
FLOR ->>ID
User ManualVersion 3.0 (FloXML)

Wolfgang Maymay@informatik.uni-freiburg.deInstitut f�ur Informatik, Universit�at FreiburgGermany
October 2000

This manual is based on the former versions by J�urgen Frohn, Rainer Himmer�oder, Paul-Th.Kandzia, Christian Schlepphorst, and Heinz Upho�.

CONTENTS 2ContentsPreface 31 Installation 41.1 Installation of the Source Distribution . 41.2 Installation of the Binary Distribution . 41.3 Environment Variables . 51.4 Settings for Florid in Emacs . 52 Florid in the UNIX Shell 63 Running Florid in Emacs 74 Programming with Florid 94.1 Programs and Evaluation . 94.2 Blocks and Strati�cation . 115 Output 125.1 Output Formatting . 125.2 Output Handling . 155.3 OM-Browsing . 156 Debugging 156.1 Debugging the Evaluation . 166.2 Tracing the System Input . 176.3 Tracing of Object Equating . 177 Invoking Florid: Command Line Options 188 The Structure of the Florid System 198.1 The User Interface . 208.2 Interface Objects . 208.3 Restrictions for System Commands . 218.4 System Con�guration in config.flp . 22A Florid System Commands 25B Readline and History Commands 26C Example Sessions 27C.1 Evaluating . 27C.2 Help mechanism . 30C.3 System commands in �les . 34References 35

CONTENTS 3PrefaceWith Florid (F-LOgic Reasoning In Databases) an implementation of a programming systembased on the concepts of F-Logic is presented. Proposed by Kifer, Lausen and Wu [KLW95],F-Logic is designed as a logical language accounting in a clean, declarative fashion for mostof the structural aspects of object-oriented data modeling. Contrasting other approaches,e.g., [Law93], GULOG [DT95] and ROL [Liu96], nearly all of the distinctive F-Logic featuresare realized in Florid. In particular we emphasize that the system supports data drivenschema de�nition, multiple, non{monotonic inheritance and furthermore path expressions[FLU94] which can also be used for anonymous object creation. The evaluation of programsis based on a set-oriented bottom-up computation, as an extension of the algorithm well knownfrom Datalog [AHV95, CGT90, Ull89]; also a semi-naive evaluation component is provided.With version 2.0, Florid has been extended with Web access (see tutorial [FHM+00] fordetails).The Florid system was developed at the universities of Mannheim and Freiburg as part ofa research project granted by the DFG (Deutsche Forschungsgemeinschaft) under leadershipof Georg Lausen.The aim of this manual is to demonstrate the usage of the Florid system. We assumethat the reader is familiar with the basic notions of F-Logic. For details about the languageand data modeling with F-Logic the reader is referred to the Florid programming tutorial[FHM+00] and the F-Logic report [KLW95].The structure of this manual is as follows:The �rst part describes the installation and the environment of Florid: First, we givedescribe the installation of Florid for working from the unix shell or from within emacs.Section 2 gives a short example of how to run Florid and in the unix shell. Working withFlorid in emacs is described in Section 3.The second part serves as user manual to Florid for everyday's use as F-Logic engine:Section 4 is a manual to programming with Florid from the user's point of view, describingthe evaluation of programs and the main system commands for user interaction and controllingevaluation. Section 5 describes how the output of Florid can be handled. Section 6 illustrateshow programs can be debugged.The third part addresses the more involved users which want to experiment with Florid,including changing its behavior (nevertheless, it should also be of interest for \simple" users):Section 7 describes command-line options for invoking Florid as an experimental system.Section 8 describes the system itself, its object-oriented design, and the deeper backgroundof system commands. Also, it is explained how the user can change the con�guration of anexperimental system.Recent ChangesVersions 2.1 and 2.2 contain internal modi�cations (enabling compilation with glibc6/egcs)and enhanced installation and compilation features. Versions 2.3 to 3.0 stepwise implementedthe XML functionality (for documentation, see [May00]).

1 INSTALLATION 41 Installation1.1 Installation of the Source DistributionNot yet available.1.2 Installation of the Binary DistributionThe binary distribution of Florid comes as a packed and compressed �leflorid-<version-number>-<operating-system>.tar.gz.In the following we refer to this �le simply as florid.tar.gz. The �le is uncompressed bythe command gunzip florid.tar.gzThe resulting �le florid.tar has to be unpacked by enteringtar -xvf florid.tarNow the directory florid is created. It has the following subdirectories:florid/bin/florid/environment/florid/sgml/florid/doc/florid/examples/florid/examples/tutorial/The directory florid/bin contains the binary, florid/environment contains several �lesde�ning the Florid environment:� config.flp.in: the source of the con�guration �le (see Section 8.4)� default.his: history lines to preload� flp.el: the emacs
p-mode de�nition �leFirst, the Florid con�guration has to be adapted to the local system by changing to the con�gureFloriddirectory florid/environment/ and calling ./configure { this generates config.flp fromconfig.flp.in.The directory florid/sgml contains several de�nitions needed when using SGML docu-ments. The directory florid/doc contains postscript �les of the user manual (manual.ps)and the Florid tutorial (tutorial.ps). Additional publications related to F-Logic andFlorid are available from http://www.informatik.uni-freiburg.de/~dbis/Publications/.In florid/examples a number of F-Logic example programs are found. For the examplesfrom the tutorial there is an extra subdirectory, florid/examples/tutorial.Please send enquiries, comments, suggestions, and bug reports toflorid@informatik.uni.freiburg.de

1 INSTALLATION 51.3 Environment VariablesShell environment variables are used to set paths leading to Florid's con�guration �les whichare needed when Florid is called. It is also possible to specify the paths by command lineoptions when calling Florid (see Sec. 7). The following variables should be set before startingFlorid:� DEFAULTCFG� DEFAULTHISDEFAULTCFG tells how to �nd the con�guration �le and DEFAULTHIS points to the history �leto preload. The con�guration �le is a sequence of system commands that create the objectsneeded for a working system and then pass control to the user. See Section 8.4 for details.If one of these variables is not set and the respective command line option is missing, thesystem will print a warning. In case of a missing DEFAULTCFG, the Florid system has to bebuilt \by hand". UNIX En-vironmentVariablesIn the following we assume that Florid's main directory florid/ is located at /home/db/.Then, the environment variables have to be set to� DEFAULTCFG : /home/db/florid/environment/config.flp� DEFAULTHIS : /home/db/florid/environment/default.hisYou can set the variables either directly from the shell or automatically in an operating system�le; e.g., for the bash shell add the commandsexport DEFAULTCFG="/home/db/florid/environment/config.flp"export DEFAULTHIS="/home/db/florid/environment/default.his"to .bashrc. If you want to check if your settings are working, proceed with Section 2 nowfor a �rst example.The XML functionality [May00] is only available when the environment variablesSP ENCODING=XML andSGML CATALOG FILES=/home/db/florid/sgml/xml.socare set.1.4 Settings for Florid in EmacsAdditionally to the shell, emacs provides a very user-friendly interface to Florid via theemacs
p-mode. The emacs
p-mode is de�ned in the �le flp.el which is located in in .emacs:
pmodeflorid/environment/. To make emacs load and use this mode, the local .emacs �le has tobe extended by the following lines:;;; enter flp mode if a file with the suffix ".flp" is loaded(setq auto-mode-alist (cons '("\.flp$" . flp-mode) auto-mode-alist));;; autoload "flp.el" if the functions flp-mode or run-flp are executed(autoload 'flp-mode "flp" "" t)(autoload 'run-flp "flp" "" t)To be sure that emacs actually �nds flp.el, either the lines(setq load-path(cons "/home/db/florid/environment/" load-path))

2 FLORID IN THE UNIX SHELL 6have to be added to the .emacs �le or flp.el has to be put into a directory where emacslooks for �les.In flp.el it has to be speci�ed where to �nd the florid executable. If the florid/bin/ .emacs:
pmodedirectory is in the binary search path,(defvar flp-program-name "florid""*Program name for invoking an inferior Flp with `run-flp'.")is su�cient. Otherwise, change it to the actual path.Additionally, florid/environment/default.his has to be copied to ~/.florid-history history �lefor the private readline history. After these installation steps, emacs has to be started againto let the changes take e�ect.2 Florid in the UNIX ShellFlorid is started from the shell by simply typing florid at the unix prompt. When Floridis started in the unix shell, command line options can be given (see Section 7); e.g., florid-v yields the version number. To give an impression of the Florid system and its usagewe present a short example session in the unix shell. More example sessions are included inappendix C.Let the �le first example.flp contain the following program:eagle::bird[fly *-> yes;brood *-> eggs].bob : eagle.(which de�nes that eagles are birds; birds
y and lay eggs. Additionally, bob is an eagle). Wewant to evaluate the program first example.flp and query the database which is de�nedby this program database (for the program's semantics, see [FHM+00]).naxos:~/florid/bin> florid invoke Florid from the shellThis is FloridType 'sys.help.' for further information.?- sys.consult@("first_example.flp"). system command to load �le?- sys.eval. start evaluation of current program?- X[fly->yes]. logical query to the model computedAnswer to query : ?- X[fly -> yes]. answer set is printedX/bob1 output(s) printed?- sys.end. quit FloridByenaxos:~/flogic/bin>In the above example, Florid entered the interactive mode after having processed the com-mand line. Now the prompt \?-" is displayed, indicating that queries can be entered. Thequeries starting with \?- sys." are system commands which allow user interaction with thesystem (see Section 4). Here, the program first example.flp is loaded by ?- sys.consult@(``first_example.flp'').Then, it is evaluated by ?- sys.eval. Other queries refer to the evaluated model; in this

3 RUNNING FLORID IN EMACS 7case, the answer set is printed (stating that bob is the only object which
ies). See Section 8.1for a detailed description of the interactive mode. To leave Florid, enter \?- sys.end.".If Florid is started with the option -q, it quits after execution of the command lineinstead of entering the interactive mode. This is helpful if the user wants to call
orid inbatch mode, e.g., from a shell script: florid -q test.flp.3 Running Florid in EmacsRunning the system from the emacs not only o�ers high-level editing facilities but also inte-grates Florid into an environment where all kinds of tools (mailreader, newsreader, severalcompilers, TeX etc.) are used in a uniform way. In order to use Florid from emacs, thecon�guration steps in Section 1.4 must have been executed. When a �le ending with .flp isloaded into emacs, emacs automatically enters the F-Logic mode (Figure 1). For editing, the
p-mode provides syntax highlighting facility to make F-Logic programs, using the font-lockpackage shipped with XEmacs 19.13 or higher (it is recommended to set Syntax Highlight-ing:Colors and Auto-Fontify in the XEmacs Options menu). If font-lock is not available,syntax highlighting does not work.

minibuffer program bufferFigure 1: XEmacs 19.13Additionally to editing capabilities, the
p-mode de�nes several key codes for interactionbetween the editor and Florid (see Table 1).

3 RUNNING FLORID IN EMACS 8C-c C-c Reset System and consult bu�er as �leC-c C-a Consult additional (same as C-c C-c but without system reset)C-c C-r Consult marked region (without reset)C-c C-s System reset (clear OM and program)C-c C-b Consult whole bu�er as region (without reset)C-c C-l Display bu�er *
p* and jump thereC- Break evaluation or outputC-c C-i Quit Florid processTable 1: Special keycodes in the
p-modeWhen the key combination Control-c Control-c is pressed in the program bu�er, anew bu�er is created in the lower half of the current bu�er. In this bu�er Florid is startedand consults and evaluates the program given in the program bu�er (see Figure 2). Then,the user can interact in the same way with Florid as described before for the unix shell.Additionally, it is possible to step through the history by Meta-P (Previous) and Meta-N(Next). The di�erence between C-c C-a and C-c C-b is that in the second case, the bu�er'scontents is not saved before calling Florid.

prototype buffer program bufferFigure 2: XEmacs 19.13 in
p modeIf the edited �le does not end with .flp, the system can be started manually by thecommand Meta-x run-flp (when pressing Meta-x the emacs cursor jumps into the minibu�erwhere the command is entered). Then again a new bu�er is created.

4 PROGRAMMING WITH FLORID 94 Programming with FloridPrograms are collections of facts and rules, similar to Prolog programs. In addition to logicalfacts and rules, system commands can be used for user interaction with Florid.The evaluation of programs is based on two concepts:� The ObjectManager (OM) represents a set of derived facts. The object manager canbe emptied by calling \?- sys.forgetIDB."; facts are added by \?- sys.tp.", or \?-sys.eval." (see below).� The FLogicInterpreter interp holds a current program. The interp interface object servesas an encapsulation for all logical operations dealing with programs and queries.To add new facts and rules to the current program, a program �le has to be consulted.Typing \?- sys.showProgram." displays the current program (note that this is not neces-sarily the complete program �le, see Section 4.2) and \?- sys.forgetProgram." discardsit.Note that the current program is independent of the contents of the object manager; the linkbetween these two is the evaluation of the current program wrt. the OM which changes theOM.4.1 Programs and EvaluationConsulting a program. After entering \?- sys.consult@("foo.flp")." (or typing C-cC-c in an emacs program bu�er holding the program), the following happens: The userinterface reads foo.flp rulewise using the F-Logic parser.� Facts und rules are added to the current program held by the FLogicInterpreter interp.Note that no evaluation takes place until the system query \?- sys.eval." is encountered.� Queries are answered immediately:{ System queries are executed by sending messages to interface objects. Syntactically,system commands are scalar path expressions of the form:?- sys.expression.Most system commands which are relevant to the user are directly applied to the userinterface object called sys; e.g., for \?- sys.eval.", the current program is evaluatedwrt. the current state of the OM.Additionally, interface objects (see Section 8.2) can be manipulated and queried by theuser via system commands.{ Other queries are passed to interp which answers them according to the current stateof the OM.� In case of a syntax error, the consult process is terminated and the error is reported at thetext shell.When the end of the program is reached, control is given back to the calling level (interactivemode or another consult). The OM then contains a model of the program evaluated so far.Program evaluation. As already mentioned, Florid uses a bottom-up evaluation strat-egy. This algorithm iteratively deduces new facts from already established facts using aforward chaining technique [CGT90]: A program P gives rise to an operator TP on partial

4 PROGRAMMING WITH FLORID 10models (for F-Logic de�ned in [KLW95]). This operator adds all those facts to the modelwhich can be derived from the already existing facts by a single application of a program rule(no recursion). To evaluate recursive rules, it is necessary to iterate this operator. Startingwith the empty model (or a given �nite object world), a �xpoint T1P (;) is reached after a�nite1 number of applications of TP .After that, Florid tries to deduce a new fact by inheritance. If such a fact is found,TP is applied again until another �xpoint is reached. This process continues until no newinformation can be inherited. The resulting partial model is a model for the program P .When there are several possible facts inheritable at the same time, Florid chooses one ofthem nondeterministically. Thus, the model of P is not unique. For a formal treatment ofthe semantics of F-Logic and implemented algorithm see [KLW95].A single application of TP can be achieved with \?- sys.tp.", although, the user willin general use \?- sys.eval." for complete evaluation (which means iteration of deductive�xpoints and inheritance).Note that the object manager is not cleared before applying TP , that is, the evaluationdoes not start with the empty set, by default. This is an important feature for dividinglarge programs into smaller parts or for user-strati�cation (using \sys.strat.doIt", seeSection 4.2).Sometimes the user may want to cancel a running evaluation without terminating thewhole system. This can be done by pressing Control-\. This key sends a QUIT signal to thesystem which causes a break
ag to be set. In order to return a somewhat consistent objectworld, the current TP -round has to be �nished, so that it possibly takes some time before thesystem actually halts. After canceling, the partial model evaluated up to this point can beexamined by querying. Calling \?- sys.eval." again will continue the evaluation processwhere it was halted.The pretty printer checks the QUIT signal, too, so that printing huge answer sets can bestopped.Semi-naive Evaluation: Florid includes an evaluation component providing a semi-naiveevaluation mode. The evaluation mode can be set by a system command:?- sys.theEval.mode@("seminaive").?- sys.theEval.mode@("naive").Naive evaluation is the default setting. Evaluating in semi-naive mode is promising for recur-sive programs with many TP rounds to make up for the overhead due to program analysis,rewriting and delta predicate maintainance.Semi-naive evaluation will probably be slow for programs that derive new hierarchy factsor equate objects often because this makes dependancy analysis very hard. See [Sch97] fordetails about semi-naive evaluation for F-Logic. To see the rewritten program, set the debugmode "program" (see Section 6.1).1Due to the existence of function symbols and object creating path expressions, some programs needcountably many iterations to reach a �xpoint. Such programs will not terminate in Florid. See the tutorialfor examples.

4 PROGRAMMING WITH FLORID 11Everyday's System Commands.?- sys.consult@("foo.flp"). read the program �le foo.
p (see Sec. 4.1)?- sys.load@("foo.flp"). load a program �le containing onlyfacts directly into the OM?- sys.eval. evaluate the current program, i.e.calculate a model?- sys.strat.doIt. evaluate a stratum (see Sec. 4.2)?- sys.echo@("..."). print argument string?- sys.break.doIt. stop program execution and get intointeractive mode?- sys.return. continue program (entered in interactive modeafter sys.break.doIt.)?- sys.end. exit FloridSystem commands are also used for output formatting and redirection, see Sec. 5.Appendix A lists all system commands, and Appendix C contains a number of exam-ple sessions that demonstrate the use of system commands more explicitly. A number offrequently used system commands are loaded to the readline history.Comments. Florid program �les may contain comments. There are three di�erent com-ment formats available in Florid: As in C and C++, text between \/*" and */" is ignored.In this case, the text may extend over more than one line. When a \//" (C++-Style) ora \%" (logic programming, LATEX) is found, the rest of the line is considered as a comment.These formats may be mixed deliberately.Nested Programs. File consulting can be nested without restriction. The interface vari-ables may serve as a kind of parameters here. Consider a �le execute.
p containing thefollowing lines:?- sys.consult@(filename).?- sys.eval.?- sys.echo@(filename).?- sys.echo@("The answer set is:").?- result(X). // Querying the model?- sys.forgetProgram.In another �le, you can de�ne �lename and call execute:?- sys[filename->"myfile.flp"].?- sys.consult@("execute.flp").?- sys[filename->"yourfile.flp"].?- sys.consult@("execute.flp").4.2 Blocks and Strati�cationSequences of queries (in practice, this concerns mainly system commands) can be combined ina block : A block is an interface object providing the method doIt. This executes the queriescontained in the block. Of course, the same e�ect could be achieved by consulting a �le with

5 OUTPUT 12the commands or queries. But for short command series often recurring it is more convenientto use a block as a shorthand without having to consult external �les.Syntactically, a block declaration is a multivalued method de�nition with host object sys.Between the curly braces stands a sequence of goals, i.e., queries (without \?-"). Note thatin contrast to the F-Logic semantics of multi-valued methods, the goals form a list here,not a set, i.e., the order is relevant. Note that you can use logical queries (besides systemcommands) in blocks, too, as far as they contain only one goal.Strati�cation. The interplay between the OM and the current program allows a user-strati�cation of programs: a set of rules which is a part of a larger program, can be executedby the two system queries... some rules ...?- sys.eval.?- sys.forgetProgram.... some more rules ...?- sys.eval.First, the �rst set of rules is evaluated by \?- sys.eval.", computing an OM. Then, themethod forgetProgram clears the current program, the contents of the OM remain unchangedand the second set of rules is evaluated wrt. this OM.Thus, an important example is the de�nition of a block strat which makes strati�cationof programs more readable. (This is done in con�g.
p by default, cf. Sec. 8.4.)?- sys[strat->>{sys.eval,sys.forgetProgram}].Thus, calling?- sys.strat.doIt.executes \?- sys.eval." and \?- sys.forgetProgram." sequentially: to separate thestrata of a program, simply put the command between them.Besides the method doIt, a block has the method display. It lists the contents of theblock as a list of queries (adding the query prompt \?-"). In the example above calling themethod \?- sys.strat.display." will printBlock("?- sys.eval.?- sys.forgetProgram.")5 Output5.1 Output FormattingThere are several possibilities of printing answer sets, depending on the desired representa-tion style and whether maximum speed or readability is preferred. The display modes arecustomized by the following methods of the pretty printer (represented by the interface objectprn) providing the methods

5 OUTPUT 13?- sys.prn.style@("<argument>"). and?- sys.prn.mode@("<argument>").style@(String): The parameter determines whether answers should be printed as fully in-stantiated molecules or in prolog style as variable bindings to objects:\instance": Display answers as fully instantiated molecules. E.g., for our introductoryexample,?- X[fly->yes].Answer to query : ?- X[fly -> yes].bob[fly->yes].\bound": Display answers in prolog-like style with variables and objects bound to them:?- X[fly->yes].Answer to query : ?- X[fly -> yes].X/bob\html": Same as \bound", but writes answers to an html �le and sends this �le to anetscape browser.The html style is in particularly useful when dealing withWeb queries (see also [FHM+00]).In the html �le, the resulting urls are tagged as links, so you can access them directlyfrom the browser. To clear the html �le, type \?- sys.prn.clear.".mode@(String): Here the lexical representation of internal names can be customized. Thismatters if more than one such representation exists, for example when using path expres-sions or equating objects. The parameter may be:\poor": Display internal names.\const": Constants will be printed with their lexical representation and other objects(path expression and complex IdTerms) as internal names.\�rst": Shows the �rst lexical representation found.\best": For each object, the best (that is: shortest) existing lexical representation isprinted. Of course, all possible representations have to be found and compared, so thisis the slowest output mode.Example:peter[father->mary.husband].?- sys.eval.?- sys.prn.mode@("poor").?- X[father->Y].Answer to query : ?- X[father -> Y].X/o5 Y/o9?- sys.prn.mode@("const").?- X[father->Y].Answer to query : ?- X[father -> Y].X/peter Y/o9?- sys.prn.mode@("first").

5 OUTPUT 14

Figure 3: Answer display in html style?- X[father->Y].Answer to query : ?- X[father -> Y].X/peter Y/peter.father?- sys.prn.mode@("best").?- X[father->Y].Answer to query : ?- X[father -> Y].X/peter Y/mary.husband?- sys.prn.style@("instance").?- X[father->Y].

6 DEBUGGING 15Answer to query : ?- X[father -> Y].peter[father -> mary.husband]5.2 Output HandlingAll output from Florid is communicated via output channels. Output channels wrap stan-dard C++ output streams and can be redirected centrally. There are six prede�ned channels:answerChannel: for query results. Main output of pretty printer.errorChannel: for error messages and warnings.statisticChannel: for runtime statistics generated by the statisticHandler.helpChannel: for output of help methods.debugChannel: for debug information if some debug mode is enabled.systemChannel: for all other output generated by the system.Default output for all display and print methods.To redirect the output sent to a channel, the output stream wrapped by an output channelcan be changed with setStream, e.g., \?- sys.errorChannel.setStream@(cout).". Initially,answerChannel, helpChannel, and statisticChannel write to cout, the other channels tocerr. The command resetStream will restore this setting for a channel. E.g., all output canbe sent to the �le my�le.
p in the current directory:?- sys[output->sys.open@("myfile.flp")].?- sys.answerChannel.setStream@(output)[].-- produce some output --?- sys.answerChannel.resetStream[].?- sys.remove@("output").By removing the interface object output, the �le is automatically closed. This also happenswhen leaving Florid.To suppress printing, it is also possible to direct unwanted output to the stream devnulavailable at the user interface, e.g., \?- sys.systemChannel.setStream@(devnul).".5.3 OM-BrowsingThe complete OM can be output framewise { i.e., every stored object has a frame whichcontains all its properties { by \?- sys.theOM.dump". The OM dumping is written to a �leby ?- sys.theOM.saveAs@(String). For additional output formatting, see [May00]. Theoutput can then be again consulted by another F-Logic program.For more detailed OM browsing for debugging see Section 6.1.6 DebuggingSeveral components of the system provide a debug mode which can independently turnedon or o�. All debug output is sent to the debug channel so it can be easily redirected (seeSec. 5.2).

6 DEBUGGING 166.1 Debugging the EvaluationOf course, the most important thing to debug is evaluation of programs. The basic debugmode of the evaluation component theEval is enabled with the command?- sys.theEval.debugOn.Then, TP applications and reached �xpoints are reported. Every time a rule is matched, adot is printed. So the progress of complex programs or programs dealing with large modelscan be followed.Additionally, parameters can be added to the debugOn command, telling the evaluationcomponent what to monitor:\program": The program to evaluate is printed at the beginning. This is especially usefulwhen dealing with nested consults, collecting rules and facts. Also, in the case of semi-naiveevaluation, the outcome of the program transformation may be of interest.\dump": After each TP round, the contents of the object manager is printed. This makessense only in the case of very small models. Otherwise, the frames to be watched can bespeci�ed (see below).\insert": If this parameter is given, all inserts to the object model are reported. The re-spective rule is displayed together with the set of variable bindings.\delta": This is a special mode for semi-naive evaluation. After each TP round, the contentsof all delta predicates needed for the actual program are printed.\trigger": In this mode, all facts derived by �ring inheritance triggers are reported whenthey are inserted into the object model.\frame": Any other string is interpreted as the name of an object frame to monitor. Theframe is printed after each TP round.\frame",n: If an integer follows after a string, the string is considered as the name of apredicate frame with arity n. The frame is printed after each TP round.These parameters may be combined deliberately, e.g.,?- sys.theEval.debugOn@("program","delta","sales","expenditures").Debugging is turned o� by the command?- sys.theEval.debugOff.Additionally it is possible to apply the TP operator by hand with the command?- sys.tp.and to examine the OM state afterwards by querying or browsing. Subsequent calls of themethods tp and eval will continue the evaluation with the current state of the OM.The contents of the OM (i.e., all object and predicate frames) can be displayed through?- sys.theOM.dump.This command is useful if only a small number of frames are stored in the OM. For largermodels, it is preferable to directly inspect the frames of interest. An object frame can beprinted with the command?- sys.theOM.showFrame@("arg").where arg is the lexical representation of the object. If showFrame has two parameters, thestring is considered as the name of a predicate frame with arity given as second parameter,?- sys.theOM.showFrame@("ancestor",2).

6 DEBUGGING 17prints the contents of the predicate frame corresponding to the binary predicate ancestor.Any Web action (see tutorial [FHM+00]), can be monitored with?- sys.theOMAccess.debugOn.6.2 Tracing the System InputIf the parser reports errors or problems with consulting �les and system commands occur, itmay be helpful to see what the parser actually reads. After setting the debug mode of theuser interface sys by the command?- sys.debugOn.every line of input to the parser is echoed to the debug channel. Note that you can also enterthis mode by starting
orid with the -d option. The command?- sys.debugOff.turns the system debug mode o�.6.3 Tracing of Object EquatingDuring evaluation of a program the application of the scalarity constraint, a cyclic classhierarchy, or explicit use of equality in a rule head can force objects to be equated. If thisis unintended it may lead to an unexpected behavior of the program. In the equating tracemode set by?- sys.theOM.eqTraceOn.any equating of objects is reported;?- sys.theOM.eqTraceOff.leaves this mode again.Example:peter[father->mary.husband].peter[father->john].Evaluation with eqTraceOn yields:Equality: mary.husband (o7) made equal to john (o8)The OIDs of the equated objects are shown in parentheses. Equating two objects may causeother equatings (e.g., in the case of scalar methods). With path expressions, such equatingsmay seem super
uous because the objects already have identical names. Listing the OIDsreveals that those equatings are indeed necessary.michael.father.mike.father.michael = mike.Evaluation with eqTraceOn yields:Equality: michael (o5) made equal to mike (o8)Equality: mike.father (o7) made equal to mike.father (o9)

7 INVOKING FLORID: COMMAND LINE OPTIONS 187 Invoking Florid: Command Line OptionsWhen Florid is started in the unix shell by entering florid, command line options can begiven. A list of possible options is printed with florid -h. If -h or an unde�ned option isgiven, Florid terminates after printing an appropriate message.naxos:~/florid/bin> florid -hThis is FloridType 'sys.help[].' for further information.Florid - Options :-h : display all options-c <fileName> : use non-default configuration file-his <fileName> : use non-default history file-d : start in trace mode-e <Integer> : set output level for errors<list<fileName>> : start and consult files (separated by blank)-q : quit after executing (no interactive mode)-v : prints version numberThe option -c denotes a con�guration �le to be used instead of the standard con�guration�le speci�ed in the environment variable DEFAULTCFG (cf. Section 8.4). Similarly, the option-his loads the given �le into the readline-history instead of the default in DEFAULTHIS. Foroperating Florid with non-standard con�guration �les regularly, it is more convenient tochange the environment variables (cf. Appendix 1.3).In addition to the options, a list of �lenames of F-Logic-programs can be given. Floridconsults them in a left-to-right order (see Section 4.1 for details about consulting). In theexample from Section 2 one could reduce typing by invoking florid first example.flp.Then the consult command is automatically executed.With option -d (debug), all rules read will be echoed to the console. This is useful fortracing con�guration errors and locating errors in program �les.Option -e (errormode) followed by a number customizes the system error messages. Pos-sible values are listed in Table 2. The option -q causes Florid to quit after execution ofthe command line instead of entering the interactive mode. If option -q is not given, Floridenters the interactive mode after having processed the command line.Number Meaning0 No kind of system message is displayed1 Only messages but no warnings and errors are displayed2 Warnings are displayed4 Errors are displayed127 Any kind of system message is displayedTable 2: Parameters for Option -e

8 THE STRUCTURE OF THE FLORID SYSTEM 198 The Structure of the Florid SystemThe Florid system is implemented in C++ [Str92]. Due to the object-oriented programmingstyle in C++, it seemed reasonable to transfer this modeling style to the user interface, too([Pfe95]). This resulted in a
exibly con�gurable system. Important internal classes andobjects of the system are directly accessible from the user interface and are combined fromthere. Thus the structure of the Florid system is re
ected by the user interface (Fig. 4).At the bottom is the so-called Object Manager which handles the data storage. The UserInterface on top is the front-end and communicates with the user, processes queries, andsends the appropriate messages to other components of the system. Additionally, it managesa list of interface objects (see Section 8.2) which the user can access by sending messagesto them (cf. system commands, Appendix A). All modules shown in Figure 4 are interfaceobjects, their names are given in parentheses.

Object Manager Name TableIterators (Frame Level)Iterators (Semantic Level)OMAccess NsgmlHandlerDTDParserDatabaseExport
AlgebraicEvalTranslator (RuleBodies) CreatorAlgebraic Insert

LogicEvalParserSyntactical Analysis Normalizer SemAnalyzerUserInterface Pretty-Printer

Figure 4: Structure of the Florid systemThe system is generated in the con�guration �le (see Section 8.4). If users are interestedin changing the Florid system itself, e.g., for investigating evaluation strategies, they areprovided with very
exible and declarative methods to con�gure their system.

8 THE STRUCTURE OF THE FLORID SYSTEM 208.1 The User InterfaceThe user interface sys has two main functions. Firstly, it manages the system componentsand their interaction, and secondly, it communicates with the user. It encapsulates theFlorid system providing a single and uniform way of access: queries in F-Logic syntax.That means that all user input, whether he wants to load a database, evaluate a program,examine the calculated object model, or customize the system, has strictly to follow F-Logicsyntax. System commands can be distinguished from data queries, facts, or rules as theyare queries to sys, a virtual host object representing the user interface. Of course, regardingtheir semantics, such queries di�er considerably from logical queries.8.2 Interface ObjectsThe components of the Florid system in Figure 4, as well as some other objects (e.g., inte-gers, strings, or blocks, cf. Section 4.2), are available at the user interface. Since Florid isan object-oriented system, all operations on system components are carried out by invokingmethods on them. In F-Logic syntax, this gives rise to path expressions of the form ob-ject.method or object.method@(attribute,: : :,attribute). The interface objects can be accessedas (virtual) methods of sys2. The path expression sys.objname yields the object associatedwith the method objname. Furthermore, sys.objname.method would invoke method on thisobject.The existing objects can be listed by entering \?- sys.display." (that means, sendingthe method display to the host object sys). A new interface object, that is, a new methodof sys, is de�ned by a query of the form?- sys[objname -> expression].Note, that this is syntactically a query (as every system command) but semantically it playsthe role of a fact3. If objname is unknown to the user interface (not in the list printed afterthe display command), a new method is added and bound to the value of expression (whichis an object), otherwise the old value is replaced by the new one.In the method de�nition, expression may stand for:� methname (i.e., an identi�er starting with lower case letter denoting a method)� Integer� String� expression.methname� expression.methname@(expression,: : :,expression)Here are some examples for de�nitions of interface objects:?- sys[loops->3].?- sys[filename->"config.flp"].?- sys[newWorld->classOM.new].?- sys[debugfile->sys.open@("logfile")].An interface object can be deleted by?- sys.remove@("thisobject").There are also a number of class objects available at the user interface. They provide aconstruction kit to build a Florid system according to individual needs. Class objects have2In conventional systems, this would be done by environment variables.3In conventional systems, this would be an environment variable assignment.

8 THE STRUCTURE OF THE FLORID SYSTEM 21the single method new to generate instances. By convention, the names of such objects beginwith the pre�x class.Using class objects opens up the possibility to con�gure Florid in various ways, for exam-ple with di�erent evaluation components (e.g., the semi-naive evaluation module). Floridcan even hold several separate systems at the same time. The standard con�guration ofFlorid is build by the �le config.flp which is automatically consulted after startup (ifDEFAULTCFG is set and the -c option is not used). See Section 8.4 for details of the systembuilding process. Normally, the class objects are only used in con�guration �les.Interface objects can be manipulated and queried by the user. These commands are ofthe form?- sys.<which object>.<expr>. , e.g.,?- sys.centralStatistic.show.which is interpreted as follows: The method centralStatistic is sent to the object sys whichwill return the respective interface object. This in turn gets the method call show, causingthe statistics handler to print the runtime statistics table.All interface objects (except the class objects) have the following basic methods in common:display@(outputChannel) Display the actual contents or stateprint@(outputChannel) Print class or type of the objecthelp List all methods understood by the objectThe parameter specifying the output channel may be omitted (systemChannel is used bydefault).8.3 Restrictions for System CommandsFor system commands, only a subset of the full F-Logic syntax [FHM+00] is allowed. Therestrictions are listed below. On violation, the respective error message is reported.1. No function symbols are allowed, i.e., complex terms like functor(varname). Use methodswith parameters instead:methname@(param,: : :).?- sys.consult("test.flp").Function symbols with arguments are not allowed in system commands.Maybe a @ is missing.2. The called method must be de�ned for the host object.?- sys.theEval.foo.Unknown method : fooSending the help method to any interface object lists the methods that are de�ned forthis object.3. Additionally, sys treats the interface objects as methods (yielding themselves), so thesemust exist before calling. Otherwise, sys reports an unknown method call.?- sys.anotherEval.help.Unknown method : anotherEval4. No variables, i.e., names beginning with upper case letters, are allowed.?- sys.Eval.Variables are not allowed in system commands.

8 THE STRUCTURE OF THE FLORID SYSTEM 22Use identifiers starting with lower case characters.5. Set-valued path expressions are forbidden.?- sys..eval.Only simple scalar paths are allowed in system commands.Use format ?- sys.object.method@(args).6. System queries have to consist of a single goal.?- sys.eval, sys.forgetProgram.System query with more than one literal in body.Split the query into simple ones.7. If a goal starting with \sys." is not the leftmost goal of a query, it is not recognized as asystem command and treated as a query to the model instead.?- john[age->X], sys.end.Answer to query : ?- john[age -> X], sys.end.false8.4 System Con�guration in config.flpThe system is generated in the con�guration �le. If users are interested in changing theFlorid system itself, e.g., for investigating evaluation strategies, they are provided with very
exible and declarative methods to con�gure their system. Writing or modifying con�guration�les requires a detailed knowledge of internals of the system and should be used with care.If Florid is called without the -c option it �rst consults the �le pointed to by theenvironment variable DEFAULTCFG. (normally this is the �le config.flp). This generates thecomponents of a standard Florid system and links them. The process is echoed if the option-d was given.In addition to building the system, the con�g �le can also be used to con�gure someinterface objects di�erently than by default. To have semi-naive evaluation instead of thedefault (naive) evaluation, append \?- sys.theEval.mode@("seminaive")." to the con�g�le. It is useful to add all permanent customizations to the con�g �le instead of typing themagain and again at the Florid shell.con�g.
p:// Configuration file?- sys.centralErrorHandler.setOutputFilter@(2). // short error messages?- sys[theOM->classOM.new].?- sys[theOMAccess->classWebOMAccess.new@(theOM)].?- sys[theCreator->classCreator1.new@(theOMAccess)].?- sys[theAlgebraicEval->classAlgebraicEval.new@(theOMAccess)].?- sys[theTranslator->classTranslator.new].?- sys[theMatcher->classMatcher.new@(theTranslator,theCreator,theAlgebraicEval)].?- sys[theEval->classPrSemiNaive.new@(theMatcher,theOMAccess)].?- sys[theSemAnalyser->classSemanticAnalyser.new].

8 THE STRUCTURE OF THE FLORID SYSTEM 23?- sys[prn->classPrettyPrinter.new@(theOMAccess)].?- sys[interp->classFLogicInterpreter.new@(theEval,prn,theSemAnalyser)].?- sys.switch@(interp,theOM.giveSymTab).?- sys[theNormalizer->classNormalizer.new@(interp)].?- sys[strat->>{sys.echo@(""),sys.echo@("%%% BEGIN EVALUATION"),sys.eval,sys.forgetProgram,sys.echo@("%%% END EVALUATION")}].?- sys[evaluate->>{sys.strat.doIt}].?- sys[break->>{sys.strat.doIt,sys.echo@(""),sys.echo@("*** START QUERY-SUBSHELL"),sys.shell,sys.echo@("*** END QUERY-SUBSHELL")}].?- sys.theOMAccess.setAccess@("all").Explanation:?- sys.centralErrorHandler.setOutputFilter@(2).Display all error messages in short form.?- sys[theOM->classOM.new].Generate an object manager and assign it to the interface variable theOM.?- sys[theOMAccess->classWebOMAccess.new@(theOM)].An Object Manager Accessor (OMA) encapsulates read access to the object manager. There-fore it needs the OM as a parameter.?- sys[theCreator->classCreator1.new@(theOMAccess)].?- sys[theAlgebraicEval->classAlgebraicEval.new@(theOMAccess)].?- sys[theTranslator->classTranslator.new].These three objects are needed by the matcher as part of the evaluation process.?- sys[theMatcher->classMatcher.new@(theTranslator,theCreator,theAlgebraicEval)].Now the matching component is generated which may get an optimizer, too, as an additionalparameter. No such component has been implemented up to now, though.?- sys[theEval->classPrSemiNaive.new@(theMatcher,theOMAccess)].This con�guration �le uses a semi-naive evaluation component.?- sys[theSemAnalyser->classSemanticAnalyser.new].A component used by the FLSysInterpreter (the front-end user interface) to check queries forsafety.?- sys[prn->classPrettyPrinter.new@(theOMAccess)].The pretty printer displays answer sets in readable form. To do this, it needs access to theobject manager.?- sys[interp->classFLogicInterpreter.new@(theEval,prn,theSemAnalyser)].

8 THE STRUCTURE OF THE FLORID SYSTEM 24The FLogicInterpreter serves as an interface between the user front-end (FLSysInterpreter)and the pure F-Logic part of the system. Here, all input except system commands is pro-cessed. The FlogicInterpreter manages the evaluating component, the pretty printer and theSemanticAnalyser.?- sys.switch@(interp,theOM.giveSymTab).For passing actions, the FLSysInterpreter needs to know interp and the system's symboltable. They cannot be given as parameters because they are generated later than the FLSys-Interpreter.?- sys[strat ->> ...]. ?- sys[evaluate ->> ...]. ?- sys[break ->> ...].With this command, blocks for user strati�cation and program interruption are de�ned.Acknowledgements. First of all, we want to thank Georg Lausen, the head of our group,who made the Florid project possible. Furthermore, our thanks go to the former teammembers J�urgen Frohn, Rainer Himmer�oder, Paul-Th. Kandzia, Bertram Lud�ascher, Chris-tian Schlepphorst, Markus Seilnacht, and Heinz Upho� who developed Florid up to version2.0 together with students from the universities at Mannheim and Freiburg.

A FLORID SYSTEM COMMANDS 25A Florid System CommandsMost system commands which are relevant to the user are directly applied to the user interfaceobject called sys. The following system commands are of interest for everydays users:?- sys.consult@("foo.flp"). read the program �le foo.
p?- sys.load@("foo.flp"). load a program �le containing onlyfacts directly into the OM?- sys.tp. apply TP operator of current programonce to the current OM?- sys.eval. evaluate the current program, i.e.calculate a model?- sys.strat.doIt. evaluate a stratum?- sys.echo@("..."). print argument string?- sys.break.doIt. stop program execution and get intointeractive mode?- sys.return. continue program (entered in interactive modeafter sys.break.doIt.)?- sys.end. exit FloridThe OM contents can be dumped or saved:?- sys.theOM.dump. dump OM?- sys.theOM.saveAs@(String) save OM to �leFor additional output formatting, see [May00].The Florid output can be formatted and redirected using the following commands:?- sys.prn.style@("instance"|"bound"|"html"). select output style?- sys.prn.mode@("poor"|"const"|"first"|"best"). select output of internal names?- sys.open@(<filename>). open a FLSysOStream pointing to a �le.Usage: ?- sys[output->sys.open@("logfilestream")].(creates an interface object output which is assignedto the stream)?- sys.<channel>.setStream@(<stream>). redirect <channel> to <stream>Usage: ?- sys.answerChannel.setStream@(output).?- sys.<channel>.resetStream. reset \flq channel\frq to default.?- sys.remove@(<if-object>). remove the interface object; if it is a stream, thecorresponding �le is closedThe following system commands support debugging:?- sys.showProgram. show current program (facts and rules)?- sys.forgetProgram. clear the current program?- sys.forgetIDB. clear the Object Manager?- sys.debugOn. enter debug mode for consult?- sys.debugOff.?- sys.eqTraceOn. enter debug mode for tracing equatings?- sys.eqTraceOff.?- sys.theOM.showFrame@("arg"). display object frame?- sys.theOM.showFrame@("pred",n)./ display predicate frame of pred for arity n

B READLINE AND HISTORY COMMANDS 26Additional help is also available:?- sys.help. lists all methods of sys?- sys.display. lists all interface objectsEach of the above interface objects (adressible by sys.<interface-obj>) provides the methodsys.<interface-obj>.help which lists its methods.B Readline and History CommandsThe following tables list the key commands available for the readline and the history packages,they were taken from [FR94]. The shortcut C-k is read 'Control-k' and describes the characterproduced when the Control key is pressed and the k key is struck. The text M-k is read as'Meta-k' and describes the character produced when the meta key (if you have one) is pressed,and the k key is struck. If you do not have a meta key, the identical keystroke can be generatedby typing ESC �rst and then typing k. Either process is known as metafying the k key.C-_ Undo the last thing that you did.C-a Move to the start of the line.C-e Move to the end of the line.M-f Move forward a word.M-b Move backward a word.C-l Clear the screen, reprinting the current line at the top.C-k Kill the text from the current cursor position to the end of the line.C-u Kill backward from the cursor to the beginning of the current line.M-d Kill from the cursor to the end of the current word, or if between words,to the end of the next word.M-DEL Kill from the cursor the start of the previous word, or if between words,to the start of the previous word.C-y Yank the most recently killed text back into the bu�er at the cursor.TAB Attempt to do completion on the text before the cursor.M-? List the possible completions of the text before the cursor.Table 3: Important readline commandsC-p Move 'up' through the history list. You can also use the " key.C-n Move 'down' through the history list. You can also use the # key.M-< Move to the �rst line in the history.M-> Move to the end of the input history, i.e., the line you are entering.Table 4: Important history commands

C EXAMPLE SESSIONS 27C Example SessionsIn this section we present and comment some Florid sessions in order to demonstrate theuse of system commands. User input and system output is printed in the typewriter style,comments in italics.C.1 EvaluatingLet the �le edge.flp consist of the following F-Logic program:e1:edge[1->n1; 2->n2].e2:edge[1->n2; 2->n4].e3:edge[1->n1; 2->n3].e4:edge[1->n3; 2->n4].e5:edge[1->n4; 2->n5].e6:edge[1->n5; 2->n6].edge::path.p(E,P):path[1->X; 2->Z] :- E:edge[1->X; 2->Y],P:path[1->Y; 2->Z].Scenario 1 : Evaluate the program edge.flp and query the computed model.naxos:~/florid/bin> floridThis is FLORIDType 'sys.help.' for further information.?- sys.consult@("edge.flp"). load edge.
p?- sys.eval. start evaluation of current program?- p(e1,P):path. logical query to the model computedAnswer to query : ?- p(e1,P):path. answer set is printedP/e2P/p(e2,e5)P/p(e2,p(e5,e6))3 output(s) printed?- sys.end. quit FloridByenaxos:~/florid/bin>Scenario 2 : Evaluate edge.flp, discard the computed model and evaluate again by singlestep TP application to see how the answer set changes. Instead of typing\?- sys.consult@("edge.flp")." the �lename is given in the command line.

C EXAMPLE SESSIONS 28naxos:~/florid/bin> florid edge.flpThis is FLORIDType 'sys.help.' for further information.?- sys.eval. start evaluation?- sys.forgetIDB. clear the OM, program remains unchanged?- sys.tp. apply TP operator onceTP Round 0?- p(e1,P):path. query the (partial) model yet computedAnswer to query : ?- p(e1,P):path.false answer set is enpty?- sys.tp. apply TP againTP Round 1?- p(e1,P):path.Answer to query : ?- p(e1,P):path.P/e21 output(s) printed?- sys.tp.TP Round 2?- p(e1,P):path.Answer to query : ?- p(e1,P):path.P/e2P/p(e2,e5)2 output(s) printed?- sys.tp.TP Round 3?- p(e1,P):path.Answer to query : ?- p(e1,P):path.P/e2P/p(e2,e5)P/p(e2,p(e5,e6))3 output(s) printed?- sys.tp.FP reached in round 4 further application of TP yields no new facts,Model evaluated (a �xpoint is reached),?- no inheritance was possible

C EXAMPLE SESSIONS 29Scenario 3 : Evaluate edge.flp, then consult anc.flp. After checking the current programand evaluating it, discard program and object model to evaluate another program (test.flp)from scratch.naxos:~/florid/bin> florid edge.flpThis is FLORIDType 'sys.help.' for further information.?- sys.eval. start evaluation of current program?- sys.consult@("anc.flp"). load anc.
p?- sys.showProgram. display the current programe1:edge[1 -> n1; 2 -> n2].e2:edge[1 -> n2; 2 -> n4].e3:edge[1 -> n1; 2 -> n3].e4:edge[1 -> n3; 2 -> n4].e5:edge[1 -> n4; 2 -> n5].e6:edge[1 -> n5; 2 -> n6].edge::path.p(E,P):path[1 -> X; 2 -> Z] :- E:edge[1 -> X; 2 -> Y], P:path[1 -> Y;2 -> Z].X[anc ->> {Y}] :- X[father ->> {Y}].X[anc ->> {Y}] :- X..anc[father ->> {Y}].?- sys.forgetProgram. discard the current program?- sys.showProgram./* This FProgram is empty */?- sys.forgetIDB. clear OM (discard model)?- sys.consult@("test.flp"). read test.
p?- sys.eval. and evaluate it?-As it is seen from this session, \?- sys.consult@("...")." does not discard the currentprogram: it adds new rules.Scenario 4 : After evaluating edge.flp display the runtime statistics.naxos:~/florid/bin> florid edge.flpThis is FLORIDType 'sys.help.' for further information.?- sys.eval.?- p(e1,P):path. query the modelAnswer to query : ?- p(e1,P):path.P/e2P/p(e2,e5)P/p(e2,p(e5,e6))3 output(s) printed?- sys.centralStatistic.show. show runtime statistics

C EXAMPLE SESSIONS 30Time spent in semantic analyses : 0.03sec real 0.02sec user(Time spent in retrieving : 0.16sec real 0.15sec user)Number of TP iterations : 5Total time spent in evaluation : 0.34sec real 0.24sec userTime spent in computing answers : 0.01sec real 0.01sec userTime spent in pretty-printing : 0.22sec real 0.00sec user?- p(e1,P):path.Answer to query : ?- p(e1,P):path.P/e2P/p(e2,e5)P/p(e2,p(e5,e6))3 output(s) printed?- sys.centralStatistic.show. show statistics againTime spent in semantic analyses : 0.03sec real 0.02sec user(Time spent in retrieving : 0.16sec real 0.15sec user)Number of TP iterations : 5Total time spent in evaluation : 0.34sec real 0.24sec userTime spent in computing answers : 0.02sec real 0.01sec userTime spent in pretty-printing : 0.00sec real 0.00sec user?- sys.centralStatistic.clear. reset statistics?- sys.centralStatistic.show. and display again?- statistic is emptyThis scenario shows that the runtime statistics entries accumulate until the user discards themexplicitely. The �rst column (real) lists the absolute time di�erence between start and end,while the second column (user) yields the CPU time consumed by the task. The di�erencemay vary due to other tasks running in parallel (e.g., kernel, window manager). Additionalto the measured time the number of TP iterations is displayed. If new facts were derivedthrough inheritance, the number of these facts (�red inheritance trigger) is printed, too.C.2 Help mechanismStarting point of all system commands is the host object sys, the so called FLSysInterpreter.Therefore all system commands begin with \?- sys". Besides the built-in methods of theinterpreter which can be listed by \?- sys.help.", its attributes (the interface objects) arehandled as methods, too.Sometimes it may not be clear for the user which interface object understands whichmethods. Therefore all interface objects representing instances of C++ classes provide themethod help. Those objects representing the classes itself do not have this method4. Thenext two scenarios shall explain how to navigate through the user interface.4Per convention, the names of these objects start with the pre�x class.

C EXAMPLE SESSIONS 31Scenario 1 : Which attributes and methods has the interpreter after building the systemin the standard con�guration �le?This is FLORIDType 'sys.help.' for further information.?- sys.display. show attributes of interpreterFLSysInterpreter{answerChannel : anOutputChannelcentralErrorHandler : anErrorHandlercentralStatistic : aStatisticHandlerclassBlock : BlockclassCreator1 : Creator1classFLogicInterpreter : FLogicInterpreterclassGraphicInterface : GraphicInterfaceclassMatcher : MatcherclassPrSemiNaive : PrSemiNaiveclassPrettyPrinter : PrettyPrinter.. // we don't list all interface objects here.classSemanticAnalyser : SemanticAnalyserclassStatisticHandler : StatisticHandlercout : aFLSysOStreamdebugChannel : anOutputChanneldevnul : aFLSysOStreamerrorChannel : anOutputChannelhelpChannel : anOutputChannelinterf : aGraphicInterfaceinterp : aFLogicInterpreterprn : aPrettyPrinterstatisticChannel : anOutputChannelstrat : aBlocktheAlgebraicEval : anAlgebraicEvaltheCreator : aCreator1theEval : aPrSemiNaivetheMatcher : aMatchertheNormalizer : aFLSysObjecttheOI : anOItheOM : aFLSysObjecttheSemAnalyser : aSemanticAnalysertheTranslator : aTranslator}?- sys.help. show built-in-methods of interpreterOnline help for class FLSysInterpreter

C EXAMPLE SESSIONS 32You can apply the following member functions to an instance ofclass FLSysInterpreter via F-Logic shell :- help- isOkreturns 0 (object is corrupted) or 1- isA@(String)String : classnamereturns 1 (object belongs to class) or 0- printprints type of instance- displaydisplays components- end leave the flogic-system- evalevaluate the current program- tp apply TP-operator once- showProgramshow the current program- forgetProgramclear the current program- forgetIDBclear the object manager- switchlink a new FLogicInterpreter to sys- debugOnecho lines read while consulting- debugOff- interpreteLine@(String)String: command in flogic syntax- interpreteFile@(String)String: filename- open@(String)opens a FLSysOStream pointing to a file.String: filenameUsage: ?- sys[mystream->sys.open@("logfile")].- echo@(String)String: displayed on output stream- remove@(String)String: name of interface object to remove.In the output generated by \?- sys.display." both the C++ classes and instances appear.The line classOI : OImeans that classOI represents the C++ class OI at the user interface.

C EXAMPLE SESSIONS 33Furthermore, theOI : anOI describes that theOI is an instance of the class OI. To all interfaceobject displayed on the left side of \:" (e.g., theOI, prn, theEval, etc.) you can apply helpto see which methods are de�ned for them.Scenario 2 : Which methods can be sent to the interface object prn?This is FLORIDType 'sys.help.' for further information.?- sys.prn.help. apply the method help to prnOnline help for class PrettyPrinterYou can apply the following member functions to an instance ofclass PrettyPrinter via F-Logic shell :- help- isOkreturns 0 (object is corrupted) or 1- isA@(String)String : classnamereturns 1 (object belongs to class) or 0- print@(OutputChannel)OutputChannel : e.g., answerChannel- display@(OutputChannel)OutputChannel : e.g., answerChannel- style@(String)String: describes output style, possible arguments are:1. "bound" : answers are printed in Prolog style2. "instance": answers are printed in F-Logic syntax3. "html" : answers (in Prolog style) are written to anhtml file that is displayed by netscape- mode@(String)String: describes representation of objects,possible arguments are:1. "poor" : only OID's are printed2. "const": only strings of constants are printed3. "first": first string for object is printed4. "best" : best string for object is printed- clearremove stored information and clear html file of html style?- sys.prn.style@("instance"). set fact style for output?- sys.prn.isOk. send method isOk to prnThe return value of isOK is not printed by the user interface, you have toapply the method display@(cout) onto the return value.This applies to all methods returning strings or integers.?- sys.prn.isOk.display@(cout). send isOk to prn

C EXAMPLE SESSIONS 34and print the return value on coutC.3 System commands in �lesPlacing system commands into �les is useful in the following situations:� system con�guration (Sec. 8.4),� automation of processes to avoid unnecessary typing,� generation of output for test purposes,� user strati�cation by hand (Sec. 4.2).Scenario 1 : Evaluate the �le edge.flp and examine the model without having to type\?- sys.eval." and the query it at the shell. Then the �le edge.flp is as follows:e1:edge[1->n1; 2->n2].e2:edge[1->n2; 2->n4].e3:edge[1->n1; 2->n3].e4:edge[1->n3; 2->n4].e5:edge[1->n4; 2->n5].e6:edge[1->n5; 2->n6].edge::path.p(E,P):path[1->X; 2->Z] :- E:edge[1->X; 2->Y],P:path[1->Y; 2->Z].?- sys.eval.?- p(e1,P):path.Every system command can occur in a program �le as well. Most often, however, commandsfor controlling evaluation are used in program �les.By using the command \?- sys.strat.doIt." the user can partition the program intostrata by hand (see Sec. 4.2). This is helpful and sometimes unavoidable when negation isused. Other applications, e.g., for gaining e�ciency, are possible, too.Scenario 2 : Before using a negated goal in a rule, set a stratum. Document this by printinga message.X[L->>Y] :- Y[(L:line)->>X].X[reaches->>{X}] :- X:stop.c(nil,X,Y,L)[from->X[reaches->>{Y}]; to->Y] :-X[(L:line)->>Y].?- sys.strat.doIt.?- sys.echo@("Stratum").c(N,X,Z,L)[from->V[reaches->>{Z}]; to->Z] :-c(N,X,Y,L)[from->V], Y[(L:line)->>Z], not V=Z.

REFERENCES 35The interface object strat is a block (see Sec. 4.2). By calling its method doIt, the blockis consulted. In the case of strat the two commands sys.eval. and sys.forgetProgram.are executed, thus stratifying the program.References[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.Addison Wesley, 1995.[CGT90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,1990.[DT95] Gillian Dobbie and Rodney Topor. On the declarative and procedural semanticsof deductive object-oriented systems. Journal of Intelligent Information Systems,4(2):193{219, 1995.[FHM+00] J. Frohn, R. Himmer�oder, W. May, P.-Th. Kandzia, and C. Schlepphorst. Howto write F-Logic programs in FLORID, 2000. Available from http://www.informatik.uni-freiburg.de/~dbis/florid.[FLU94] J�urgen Frohn, Georg Lausen, and Heinz Upho�. Access to objects by path ex-pressions and rules. In Intl. Conference on Very Large Data Bases (VLDB), pages273{284, 1994.[FR94] Brian Fox and Chet Ramey. GNU readline library, edition 2.0, for readline libraryversion 2.0. Free Software Foundation, Cambridge, MA, 1994.[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and frame-based languages. Journal of the ACM, 42(4):741{843, 1995.[Law93] Michael Lawley. A Prolog Interpreter for F-Logic. Technical report, Gri�thUniversity, Australia, 1993.[Liu96] M. Liu. ROL: A typed deductive object base language. In Intl. Conference onDatabase and Expert Systems Applications (DEXA), 1996.[May00] W. May. Handling XML with FLORID, 2000. Available from http://www.informatik.uni-freiburg.de/~dbis/florid.[Pfe95] Thorsten Pferdek�amper. Eine
exible Kon�gurations- und Benutzerumgebung f�urF-Logik. Diplomarbeit Universit�at Mannheim, 1995.[Sch97] Christian Schlepphorst. Semi-Naive Evaluation of F-Logic Programs. TechnicalReport 85, Universit�at Freiburg, 1997.[Str92] Bjarne Stroustrup. The C++ Programming Language. Addison{Wesley, 2nd edi-tion, 1992.[Ull89] Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2.Computer Science Press, New York, 1989.

