys[theCreator->classCreatorl.new@(theOMAccess)].

?7- sys[theAlgebraicEval->classAlgebraicEval.new@(theOMAccess)].

7- sys[theTranslator->classTranslator.new].

?7- sys[theMatcher->classMatcher.new@(theTranslator,theCreator,theAlgebraicEval)].
7- sys[theEval->classPrSemiNaive.new@(theMatcher,theOMAccess)].

7- sys[theSemAnalyser->classSemanticAnalyser.new].

8 THE STRUCTURE OF THE FLORID SYSTEM 23

?7- sys[prn->classPrettyPrinter.new@(theOMAccess)].
?7- sys[interp->classFLogicInterpreter.new@(theEval,prn,theSemAnalyser)].
?7- sys.switch@(interp,theOM.giveSymTab) .
?7- sys[theNormalizer->classNormalizer.new@(interp)].
7- sysl[strat->>{sys.echo@(""),sys.echo@("%%% BEGIN EVALUATION"),
sys.eval,sys.forgetProgram,
sys.echo@("%%% END EVALUATION")}].
?7- sys[evaluate->>{sys.strat.dolIt}].
7- sys[break->>{sys.strat.dolt,
sys.echo@(""),sys.echo@("*** START QUERY-SUBSHELL"),
sys.shell,
sys.echo@("*xx END QUERY-SUBSHELL")}].
?7- sys.theOMAccess.setAccess@("all").

Explanation:

?7- sys.centralErrorHandler.setOutputFilter@(2).

Display all error messages in short form.

?7- sys[theOM->classOM.new].

Generate an object manager and assign it to the interface variable theOM.
?7- sys[theOMAccess-; classWebOMAccess.new@(theOM)].

An Object Manager Accessor (OMA) encapsulates read access to the object manager. There-
fore it needs the OM as a parameter.

?7- sys[theCreator->classCreatorl.new@(theOMAccess)].
7- sys[theAlgebraicEval->classAlgebraicEval.new@(theOMAccess)].
?7- sys[theTranslator->classTranslator.new] .

These three objects are needed by the matcher as part of the evaluation process.

?7- sys[theMatcher->
classMatcher.new@(theTranslator,theCreator,theAlgebraicEval)].

Now the matching component is generated which may get an optimizer, too, as an additional
parameter. No such component has been implemented up to now, though.

?7- sys[theEval->classPrSemiNaive.new@(theMatcher,theOMAccess)].
This configuration file uses a semi-naive evaluation component.
7- sys[theSemAnalyser->classSemanticAnalyser.new].

A component used by the FLSysInterpreter (the front-end user interface) to check queries for
safety.

?7- sys[prn->classPrettyPrinter.new@(theOMAccess)].

The pretty printer displays answer sets in readable form. To do this, it needs access to the
object manager.

7- syslinterp->classFLogicInterpreter.new@(theEval,prn,theSemAnalyser)].

8 THE STRUCTURE OF THE FLORID SYSTEM 24

The FLogicInterpreter serves as an interface between the user front-end (FLSysInterpreter)
and the pure F-Logic part of the system. Here, all input except system commands is pro-
cessed. The FlogicInterpreter manages the evaluating component, the pretty printer and the
SemanticAnalyser.

?7- sys.switch@(interp,theOM.giveSymTab) .

For passing actions, the FLSysInterpreter needs to know interp and the system’s symbol
table. They cannot be given as parameters because they are generated later than the FLSys-
Interpreter.

?7- sys[strat ->> ...]. ?- sys[evaluate ->> ...]. ?- sys[break ->> ...].

With this command, blocks for user stratification and program interruption are defined.

Acknowledgements. First of all, we want to thank Georg Lausen, the head of our group,
who made the FLORID project possible. Furthermore, our thanks go to the former team
members Jirgen Frohn, Rainer Himmerdder, Paul-Th. Kandzia, Bertram Ludéscher, Chris-
tian Schlepphorst, Markus Seilnacht, and Heinz Uphoff who developed FLORID up to version
2.0 together with students from the universities at Mannheim and Freiburg.

A FLORID SYSTEM COMMANDS 25

A Florid System Commands

Most system commands which are relevant to the user are directly applied to the user interface
object called sys. The following system commands are of interest for everydays users:

7- sys.consult@("foo.flp"). read the program file foo.flp

?7- sys.load@("foo.flp"). load a program file containing only
facts directly into the OM

?7- sys.tp. apply Tp operator of current program
once to the current OM

7- sys.eval. evaluate the current program, i.e.
calculate a model

?7- sys.strat.dolt. evaluate a stratum

?7- sys.echo@("..."). print argument string

7- sys.break.dolt. stop program execution and get into
interactive mode

?7- sys.return. continue program (entered in interactive mode
after sys.break.doIt.)

?7- sys.end. exit FLORID

The OM contents can be dumped or saved:

?7- sys.theOM.dump. dump OM
?7- sys.theOM.saveAs@(String) save OM to file

For additional output formatting, see [May00].
The FLORID output can be formatted and redirected using the following commands:

?7- sys.prn.style@("instance"|"bound"|"html"). select output style
7- sys.prn.mode@("poor"|"const"|"first"|"best"). select output of internal names

7- sys.open@(<filename>) . open a FLSysOStream pointing to a file.
Usage: 7- sys[output->sys.open@("logfilestream")].
(creates an interface object output which is assigned
to the stream)

?7- sys.<channel>.setStream@(<stream>). redirect <channel> to <stream>
Usage: ?7- sys.answerChannel.setStream@(output).

7- sys.<channel>.resetStream. reset \flq channel\frq to default.

7- sys.remove@(<if-object>). remove the interface object; if it is a stream, the
corresponding file is closed

The following system commands support debugging:

?- sys.showProgram. show current program (facts and rules)
?7- sys.forgetProgram. clear the current program

?7- sys.forgetIDB. clear the Object Manager

?7- sys.debugOn. enter debug mode for consult

?7- sys.debugOff.

?7- sys.eqTraceOn. enter debug mode for tracing equatings
?7- sys.eqTraceOff.

?7- sys.the0OM.showFrame@("arg") . display object frame

?- sys.theOM.showFrame@("pred",n)./ display predicate frame of pred for arity n

B READLINE AND HISTORY COMMANDS 26

Additional help is also available:

?7- sys.help. lists all methods of sys
7- sys.display. lists all interface objects

Each of the above interface objects (adressible by sys.<interface-obj>) provides the method
sys.<interface-obj>.help which lists its methods.

B Readline and History Commands

The following tables list the key commands available for the readline and the history packages,
they were taken from [FR94]. The shortcut C-k is read ’Control-k’ and describes the character
produced when the Control key is pressed and the k key is struck. The text M-k is read as
"Meta-k’ and describes the character produced when the meta key (if you have one) is pressed,
and the k key is struck. If you do not have a meta key, the identical keystroke can be generated
by typing ESC first and then typing k. Either process is known as metafying the k key.

C-_ Undo the last thing that you did.

C-a Move to the start of the line.

C-e Move to the end of the line.

M-f Move forward a word.

M-b Move backward a word.

c-1 Clear the screen, reprinting the current line at the top.

C-k Kill the text from the current cursor position to the end of the line.

C-u Kill backward from the cursor to the beginning of the current line.

M-d Kill from the cursor to the end of the current word, or if between words,

to the end of the next word.
M-DEL Kill from the cursor the start of the previous word, or if between words,
to the start of the previous word.

C-y Yank the most recently killed text back into the buffer at the cursor.
TAB Attempt to do completion on the text before the cursor.
M-7 List the possible completions of the text before the cursor.

Table 3: Important readline commands

p Move 'up’ through the history list. You can also use the 1 key.
-n Move ’down’ through the history list. You can also use the | key.
< Move to the first line in the history.

> Move to the end of the input history, i.e., the line you are entering.

Table 4: Important history commands

C EXAMPLE SESSIONS 27

C Example Sessions

In this section we present and comment some FLORID sessions in order to demonstrate the
use of system commands. User input and system output is printed in the typewriter style,
comments in italics.

C.1 Evaluating
Let the file edge . f1p consist of the following F-Logic program:

el:edge[1->n1; 2->n2].
e2:edge[1->n2; 2->n4].
e3:edgel[1->n1; 2->n3].
e4:edge[1->n3; 2->n4].
eb:edge[1->n4; 2->n5].
e6:edge[1->n5; 2->n6].

edge: :path.
p(E,P) :path[1->X; 2->Z] :- E:edgel[1->X; 2->Y],P:path[1->Y; 2->Z].

Scenario 1 : Evaluate the program edge.flp and query the computed model.

naxos:”/florid/bin> florid
This is FLORID
Type ’sys.help.’ for further information.

?7- sys.consult@("edge.flp"). load edge.flp

?7- sys.eval. start evaluation of current program
?7- p(el,P):path. logical query to the model computed
Answer to query : 7- p(el,P):path. answer set is printed

P/e2

P/p(e2,eb)

P/p(e2,p(e5,e6))

3 output(s) printed

?7- sys.end. quit FLORID
Bye

naxos:”~/florid/bin>

Scenario 2 : Evaluate edge.flp, discard the computed model and evaluate again by single
step Tp application to see how the answer set changes. Instead of typing
“?- sys.consult@("edge.flp").” the filename is given in the command line.

C EXAMPLE SESSIONS 28

naxos:~/florid/bin> florid edge.flp
This is FLORID
Type ’sys.help.’ for further information.

?7- sys.eval. start evaluation

?7- sys.forgetIDB. clear the OM, program remains unchanged
?7- sys.tp. apply TP operator once

TP Round O

?- p(el,P):path. query the (partial) model yet computed

Answer to query : 7- p(el,P):path.

false answer set is enpty
?7- sys.tp. apply TP again
TP Round 1

?7- p(el,P):path.
Answer to query : ?- p(el,P):path.
P/e2

1 output(s) printed
?7- sys.tp.

TP Round 2

?7- p(el,P):path.

Answer to query : ?- p(el,P):path.

P/e2
P/p(e2,eb)

2 output(s) printed
?- sys.tp.

TP Round 3

?7- p(el,P):path.

Answer to query : 7- p(el,P):path.

P/e2
P/p(e2,e5)
P/p(e2,p(e5,e6))

3 output(s) printed

7- sys.tp.
FP reached in round 4 further application of TP yields no new facts,
Model evaluated (a fizpoint is reached),

?7- no inheritance was possible

C EXAMPLE SESSIONS 29

Scenario 3 : Evaluate edge.flp, then consult anc.f1lp. After checking the current program
and evaluating it, discard program and object model to evaluate another program (test.flp)
from scratch.

naxos:”/florid/bin> florid edge.flp
This is FLORID
Type ’sys.help.’ for further information.

?7- sys.eval. start evaluation of current program
?7- sys.consult@("anc.flp"). load anc.flp

?7- sys.showProgram. display the current program
el:edgel[l -> nl; 2 -> n2].

e2:edgel[l -> n2; 2 -> n4].

e3:edgel[l -> nl; 2 -> n3].

ed:edgel[l -> n3; 2 -> n4].

eb:edge[l -> n4; 2 -> nb].

e6:edge[l -> nb; 2 -> n6].

edge: :path.

p(E,P):path[1 -> X; 2 -> Z] :- E:edgell -> X; 2 -> Y], P:path[l -> Y;
2 -> 7].

X[anc ->> {Y}] :- X[father ->> {Y}].

X[anc ->> {Y}] :- X..anc[father ->> {Y}].

?7- sys.forgetProgram. discard the current program
?- sys.showProgram.
/* This FProgram is empty */

?- sys.forgetIDB. clear OM (discard model)

?7- sys.consult@("test.flp"). read test.flp

?7- sys.eval. and evaluate it

’?_

As it is seen from this session, “?- sys.consult@("...").” does not discard the current

program: it adds new rules.
Scenario 4 : After evaluating edge.flp display the runtime statistics.

naxos:”/florid/bin> florid edge.flp

This is FLORID

Type ’sys.help.’ for further information.

?7- sys.eval.

?7- p(el,P):path. query the model

Answer to query : 7- p(el,P):path.
P/e2

P/p(e2,e5)
P/p(e2,p(e5,e6))

3 output(s) printed
?7- sys.centralStatistic.show. show runtime statistics

C EXAMPLE SESSIONS 30

Time spent in semantic analyses : 0.03sec real 0.02sec user
(Time spent in retrieving : 0.16sec real 0.15sec user)
Number of TP iterations : 5

Total time spent in evaluation : 0.34sec real 0.24sec user
Time spent in computing answers : 0.0lsec real 0.01sec user
Time spent in pretty-printing : 0.22sec real 0.00sec user
?7- p(el,P):path.

Answer to query : ?- p(el,P):path.

P/e2

P/p(e2,e5)

P/p(e2,p(e5,e6))

3 output(s) printed

?7- sys.centralStatistic.show. show statistics again
Time spent in semantic analyses : 0.03sec real 0.02sec user
(Time spent in retrieving : 0.16sec real 0.15sec user)
Number of TP iterations : 5

Total time spent in evaluation : 0.34sec real 0.24sec user
Time spent in computing answers : 0.02sec real 0.01sec user
Time spent in pretty-printing : 0.00sec real 0.00sec user
?7- sys.centralStatistic.clear. reset statistics

?7- sys.centralStatistic.show. and display again

?7- statistic is empty

This scenario shows that the runtime statistics entries accumulate until the user discards them
explicitely. The first column (real) lists the absolute time difference between start and end,
while the second column (user) yields the CPU time consumed by the task. The difference
may vary due to other tasks running in parallel (e.g., kernel, window manager). Additional
to the measured time the number of Tp iterations is displayed. If new facts were derived
through inheritance, the number of these facts (fired inheritance trigger) is printed, too.

C.2 Help mechanism

Starting point of all system commands is the host object sys, the so called FLSysInterpreter.
Therefore all system commands begin with “?- sys”. Besides the built-in methods of the
interpreter which can be listed by “?- sys.help.”, its attributes (the interface objects) are
handled as methods, too.

Sometimes it may not be clear for the user which interface object understands which
methods. Therefore all interface objects representing instances of C++ classes provide the
method help. Those objects representing the classes itself do not have this method?. The
next two scenarios shall explain how to navigate through the user interface.

“Per convention, the names of these objects start with the prefix class.

C EXAMPLE SESSIONS 31

Scenario 1 : Which attributes and methods has the interpreter after building the system
in the standard configuration file?

This is FLORID
Type ’sys.help.’ for further information.
?7- sys.display. show attributes of interpreter

FLSysInterpreter{
answerChannel : anOutputChannel
centralErrorHandler : anErrorHandler
centralStatistic : aStatisticHandler
classBlock : Block
classCreatorl : Creatorl
classFLogicInterpreter : FLogicInterpreter
classGraphicInterface : GraphicInterface
classMatcher : Matcher
classPrSemiNaive : PrSemiNaive
classPrettyPrinter : PrettyPrinter

// we don’t list all interface objects here

classSemanticAnalyser : SemanticAnalyser
classStatisticHandler : StatisticHandler
cout : aFLSysOStream

debugChannel : anOutputChannel
devnul : aFLSysOStream
errorChannel : anOutputChannel
helpChannel : anOutputChannel
interf : aGraphicInterface

interp : aFLogicInterpreter

prn : aPrettyPrinter
statisticChannel : anOutputChannel
strat : aBlock

theAlgebraicEval : anAlgebraicEval
theCreator : aCreatorl

theEval : aPrSemiNaive

theMatcher : aMatcher
theNormalizer : aFLSysObject

the0I : an0I

theOM : aFLSysObject
theSemAnalyser : aSemanticAnalyser
theTranslator : aTranslator

}
?7- sys.help. show built-in-methods of interpreter

Online help for class FLSysInterpreter

C EXAMPLE SESSIONS 32

You can apply the following member functions to an instance of
class FLSysInterpreter via F-Logic shell

- help
- isOk
returns O (object is corrupted) or 1
- isAQ(String)
String : classname
returns 1 (object belongs to class) or O

- print
prints type of instance
- display
displays components
- end
leave the flogic-system
- eval
evaluate the current program
- tp
apply TP-operator once
- showProgram
show the current program
- forgetProgram
clear the current program
- forgetIDB
clear the object manager
- switch
link a new FLogicInterpreter to sys
- debugln
echo lines read while consulting
- debugOff

- interpreteLine@(String)
String: command in flogic syntax
- interpreteFile@(String)
String: filename
- open@(String)
opens a FLSysOStream pointing to a file.
String: filename
Usage: 7- sys[mystream->sys.open@('logfile")].
- echo@(String)
String: displayed on output stream
- remove@(String)
String: name of interface object to remove.

In the output generated by “?- sys.display.” both the C++ classes and instances appear.
The line class0I : 0I means that classOI represents the C++ class 0I at the user interface.

C EXAMPLE SESSIONS 33

Furthermore, the0I : an0I describes that the0I is an instance of the class 0I. To all interface
object displayed on the left side of “:” (e.g., theOI, prn, theEval, etc.) you can apply help
to see which methods are defined for them.

Scenario 2 : Which methods can be sent to the interface object prn?

This is FLORID
Type ’sys.help.’ for further information.
?7- sys.prn.help. apply the method help to prn

Online help for class PrettyPrinter

You can apply the following member functions to an instance of
class PrettyPrinter via F-Logic shell :

- help
- is0k
returns O (object is corrupted) or 1
- isAQ(String)
String : classname
returns 1 (object belongs to class) or O
- print@(OutputChannel)
OutputChannel : e.g., answerChannel
- display@(OutputChannel)
OutputChannel : e.g., answerChannel

- style@(String)
String: describes output style, possible arguments are:
1. "bound" : answers are printed in Prolog style
2. "instance'": answers are printed in F-Logic syntax
3. "html" : answers (in Prolog style) are written to an
html file that is displayed by netscape
- mode@(String)

String: describes representation of objects,
possible arguments are:
1. "poor" : only 0ID’s are printed
2. "const": only strings of constants are printed
3. "first": first string for object is printed
4. "best" : best string for object is printed
- clear
remove stored information and clear html file of html style

7- sys.prn.style@("instance"). set fact style for output

?7- sys.prn.isOk. send method isOFk to prn
The return value of isOK is not printed by the user interface, you have to
apply the method display@(cout) onto the return value.

This applies to all methods returning strings or integers.

?7- sys.prn.isOk.display@(cout) . send isOk to prn

C EXAMPLE SESSIONS

34

and print the return value on cout

C.3 System commands in files

Placing system commands into files is useful in the following situations:

system configuration (Sec. 8.4),

automation of processes to avoid unnecessary typing,

generation of output for test purposes,

user stratification by hand (Sec. 4.2).

Scenario 1 :
“?- sys.eval.” and the query it at the shell. Then the file edge.f1p is as follows

el

e2:
e3:
ed:
eb:
e6:

redge[1->n1;
edge[1->n2;
edge[1->n1;
edge[1->n3;
edge[1->n4;
edge[1->n5;

edge: :path.

p(E,P) :path[1->X; 2->Z]

?-

sys.eval.

2->n2] .
2->n4] .
2->n3].
2->n4] .
2->nb5] .
2->n6] .

?7- p(el,P):path.

Evaluate the file edge.flp and examine the model without having to type

:— E:edge[1->X; 2->Y],P:path[1->Y; 2->Z].

Every system command can occur in a program file as well. Most often, however, commands
for controlling evaluation are used in program files.

By using the command “?- sys.strat.doIt.” the user can partition the program into
strata by hand (see Sec. 4.2). This is helpful and sometimes unavoidable when negation is
used. Other applications, e.g., for gaining efficiency, are possible, too.

Scenario 2 : Before using a negated goal in a rule, set a stratum. Document this by printing

a message.

X[L->>Y]

X[reaches->>{X}]

:— Y[(L:1ine)->>X].

:— X:stop.

c(nil,X,Y,L) [from->X[reaches->>{Y}]; to->Y] :-

X[(L:1line)->>Y].

?7- sys.strat.dolt.

?7- sys.echo@("Stratum").

c(N,X,Z,L) [from->V[reaches->>{Z}]; to->Z] :-

c(N,X,Y,L) [from->V], Y[(L:1ine)->>Z], not V=Z.

REFERENCES 35

The interface object strat is a block (see Sec. 4.2). By calling its method doIt, the block
is consulted. In the case of strat the two commands sys.eval. and sys.forgetProgram.
are executed, thus stratifying the program.

References

[AHV95]
[CGT90]

[DT95]

[FHM*00]

[FLU94]

[FR94]
[KLW95]
[Law93]
[Liu96]
[May00]
[Pfe95]
[Sch97]
[Str92]

[U1189)]

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison Wesley, 1995.

S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

Gillian Dobbie and Rodney Topor. On the declarative and procedural semantics
of deductive object-oriented systems. Journal of Intelligent Information Systems,
4(2):193-219, 1995.

J. Frohn, R. Himmeroder, W. May, P.-Th. Kandzia, and C. Schlepphorst. How
to write F-Logic programs in FLORID, 2000. Available from http://www.
informatik.uni-freiburg.de/"dbis/florid.

Jirgen Frohn, Georg Lausen, and Heinz Uphoff. Access to objects by path ex-
pressions and rules. In Intl. Conference on Very Large Data Bases (VLDB), pages
273-284, 1994.

Brian Fox and Chet Ramey. GNU readline library, edition 2.0, for readline library
version 2.0. Free Software Foundation, Cambridge, MA, 1994.

Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741-843, 1995.
Michael Lawley. A Prolog Interpreter for F-Logic. Technical report, Griffith
University, Australia, 1993.

M. Liu. ROL: A typed deductive object base language. In Intl. Conference on
Database and Ezpert Systems Applications (DEXA), 1996.

W. May. Handling XML with FLORID, 2000. Available from http://www.
informatik.uni-freiburg.de/"dbis/florid.

Thorsten Pferdekdmper. Eine flexible Konfigurations- und Benutzerumgebung fiir
F-Logik. Diplomarbeit Universitdt Mannheim, 1995.

Christian Schlepphorst. Semi-Naive Evaluation of F-Logic Programs. Technical
Report 85, Universitat Freiburg, 1997.

Bjarne Stroustrup. The C++ Programming Language. Addison—Wesley, 2nd edi-
tion, 1992.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2.
Computer Science Press, New York, 1989.

