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1 INTRODUCTION 41 IntroductionF-Logic [KLW95] is a deductive, object oriented database language which combines the declar-ative semantics and expressiveness of deductive database languages with the rich data mod-elling capabilities supported by the object oriented data model.In version 1.0 (1996) Florid implemented the basic features of F-Logic. The theoreticalfoundations of F-Logic have been described in the F-Logic report [KLW95] and [FLU94]. Thepresent tutorial describes how to apply F-Logic in the Florid system.Therefore, this tutorial explains the various features of F-Logic by example and shows howto use them for typical database problems. Section 2 gives a �rst impression of how F-Logicprograms look like. The same simple model world taken from the Old Testament also servesas a background database throughout the tutorial. The following Sections 3 to 8 focus ondata modeling and present the language concepts of F-Logic relevant for Florid.In order to write programs in Florid, the reader also has to be aware of how Floridimplements some more di�cult points. Questions regarding safety of rules, treatment ofnegation, non-monotonic inheritance and type checking are covered in Sections 10 and 12.In Section 14, a number of examples illustrate special features of Florid and o�er morematerial to start with.As a major new feature, Florid 2.0 (1998) provided access to Web documents. Its usageis described in Section 13. Florid 2.1 and 2.2 (1999) incorporated several modi�cationsand improvements concerning compilation. In Florid 2.5 (April 2000), �rst XML handlingfeatures have been added, and the memory managent has been improved signi�cantly. Untilthe current version 2.82, XML support has been completed.We assume that the reader of this tutorial is familiar with the basic concepts of deduc-tive databases, e.g., Datalog [AHV95, CGT90, Ull89], and the principles of object orienteddatabase systems [ABD+89]. We refer the reader to the user manual [MM00] for a descriptionof Florid system commands.Please send enquiries, comments, suggestions, and bug reports toflorid@informatik.uni.freiburg.de2 A First ExampleBefore explaining the syntax and semantics in detail, we give a �rst impression of F-Logic.The following F-Logic program models biblical persons and their relationships:



2 A FIRST EXAMPLE 5% factsabraham:man.sarah:woman.isaac:man[father->abraham; mother->sarah].ishmael:man[father->abraham; mother->hagar:woman].jacob:man[father->isaac; mother->rebekah:woman].esau:man[father->isaac; mother->rebekah]./* rulesconsisting of a rule head and a rule body */X[son->>fYg] :- Y:man[father->X].X[son->>fYg] :- Y:man[mother->X].X[daughter->>fYg] :- Y:woman[father->X].X[daughter->>fYg] :- Y:woman[mother->X].// query?- sys.eval. // This is a system command.?- X:woman[son->>fY[father->abraham]g].
(2.1)

The �rst part of this example consists of a set of facts which express that some personsbelong to the classes man and woman, respectively, and give information about the fatherand mother relationships between some of these persons. According to the object-orientedparadigm, relationships between objects are modeled by method applications, e.g., applyingthe method father on the object isaac yields the result object abraham. All these facts maybe considered as the extensional database of the F-Logic program. Hence, they form theframework of an object base which is completed by some closure properties. For more detailsabout an object base see Section 8.The rules in the second part of Example (2.1) derive new information from the given ob-ject base. Evaluating these rules in a bottom-up way, new relationships between the objects,denoted by the methods son and daughter, are added to the object base as intensional infor-mation. Note that the methods son and daughter are multi-valued, which is indicated by thedouble-headed arrow \->>" and the curly braces enclosing the result, whereas the methodsfather and mother are functional, indicated by the simple arrow \->". As known from otherlogical database languages, object names always begin with a lowercase letter, e.g., sarah,mother, man1 and variable names in general begin with an uppercase letter, e.g., X.The third part of Example (2.1) contains a query to the object base. The expression \?-sys.eval." is a system command to start the evaluation of the program (see also the usermanual [MM00]). The query shows the ability of F-Logic to nest method applications. Itasks about all women and their sons, whose father is Abraham. The same question could bewritten as a conjunction of simple subgoals:?- X:woman, X[son->>fYg], Y[father->abraham].Also, the above program shows the di�erent comment formats available in F-Logic: As inC and C++, text between \/*" and \*/" is ignored, even if it is ranging over several lines.The symbols \//" (C++-Style) or \%" (Prolog and LATEX style) mark the rest of a line as acomment.1Methods and classes also are objects, see Sections 3.1.1 and 3.1.2.



3 OBJECTS AND THEIR PROPERTIES 63 Objects and their PropertiesAs we have already seen in Example (2.1) objects are the basic constructs of F-Logic. Ob-jects model real world entities and are internally represented by object identi�ers which areindependent of their properties. According to the principles of object oriented systems theseobject identi�ers are invisible to the user. To access an object directly the user has to knowits object name. Every object name refers to exactly one object. However, an object may bedenoted by more than one object name as we will see in Section 7.1.Following the object oriented paradigm, objects may be organized in classes. Furthermore,methods represent relationships between objects. Such information about objects is expressedby F-atoms.3.1 Object Names and Variable NamesObject names and variable names are also called id-terms and are the basic syntactical ele-ments of F-Logic. To distinguish object names from variable names, the �rst always beginwith a lowercase letter, whereas the latter always begin with an uppercase letter or an under-score (cf. Prolog). After the �rst letter, object names and variable names both may containuppercase letters, lowercase letters, numerals or the underscore symbol \ " . Examples forobject names are abraham, man, daughter, for variable names are X, Method, 42. There aretwo special types of object names that carry additional information: integers and strings.Every positive or negative integer may be used as an object name, e.g., +3, 3, -3, and alsoevery string enclosed by quotation marks "".Complex id-terms may be created by function symbols where other id-terms may be usedas arguments, e.g., couple(abraham, sarah), f(X). An id-term that contains no variable is calleda ground id-term.3.1.1 MethodsIn F-Logic, the application of a method to an object is expressed by data-F-atoms whichconsist of a host object, a method and a result object, denoted by id-terms. All objects mayoccur in all places: host object, result position, or method position. Thus, in our Example 3.2the method names father and son are object names just like isaac and abraham. Variables mayalso be used be used at all positions of a data-F-atom, which allows queries about methodnames like?- isaac[X->Y].As every person has at most one father, the method father is de�ned as a functional (orscalar) method, represented by the single headed arrow \->". In contrast, the method sonmay result in more than one object; this is indicated by the double headed arrow \->>". Suchmethods are called multi-valued. Note that the set consisting of the result objects is not anobject, thus we preserve �rst-order semantics.Empty Sets as Result of Multi-valued Methods. The result position of a multi-valueddata-F-atom may also consist of the empty set, e.g., \isaac[son->>fg].". This does not nec-essarily mean that isaac has indeed zero sons. Since the object base may contain otherinformation about Isaac having sons, e.g., \isaac[son->>fjacobg].", the former data-F-atom



3 OBJECTS AND THEIR PROPERTIES 7expresses that Isaac has at least zero sons. This can be viewed as a kind of declaration of themethod son for the object isaac.Methods with Parameters. Sometimes the result of the invocation of a method on a hostobject depends on other objects, too. For example, Jacob's sons are born by di�erent women.To express this, the method son is extended by a parameter denoting the correspondingmother of each of Jacob's sons. Like methods, parameters are objects as well, denoted byid-terms. Syntactically a parameter list is always included in parentheses and separated by\@" from the method object.jacob[son@(leah)->>freuben, simeon, levi, judah, issachar, zebulung;son@(rachel)->>fjoseph, benjaming;son@(zilpah)->>fgad, asherg;son@(bilhah)->>fdan, naphtalig]. (3.1)The syntax extends straightforwardly to methods with more than one parameter. If weadditionally want to specify the order in which the sons of Jacob were born, we need twoparameters which are separated by commas:jacob[son@(leah,1)->reuben; son@(leah,2)->simeon;son@(leah,3)->levi; son@(leah,4)->judah;son@(bilhah,5)->dan; son@(bilhah,6)->naphtali;son@(zilpah,7)->gad; son@(zilpah,8)->asher;son@(leah,9)->issachar; son@(leah,10)->zebulun;son@(rachel,11)->joseph; son@(rachel,12)->benjamin]. (3.2)In Examples (3.1) and (3.2) the method son is used with a di�erent number of parameters.This so-called overloading (see also Section 3.4) is supported by F-Logic.Queries with Multi-Valued Methods. If a query contains a multi-valued method witha variable at the result position, each result object of this method application in the objectbase is a possible binding for this variable. Given the object base described in Example 3.2,questioning the sons of Isaac yields all his known sons:?- isaac[son->>X].Answer to query : ?- isaac[son->>X].X/jacobX/esauNote that variables in a query may only be bound to individual objects, never to sets ofobjects, i.e., the above query does not return X/fjacob,esaug.In case of a query with a set of ground id-terms at the result position, however, it isonly checked whether all these results are true in the corresponding object base; there maybe additional result objects in the database. With the object base above, all the followingqueries yield the answer true.?- isaac[son->>fjacob, esaug].?- isaac[son->>fjacobg].?- isaac[son->>fesaug].?- isaac[son->>fg].



3 OBJECTS AND THEIR PROPERTIES 8If we want to know if a set of objects is the exact result of a multi-valued method applied toa certain object, we have to use negation, see Example 14.6.3.1.2 Class Membership and Subclass RelationshipIsa-F-atoms state that an object belongs to a class, subclass-F-atoms express the subclassrelationship between two classes. Class membership and the subclass relation are denotedby a single colon and a double colon, repsectively. In the following example the �rst threeisa-F-atoms express that Abraham and Isaac are members of the class man, whereas Sarahis a member of the class woman. Furthermore, two subclass-F-atoms state that both classesman and woman are subclasses of the class person:abraham:man.isaac:man.sarah:woman.woman::person.man::person. (3.3)In isa-F-atoms and subclass-F-atoms, the objects and the classes are also denoted by id-terms because classes are objects { as well as methods are objects. Hence, classes mayhave methods de�ned on them and may be instances of other classes which serve as a kindof metaclasses. Furthermore, variables are permitted at all positions in an isa- or subclass-F-atom.In contrast to other object oriented languages where every object is instance of exactlyone most speci�c class (e.g., ROL [Liu96]), F-Logic permits that an object is an instance ofseveral classes that are incomparable by the subclass relationship. Analogously, a class mayhave several incomparable direct superclasses.Thus, the subclass relationship speci�es a partial order on the set of classes, so that theclass hierarchy may be considered as a directed acyclic, but re
exive graph with the classesas its nodes.Note that in analogy to HiLog [CKW93] a class name does not denote the set of objectsthat are instances of that class.3.2 Expressing Information about an Object: F-MoleculesInstead of giving several individual atoms, information about an object can be collected inF-molecules. For example, the following F-molecule denotes that Isaac is a man whose fatheris Abraham and whose sons are Jacob and Esau.isaac:man[father->abraham; son->>fjacob,esaug].This F-molecule may be split into several F-atoms:isaac:man.isaac[father->abraham].isaac[son->>fjacobg].isaac[son->>fesaug].For F-molecules containing a multi-valued method, the set of result objects can be dividedinto singleton sets (recall that our semantics is multivalued, not set-valued). For singletonsets, it is allowed to omit the curly braces enclosing the result set, so that the three expressions



3 OBJECTS AND THEIR PROPERTIES 9given in (3.4), (3.5) and (3.6) are equivalent, which means that they yield the same objectbase:isaac[son->>fjacob,esaug]. (3.4)isaac[son->>fjacobg].isaac[son->>fesaug]. (3.5)isaac[son->>jacob].isaac[son->>esau]. (3.6)3.3 Behavioral InheritanceIn object oriented systems, an instance (resp. subclass) may inherit properties of its class(resp. superclass). We distinguish structural inheritance, i.e., propagation of a type restrictionfor a method from a superclass to its subclasses (see Section 3.4 and 8.3), and behavioralinheritance, i.e., propagation of results of a method application from a class to its instancesand subclasses.To express behavioral inheritance in F-Logic we use inheritable methods, indicated by aspecial arrow type: \*->" for inheritable functional methods and \*->>" for inheritable multi-valued methods. If an inheritable method is de�ned for a class, this method application andthe corresponding result is propagated to every instance and subclass of that class unless itis overridden.The following inheritable data-F-atom denotes that in our object base every person, i.e.,every object that is an instance of the class person, believes in god.person[believes in*->god]. (3.7)Given this inheritable data-F-atom together with the subclass relationships and class mem-berships from Example (3.3) we can derive the following information:abraham[believes in->god].isaac[believes in->god].sarah[believes in->god].woman[believes in*->god].man[believes in*->god]. (3.8)Example (3.8) shows that inheritable methods remain inheritable when they are passed tosubclasses, but they become non-inheritable when passed to instances.The following example demonstrates overriding of a method application (non-monotonicinheritance). Even though Ahab is a person, he does not believe in god but in Baal. Thus,the method believes in is explicitly de�ned for the object ahab:ahab:person[believes in->baal].This explicit information overrides inheritance from the class person.In F-Logic, even multiple inheritance is supported. For a more detailed discussion aboutinheritance see Section 11.3.4 SignaturesSignature-F-atoms de�ne which methods are applicable for instances of certain classes. Inparticular, a signature-F-atom declares a method on a class and gives type restrictions for



3 OBJECTS AND THEIR PROPERTIES 10parameters and results. These restrictions may be viewed as typing constraints. Signature-F-atoms together with the class hierarchy form the schema of an F-Logic database. As indata-F-atoms, the arrow head indicates whether a signature F-atom describes a functionalmethod \=>" or a multi-valued method \=>>". To distinguish signature-F-atoms from data-F-atoms, the arrow body consists of a double line instead of a single line. Here are someexamples for signature-F-atoms:person[father=>man].person[daughter=>woman].man[son@(woman)=>man].The �rst one states that the functional method father is de�ned for members of the classperson and the corresponding result object has to belong to the class man. The second onede�nes the multi-valued method daughter for members of the class person restricting the resultobjects to the class woman. Finally, the third signature-F-atom allows the application of themulti-valued method son to objects belonging to the class man with parameter objects thatare members of the class woman. The result objects of such method applications have to beinstances of the class man.By using a list of result classes enclosed by parentheses, several signature-F-atoms maybe combined in an F-molecule. This is equivalent to the conjunction of the atoms: the resultof the method is required to be in all of those classes:person[father=>(man, person)]. (3.9)person[father=>(man)].person[father=>(person)]. (3.10)Both expressions in the Examples (3.9) and (3.10)2 are equivalent and express that theresult objects of the method father if applied to an instance of the class person have to belongto both classes man and person.As a special case, empty parentheses are allowed at the result position of a signature-F-atom. This means that the result objects are not restricted to certain classes. The followingatom de�nes believes in as a functional method which may be applied to instances of the classperson without any requirements for the class membership of the result objects.person[believes in=>()].More information about type checking|i.e., how to ensure that every method application inthe object base is covered by a corresponding signature|may be found in Section 12.Overloading F-Logic supports overloading of methods. This means that methods denotedby the same object name may be applied to instances of di�erent classes. Methods may evenbe overloaded according to their scalarity (functional or multi-valued), their arity, i.e., numberof parameters, or their inheritability. For example, the method son applicable to instances ofthe class man is used as a multi-valued method with one parameter in Example (3.1) and asa functional method with two parameters in Example (3.2). The corresponding signature-F-atoms look like this:man[son@(woman)=>>(man)].man[son@(woman,integer)=>(man)].2Of course, the result of a signature may be enclosed by parentheses as well if it consists of just one object.



4 NESTING OBJECT PROPERTIES 113.5 Exploring the DatabaseAbove we have shown how various kinds of information are represented by properties usingdi�erent kinds of arrow types and parameters. For obtaining an overview which propertiesare stored in the database, the describe predicate can be used:describe(object,method,arity,arrowtype) anddescribe(object,method,arity,arrowtype,result)yield all bindings such that an atom of the formobject[method@(o1,. . . ,oarity)����> result]is de�ned in the database, e.g.,?- describe(H,M,A,T)H/man M/son A/0 T/\=>>"H/man M/son A/1 T/\=>>"H/man M/son A/2 T/\=>"H/isaac M/son A/0 T/\->>"H/isaac M/son A/1 T/\->>"H/isaac M/son A/2 T/\->"...The arguments object and method are bound to objects, arity is bound to an integer, andarrowtype to a string representing the method type. This can, e.g., be used for genericallyexploiting the database, or for specialized queries which methods are in fact de�ned for someobject, e.g.,?- describe(H,M,A,\->"), not describe(H,M,A,\=>").gives for all scalar properties for which no signature atom is present.4 Nesting Object PropertiesAs already shown in Example 3.2, properties of an object may be expressed in a single,complex F-molecule instead of several F-atoms. For that purpose, a class membership orsubclass relationship may follow after the host object. Then, a speci�cation list, a list ofmethod applications (with or without parameters) separated by semicolons, may be given. Ifa multi-valued method yields more than one result, those can be collected in curly braces,separated by commas; if a signature contains more than one class, those can be collected inparentheses, also separated by commas:isaac[father->abraham; mother->sarah].jacob:man[father->isaac; son@(rachel)->>fjoseph, benjaming].man::person[son@(woman)=>>(man, person)]. (4.1)The following set of F-atoms is equivalent to the F-molecules in (4.1):



4 NESTING OBJECT PROPERTIES 12isaac[father->abraham]isaac[mother->sarah].jacob:man.jacob[father->isaac].jacob[son@(rachel)->>fjosephg].jacob[son@(rachel)->>fbenjaming].man::person.man[son@(woman)=>>(man)].man[son@(woman)=>>(person)].
(4.2)

Besides collecting the properties of the host object, the properties of other objects appearingin an F-molecule, e.g., method objects or result objects, may be inserted, too. Thus, amolecule may not only represent the properties of one single object but can also includenested information about di�erent objects, even recursively:isaac[father->abraham:man[son@(hagar:woman)->>ishmael];mother->sarah:woman].jacob:(man::person).jacob[(father:method)->isaac]. (4.3)The equivalent set of F-atoms is:isaac[father->abraham].abraham:man.abraham[son@(hagar)->>ishmael].hagar:woman.isaac[mother->sarah].sarah:woman.man::person.jacob:man.jacob[father->isaac].father:method.F-Logic molecules are evaluated from left to right. Thus, nested properties have to be includedin parentheses if those properties belong to a method object (cf. Section 6), class object orsuperclass object. Note the di�erence between the following two F-molecules. The �rst onestates that Isaac is a man and Isaac believes in god, whereas the second one says that Isaac isa man and that the object man believes in god (which is probably not the intended meaning).isaac:man[believes in->god].isaac:(man[believes in->god]).Moreover, omitting parentheses at method or result position can lead to syntactically incorrectmolecules, e.g.,isaac[(father::ancestor)->abraham] is correct, whereasisaac[father::ancestor->abraham] results in a parsing error, andisaac[father->(abraham:man)] is correct, whereasisaac[father->abraham:man] results in a parsing error.



5 PREDICATE SYMBOLS 134.1 F-molecules without any propertiesIf we want to represent an object without giving any properties, we have to attach an emptyspeci�cation list to the object name, e.g., \abraham.". If we use an expression like this thatconsists solely of an object name as a molecule, it is treated as a 0-ary predicate symbol (seenext section).5 Predicate SymbolsIn F-Logic, predicate symbols are used in the same way as in predicate logic, e.g., in Datalog,thus preserving upward-compatibility from Datalog to F-Logic. A predicate symbol followedby one or more id-terms separated by commas and included in parentheses is called a P-atomto distinguish it from F-atoms. Example (5.1) shows some P-atoms. The last P-atom consistssolely of a 0-ary predicate symbol. Those are always used without parentheses.married(isaac,rebekah).male(jacob).son of(isaac,rebekah,jacob).true. (5.1)Information expressed by P-atoms can usually also be represented by F-atoms, thus obtaininga more natural style of modelling. For example, the information given in the �rst three P-atoms in (5.1) can also be expressed as follows:isaac[married to->>rebekah].jacob:man.isaac[son@(rebekah)->>jacob]. (5.2)Similar to F-molecules, P-molecules may be built by nesting F-atoms or F-molecules intoP-atoms. The P-moleculemarried(isaac[father->abraham], rebekah:woman).is equivalent to the following set of P-atoms and F-atoms:married(isaac,rebekah).isaac[father->abraham].rebekah:woman.Note, that only F-atoms and F-molecules may be nested into P-atoms, but not vice versa.6 Path ExpressionsObjects may be accessed directly by their object names. On the other side it is also possibleto navigate to them by applying a method to another object using path expressions. Forexample, the object described by the object name abraham may also be accessed by callingthe method father on the object isaac. The corresponding path expression is \isaac.father".Example (6.1) shows that path expressions may also contain methods with parameters andthat it is possible to chain up path expressions by successively applying methods to the resultobject of the preceding method call. At the end of each line you �nd the object name of theresult object that is denoted by the path expression. The underlying object base is takenfrom the Examples (2.1) and (3.2):



6 PATH EXPRESSIONS 14jacob.son@(rachel,11) josephbenjamin.father.father.mother rebekahgod.people ? (6.1)Some path expressions may even denote objects in the object world which have no id-termas object name. The last path expression in Example (6.1) de�nes a new object by applyingthe method people to the object god which is intended to be a class collecting the people ofIsrael. However, there is no direct object name denoting this object. The concept of objectcreation by path expressions is described in detail in Section 6.2.6.1 Nesting of Path Expressions and F-MoleculesAs mentioned before, every (ground) path expression corresponds to an object. This objectis called the object value of a path expression. Thus, it is possible to nest path expressions inF-molecules as well as in P-molecules at any position where id-terms are allowed:jacob.son@(rachel,11)[mother->rachel; father->jacob].abraham[son->>fjacob.fatherg].jacob[son@(joseph.mother)->>fbenjaming].male(jacob.father).jacob.father.father = abraham. (6.2)F-Logic expressions are evaluated from left to right. Thus, if a path expression should occurat the method position or at the class position, resp. superclass position, it has to be enclosedby parentheses. To illustrate this we de�ne a new \meta"-method twice by the following rule:X[(M.twice)->Z] :- X[M->Y[M->Z]].This new method may be invoked on other method names meaning that the original methodis applied twice, e.g., the method denoted by the path expression father.twice would specifythe \grandfather on the father's side" method. Hence, applying father.twice to Jacob yieldsAbraham as result. The other F-molecule denotes that Jacob belongs to god's people.jacob[(father.twice)->abraham].jacob:(god.people). (6.3)How parentheses a�ect the meaning of path expressions will become clear looking at the nexttwo examples:jacob.(father.twice):person.jacob.father.twice:person.(jacob.father).twice:person. (6.4)The path expression in the �rst F-molecule denotes abraham as in (6.3). As path expressionsare evaluated left to right, the second and third F-molecule are equivalent. In our context3,however, they are not meaningful (evaluating to false) because jacob.father is a person (isaac)and not a method, so that twice cannot be applied to this object.jacob:(god.people).jacob:god.people.(jacob:god).people. (6.5)In Example (6.5) the �rst F-molecule states that applying the method people to the objectcalled god yields a class jacob belongs to. The second expression, which is equivalent to3Assume the object base de�ned by Example (2.1) is given.



6 PATH EXPRESSIONS 15the third one, states that the object jacob is a member of the class god and denotes theapplication of the method people to the object jacob. However, the last two expressionsare path expressions|not F-molecules|as they do not end with a speci�cation list or anisa/subclass relationship (see Section 4.1).Besides using path expressions instead of simple id-terms in F-molecules, it is also possible tonest path expressions and F-molecules the other way round: Intermediate objects in a pathexpression may have speci�cation lists, turning them into F-molecules. As an example thepath expression jacob.mother may be extended by specifying some properties for Jacob:jacob:man[father->isaac].motherIn a rule body, this feature is useful to restrict the set of objects matching a path expression byselecting those with a certain property. For a formal analysis of such terms, see the referencesemantics and object semantics of F-Logic expressions, e.g., in [LHL+98].6.2 Object Creation with Scalar Path ExpressionsScalar path expressions are allowed in rule heads to induce the creation of new objects. Thise�ect occurs whenever a path expression consists of a host object with a method applicationthat has not been de�ned otherwise. When applying the method father to the object abraham,we create a new object representing Abraham's father:abraham.father:man.Here, the method father is de�ned for the object abraham and yields the new object abra-ham.father. Analogously,jacob:(god.people).creates a new object god.people by de�ning the method people for the object god. Bothobjects, abraham.father and god.people, have no ground id-term as object name; the user hasto access these objects with their path expressions.On the other hand, if the method application is de�ned somewhere else for the hostobject, the path expression evaluates to the corresponding result object. Assume the objectbase described by Example (2.1). The, the path expressions inisaac.father:person.isaac[married to->>jacob.mother].do not create objects because the methods are already de�ned for the corresponding hostobjects. Instead, the facts abraham:person and isaac[married to->>rebekah] are added.Object creation with path expressions reveals its full power in connection with variables. SeeSection 9 for the use of variables in rules.Object Names and Path Expressions. Because of the possibility to create new objectsusing path expressions we have to rede�ne the set of object names: now there are objectswhich are not associated to a ground id-term. For that purpose, the set of object names isde�ned by the union of the set of all ground id-terms and the set of all ground, unnested,functional path expressions4. These are path expressions containing neither variables nor anyF-molecules, therefore consisting just of a host object followed by one or more functionalmethod applications (possibly with parameters). Examples for such path expressions are:4Id-terms may be considered as a trivial case of path expressions (without any method application)



6 PATH EXPRESSIONS 16benjamin.father.father.motherjacob.son@(rachel,1)abraham.father (6.6)6.3 Path Expressions in QueriesPath expressions in a rule body or query help the user to describe the information in ques-tion more concisely, avoiding auxiliary variables for intermediate results. If for example thegrandfather of Isaac is asked, this query can be written as?- isaac.father[father->X]. instead of?- isaac[father->Y], Y[father->X].Path expressions may be eliminated from F-molecules in rule bodies or queries by decomposingthe molecules into a set of F-atoms using new variables for the result values (in the aboveexample, also a don't-care variable could be used which does not occur in the result set, seeSection 9).6.4 Multi-valued Path ExpressionsUp to now only functional methods in path expressions have been considered. It is alsopossible to build path expressions with mult-valued methods, resulting in multi-valued pathexpressions. The use of a multi-valued method in a path expression is indicated by a doubledot, e.g., \isaac..son". Such a path expression matches not just a single object (like a functionalpath expression does) but each object from a set of answers.Every path expression is either functional or multi-valued. The scalarity of a path ex-pression can be determined syntactically by considering the corresponding unnested pathexpression which is built by removing all isa and method speci�cations. Example (6.7) showssome path expressions and their corresponding unnested path expressions:jacob[son->>fjosephg].(father.double):personjacob.(father.double)jacob[father->abraham..son].motherjacob.motherisaac:man..son[mother->rebekah]..sonisaac..son..sonjacob..son@(laban..daughter:woman)jacob..son@(laban..daughter) (6.7)
A path expression is multi-valued if its corresponding unnested path expression contains atleast one multi-valued method application. Hence, in Example (6.7) the �rst two path expres-sions are functional and the last two are multi-valued. The second path expression is func-tional, although it contains a multi-valued path expression abraham..son. However, this multi-valued path expression appears at the result position of a speci�cation and thus has no in
u-ence on the unnested path expression. The last path expression jacob..son@(laban..daughter)is multi-valued not only because of the host object but also because of the parameter that isdenoted by a multi-valued path expression. Even if the method son were used as a functionalmethod in this example, the path expression would be multi-valued due to the multi-valuedparameter.



6 PATH EXPRESSIONS 17Semantics of Multi-valued Path Expressions As already mentioned, a multi-valuedpath expression describes a set of objects. Note that the set itself cannot be referenced inF-Logic. Instead, we consider each object in the set as one possible result of the methodapplication. The query in (6.8) does not ask whether all of Abraham sons are sons of Sarah,too, but whether one of Abraham's sons is a son of Sarah5 and therefore yields the answertrue.?- sarah[son->>abraham..son]. (6.8)Considering sets as a whole as in languages like LDL [NT89] requires strati�cation. Thecomparison of sets is not a built-in feature in F-Logic but can easily be done by an F-Logicprogram (see Section 14.6).Since multi-valued path expressions do not denote sets, they may be used at any syntacticalposition in an F-molecule6. The following queries, for example, ask for those persons whosefather is one of Abraham's sons, and for the sons of Jacob born by a daughter of Laban(Laban is the father of Leah and Rachel).?- X:person[father->abraham..son].?- jacob[son@(laban..daughter)->X]. (6.9)In contrast to scalar path expressions, multi-valued path expressions are only allowed inqueries or rule bodies. If we allowed multi-valued path expressions in facts or rule heads thefollowing problem would occur: Since the multi-valued path expression abraham..son denotesthe two objects isaac and ishmael the fact \abraham..son[lives->israel]." would be satis�ed ifIsaac, Ishmael or both lived in Israel. The last alternative would violate the minimality ofthe object base (see Section 10.1). If only one of Abraham's sons lives in Israel, it is notclear which one. This situation is similar to disjunctive expressions in a rule head, hence,we would have to handle a non-deterministic program. To avoid such problems, multi-valuedpath expressions are disallowed in rule heads.6.5 Path Expressions with Inheritable MethodsPath expressions may contain inheritable methods, too. Such methods are indicated by oneor two exclamation marks instead of dots. The path expression in example (6.10) denotes theobject god if we consider the object base de�ned in example (3.7).person!believes in (6.10)6.6 F-Molecules vs. Path ExpressionsWe have seen that F-molecules and path expressions may be combined and nested in severalways to obtain complex expressions. This is possible because every ground F-molecule andevery ground path expression has an object value and a truth value according to a given objectbase.An object base corresponds to an F-structure as introduced in [KLW95]. If an atom t istrue in a given object base or F-structure I, we write I j= t.Although we de�ne object values and truth value for both of them, the set of F-moleculesand the set of path expressions are strictly disjunct: An F-molecule always ends with a5The semantics of this example di�ers from the semantics introduced in [FLU94].6In this point the semantics of Florid does not agree with [FLU94].



7 BUILT-IN FEATURES 18speci�cation, i.e., an isa speci�cation denoting a class membership or subclass relationship,or a list of method speci�cations expressing the results of method applications to an object.A path expression always ends with a dot followed by a method application.The object value and truth value is recursively de�ned for arbitrary complex expressionsin an intuitive way corresponding to the evaluation of F-molecules:De�nition 1 (Semantics [LHL+98]) For an F-Logic database I, the object values of groundexpressions are given by the following mapping obj from ground expressions to sets of groundreferences: obj (t) := t for a ground id-term tobj (r[spec]) := fo 2 obj (r) j I j= o[spec]gobj (r :c) := fo 2 obj (r) j I j= o :cgobj (c :: d) := fc0 2 obj (c) j I j= c0 :: dgobj (r:m) := fr0 2 obj (v) j I j= r[m->v]gobj (r::m) := fr0 2 obj (v) j I j= r[m->>fvg]ganalogously for r!m and r!!m.The j= relation extends from atoms to pure references and nested expressions as follows:I j= r , obj (r) 6= ; for a ground pure reference r;I j= r1[r2@(p1; :::; pn)->r3] , I j= o1[o2@(q1; :::; qn)->o3] for any oi 2 obj (ri), qj 2 obj (pj)analogously for ->>, =>>, and =>:I j= r1 :r2 , I j= o2 :o2 for any o1 2 obj (r1), o2 2 obj (r2)analogously for :: :An F-Logic expression (i.e., an F-molecule or a path expression) is true if the correspondingobject value contains at least one object, i.e., if one object has the appropriate properties. Itis false if the object value is empty. Thus, also a path expressions may be used as subgoalsin a rule { the are true if their object value is nontrivial.Some examples showing F-molecules and path expressions as well as their object andtruth values are presented in Figure 1. The underlying object world is the one de�ned inExample (2.1). An empty object value is written as ;.7 Built-in FeaturesThe Florid implementation of F-Logic provides some built-in features, namely the equal-ity predicate, the built-in class integer, several comparison predicates, the basic arithmeticoperators, predicates for string handling, and aggregate functions.7.1 EqualityObjects in F-Logic are uniquely determined by their object identi�ers which are only usedinternally and are invisible to the user, who has to access objects by their object names.Every object name references exactly one object. However, there may be several object namesdenoting the same object. In such a case the object names are said to be equal, indicatedby the equality predicate \=", e.g., abram = abraham.7 The equality predicate induces a7Note that the equality predicate is used in in�x notation in contrast to other predicate symbols.



7 BUILT-IN FEATURES 19expression object value truth valueisaac isaac trueisaac isaac trueisaac:man isaac trueisaac:woman ; falseisaac[son->>fjacobg] isaac trueisaac[son->>fabrahamg] ; falseisaac.father abraham trueisaac.father abraham trueisaac..son jacob, esau trueabraham..son isaac, ishmael trueabraham..son[mother->sarah] isaac trueabraham..son:woman ; falseFigure 1: Object values and truth valuescongruence relation on the set of object names and may be used in facts or rule heads toequate two object names, as well as in queries or rule bodies to ask about the equivalence ofobject names. Objects may also be equated implicitly by rede�ning a scalar method (sincethe functionality constraint forces both result objects to be equal) or by de�ning a circularsubclass relationship. The equality predicate may also be used in connection with variables.If an equality predicate in a rule body has variables on both sides, safety of the rule is acritical issue (see Section 9).7.2 Integers, Comparisons and ArithmeticsObjects denoting integer numbers are di�erent from other objects because the usual com-parison operators are de�ned for them, as well as several arithmetic functions. We havenot implemented a built-in class integer because it would contain an in�nite number ofinstances, making static safety checking impossible8. Instead there is a built-in predicateinteger(<argument> in Florid.Within a query or a rule body, relations between integer numbers may be tested with thecomparison predicates9 \<",\>", \<=" or \>=". For example, the following query asks forthe �rst three sons of Jacob:?- jacob[son@(X,Y)->Z], Y <= 3. (7.1)To guarantee safety (see Section 9), variables that appear in a comparison P-atom have to bebound by another atom or molecule in the rule body. Comparison predicates are not allowedin rule heads.The basic arithmetic operations addition \+", subtraction \-", multiplication \*" and inte-ger division \/" are also implemented in Florid. Arithmetic expressions may be constructedin the usual way, even complex expressions, e.g., \3 + 5 + 2" or \3 + 2 * 3" are possible.Note that the blanks between an arithmetic operator and its operands are mandatory, 2+28A subgoal like X:Y with variable Y bound yields an in�nite answer set, if Y is bound to the object nameinteger.9Note that comparison predicates are used in in�x notation in contrast to other predicate symbols.



7 BUILT-IN FEATURES 20leads to a parser error message. By default, multiplication and division are prior to additionand subtraction. As usual, the evaluation order may be changed by using parentheses, e.g.,\(3 + 2) * 3".Arithmetic expressions are only allowed in (in-)equality-P-atoms in a rule body, e.g.,\X = Y + 2", \3 * X = Y + 4". Furthermore, every variable in an arithmetic expressionhas to be bound by another subgoal in the rule body (see Section 9). The following examplecontains the query whether Jacob has three sons born consecutively by the same woman.?- jacob[son@(X,A)->Z1; son@(X,B)->Z2; son@(X,C)->Z3],B = A + 1, C = A + 2.Objects denoting integers must not be equated to other integer or string objects because theirobject identity is not independent from their object name. Unfortunately, avoiding this bya static check is impossible since integer objects may be bound to variables in a rule head.If an equation of two di�erent integer objects is derived during the evaluation of an F-Logicprogram, an error is reported.7.3 String handlingAnalogously to integers, there are several prede�ned operations for strings. These are providedby the built-in predicates which all have a �xed arity. Using them with a wrong arity causesa parser error message. Furthermore these predicates can only be used in rule bodies:string(<arg>) is true, if <arg> is a string.strlen(<string>, <value>) holds if <value> (which can be given a constant or a variable) rep-resents the length of <string>. For practical reasons, variables at position of <string> haveto be bound by other molecules in the rule body (otherwise <strlen> fails), because a querylike \show all strings with a certain arity" e.g., \?- strlen(X,40)." may lead to an answerset that is not in�nite but too huge to be handled. Normally strlen is used in the followingway to return the length of a given string:\?- strlen("logic",X)."strcat(<string1>, <string2>, <string3>) succeeds if <string3> is the concatenation of <string1>and <string2>. E.g., \?- strcat("a","b",X)." returns the binding X/"ab" whereas \?- str-cat("a",Y,"ab")." leads to Y/"b". If the arguments contain more than one variable, e.g.,\?- strcat("a",Y,X).", either Y or X have to be bound by other molecules in rule body,otherwise strcat fails. The reason for this limitation is the same as in the case of strlen.substr(<string1>, <string2>) holds if <string1> is a substring of <string2>. Comparison be-tween the two strings is case insensitive, for example \?- substr("DaTA","database")." re-turns true. If the arguments contain any variable, it has to be bound by other molecules inthe rule body, otherwise substr fails. For \?- substr("logic",X)." the corresponding answerset would be in�nite. Besides strings, Web documents (see Section 13.1) may also appearas second argument. Thus, substr can also be used to check if a certain string occurs in aWeb document.match(<string>, <pattern>, <fmt-list>, <variable-list>),pmatch(<string>, <pattern>, <fmt-list>, <variable-list>) �nds all strings contained in <string>(which may be a string or a Web document) which match the pattern given by a regularexpression in <pattern>. <fmt-list> is a format string describing how the matched stringsshould be returned in <variable-list>. This feature is useful when using groups (expressionsenclosed in \(...\)) in <pattern>. In the format string <fmt-list>, groups are referred



7 BUILT-IN FEATURES 21to by their number: $n,where n ranges from 1 to 9. If <fmt-list> is the empty string("") all groups are returned without formatting. With the exception of <variable-list>,all arguments must be bound. pmatch does the same, using Perl regular expressions; werecommend using pmatch. A full explanation of the syntax and use of regular expressionsis given in Appendix B.For example,?- match("linux98","\([0-9]\)\([0-9]\)","$2swap$1",X).returns X/"8swap9" (the �rst and second match are swapped).Example 1 (Wrapping by regular expressions) Assume that the author list of a paperis given on a Web page (see also Section 13.1) asauth1, auth2, ... , and authn: title. number n inVolume v of series, pages p1 � p2, year.Then, the following predicate assigns the relevant substrings to the corresponding variables:pmatch(STRING,\/nA ([̂:]*): (.*)n.nsNumber ([0-9]*) in Volume ([0-9]*) of ([a-Z]*),pages ([0-9-]*),([0-9]*)/",\[$1,$2,\$4($3)", $5, $6, $7]",\[AuthList, Title, Num, Series, Pages, Year]")Then, the string bound to the variable Num is of the form \volume(number)".7.4 Data ConversionFloridinternally distinguishes objects (e.g., john from literals (e.g., 42, 3.14, or \John"). Theliteral types are further distinguished: strings are always given in quotes (\john"), integerobjects are given as-is, and 
oats have to be distinguished by #, from literals (#3.14).Example 2 Note that 3.14 and #3.14 actually are di�erent things: In the �rst example,#3.14 is interpreted as a 
oat:b[m->#3.14].?- sys.strat.doIt.?- b[m->C].?- b[m->C], D = C + 1.% Answer to query : ?- b[m -> C].C/#3.14% Answer to query : ?- b[m -> C], D = C + 1.C/#3.14 D/#4.14In the second example, 3.14 is not a 
oat:a[m->#3.14].?- sys.strat.doIt.?- a[m->C].?- a[m->C], D = C + 1.% Answer to query : ?- a[m -> C].C/3.14



7 BUILT-IN FEATURES 22% Answer to query : ?- a[m -> C], D = C + 1.falseBut, what happens there? Obviously, the program is syntactically correct. So, lets ask whatthe database looks like then:?- sys.theOM.dump.3 [14 -> 3.14].a [m -> 3.14].... which is correct: 3.14 is interpreted as the result (an anonymous object) of applying themethod 14 to the object 3 (similar to what happens for john.father.Often, a conversion between datatypes is needed. In Florid, data conversion is provided bybuilt-in predicates:string2integer(A,B) is true, if B is the integer obtained when reading the string A from leftto right as far as possible. e.g., the following holds:string2integer(``42'',42), string2integer(``3D'',3), string2integer(``3.14'',3).(7.2)string2
oat(A,B) is true, if B is the 
oat obtained when reading the string A from left toright as far as possible (a leading # is ignored, so both \normal" 
oats and the F-Logicrepresentation of 
oats can be read). E.g., the following holds:string2float(``42'',42), string2float(``3D'',3), string2float(``3.14'',#3.14), string2float(``#3.14'',#3.14), string2float(``3.14D'',#3.14).(7.3)Note that integers are seamlessly integrated with 
oats: Florid never prints 3 as #3, butalways understands #3 as 3.string2object(A,B) is true, if B is the object whose id is A (converted to lowercase letters).?- string2object("john",O).% Answer to query : ?- string2object("john",O).O/john?- string2object("John",O).% Answer to query : ?- string2object("John",O).O/john?- string2object(S,john).% Answer to query : ?- string2object(S,john).S/"john"If the given string denotes an integer or a 
oat, B is the corresponding integer or 
oatobject.Note that the above predicates are \bidirectional", but at least one of the arguments has tobe bound:?- string2float("3.14",B).% Answer to query : ?- string2float("3.14",B).B/#3.14?- string2float(X,#3.14).



7 BUILT-IN FEATURES 23% Answer to query : ?- string2float(X,#3.14).X/"3.14"7.5 AggregationSince version 2.0, aggregation has been implemented in Florid. An aggregation term hasthe formaggfX[G1,. . . ,Gn]; bodygwhere agg is one of the usual aggregation operators min, max, count, and sum and b is theaggregation body (that is, a conjunction of literals).aggfX[G1,. . . ,Gn]; bodygreturns one value for every vector of values for [G1,. . . ,Gn]: All variable bindings satisfy-ing body are calculated (intentionally yielding bindings for X,G1,. . . ,Gn). Then, the X's aregrouped by [G1,. . . ,Gn] and for every group, agg is calculated and returned.The list of grouping variables [G1,. . . ,Gn] is optional and may be omitted, e.g.,?- countfC; C:persong.If the aggregation body contains other variables than the grouping variables, these are localto the aggregation. The grouping variables may occur anywhere in the rule body (respectivelythe higher level aggregation body).Like arithmetic expressions, aggregation terms may only occur in the built-in predicates\=", \<", \>", \<=", \>=". However, the aggregation body may contain built-in predicateswith other aggregation terms. Thus, aggregation can be nested:?- Z = maxfX; john[salary@(Year)->X]g.?- Z = maxfX; john[salary@(Year)->X], Year < 1990g.?- Z = countfYear; john.salary@(Year) <maxfX; john[salary@(Y2)->X], Y2 < Yeargg.The �rst query asks for the highest salary John ever got. The second query contains anadditional aggregation goal restricting the aggregation to the years before 1990. The lastquery yields the number of years in which John earned less than in the best year before.The semantics of an aggregation term in a comparison predicate, e.g., the inequality V <aggfX[G1; : : : ; Gn]; bodyg is de�ned as the conjunction V < Z;Z = aggfX[G1; : : : ; Gn]; bodyg.Syntactic Restrictions For obvious reasons the following syntactic restrictions apply:� The aggregation variable and all grouping variables must occur in the aggregation body.� The variables X,G1,. . . ,Gn are pairwise distinct.� The aggregation body has to obey the safety restrictions, i.e., no variable may representan in�nite answer set.Violating these restriction will cause an error.The operator count gives the total number of variable bindings to the aggregation variable.Note that, di�erent from count, the operators min, max and sum ignore objects other thaninteger without producing any error message or warning.myset[items->>f10,40,apple,27,cheeseg].?- Z = countfX; myset[items->> X]g.?- Z = sumfX; myset[items->> X]g.will yield 5 and 77.



8 THE OBJECT BASE 24Aggregates and Strati�cation As in the case of negation, the set of objects to aggregatehas to be completely established before the actual aggregation. In doubt, the user has toensure this by explicitely specifying a strata separation (see Section 10.2).In the following simple example we want to compute the shortest path in a given graph. Ofcourse, cyclic graphs may lead to nontermination problems. See Example 14.3 for a possiblesolution.%% EDB graphedge[from=>node; to=>node; dist=>int].edge::path.shpath::path. %% shortest path%% Rule to calculate transitive closurep(E,P):path[from->X; to->Z; dist->D] :-E:edge[from->X; to->Y], P:path[form->Y; to->Z],D = E.dist + P.dist.?- sys.strat.doIt. %% separate the program strataP:shpath :- P:path[from->X; to->Z; dist->M,M = minfD[X,Z]; P:path[from->X; to->Z; dist->D]g.?- sys.eval.?- X:path.?- X:shpath[from->M; to->N; dist->D].8 The Object BaseAn object base is speci�ed by a set of facts which is completed by additional informationmaintained by the system. These so-called closure properties express some basic features ofthe object-oriented paradigm and are discussed in detail in this section.In contrast to [KLW95], in Florid some closure properties are not de�ned for all possibleobject names but only for the set of active object names. This ensures that (if we disregardintegers) the object model remains �nite, enabling easier static safety checking. Rememberthat the set of object names includes the set of ground unnested functional path expressions(see Section 6.2). A ground id-term is an active object name if it appears at any syntacticalposition of one of the facts specifying the object base. A ground unnested functional pathexpression is an active object name if the appropriate method is de�ned in the object base.We write o 2 active(I) if an object name o is active in I.8.1 Closure Properties of the Equality PredicateThe equality predicate determines a congruence relation over the set of object names whichleads to the following implications: Let o, p, q be object names, t; t0 atoms and I an arbitraryobject base.� If o 2 active(I), then I j= o=o (re
exivity).� If I j= o=p, then I j= p=o (symmetry).� If I j= o=p and I j= p=q, then I j= o=q (transitivity).� If I j= o=p and I j= t, then I j= t0 where t0 is obtained from t by replacing o with p(substitution).



8 THE OBJECT BASE 258.2 Closure Properties of Subclass RelationshipsAs already mentioned in Section 3.1.2, the subclass relationship speci�es a partial order onthe set of object names. Besides that, every object belonging to a class is always an instanceof every superclass of this class. These properties are stated by the following implications:Let o, p, q be object names and I an arbitrary object base.� If o 2 active(I), then I j= o::o (subclass re
exivity).� If I j= o::p and I j= p::q, then I j= o::q (subclass transitivity).� If I j= o::p and I j= p::o, then I j= o=p (subclass acyclicity).� If I j= o:p and I j= p::q, then I j= o:q (subclass inclusion).8.3 Closure Properties of SignaturesIn combination with a given class hierarchy, a signature-F-atom implies other signature-F-atoms (e.g., the de�nition of a method for a class is valid for every subclass of that class, too).Other implications concern the replacement of a parameter class by a subclass or the resultclass by a superclass. This leads to the following implications (analogously for multi-valuedsignatures =>>): Let o, m, a1,: : :,an, r, x be object names (n � 0) and I an arbitrary objectbase.� If I j= o[m@(a1,: : :,an)=>r] and I j= x::o, then I j= x[m@(a1,: : :,an)=>r] (type inheritance).� If I j= o[m@(a1,: : :,ai,: : :,an)=>r] and I j= x::ai, then I j= o[m@(a1,: : :,x,: : :,an)=>r] (input-type restriction).� If I j= o[m@(a1,: : :,an)=>r] and I j= r::x, then I j= o[m@(a1,: : :,an)=>x] (output-typerelaxation).8.4 Miscellaneous PropertiesSome more closure properties hold for every object base in F-Logic. The �rst one states thata functional method may not yield di�erent result objects if it is applied to the same hostobject with the same parameter objects. Furthermore, every functional path expression isequated to the corresponding result object. The third statement ensures that active objectnames without any properties are true in every object base. The fourth one says that if a pathexpression is active, it is a result of the corresponding method application. Finally the emptyset, resp. empty signature, is implied as a result by any data-F-atom with a multi-valuedmethod, resp. any signature-F-atom.Let o, m, a1,: : :,an, r, s be object names (n � 0) and I an arbitrary object base.� If I j= o[m@(a1,: : :,an)->r] and I j= o[m@(a1,: : :,an)->s], then I j= r=s (analogously forinheritable functional methods).� If I j= o[m@(a1,: : :,an)->r], then I j= o.m@(a1,: : :,an)=r (analogously for inheritable func-tional methods).� If o 2 active(I), then I j= o.� If o.m@(a1,: : :,an)2 active(I), then I j=o[m@(a1,: : :,an)->o.m@(a1,: : :,an)] (analogously forother types of path expressions).� If I j= o[m@(a1,: : :,an)->>frg], then I j= o[m@(a1,: : :,an)->>fg] (analogously for inheritablemulti-valued methods).



9 RULES AND QUERIES 26� If I j= o[m@(a1,: : :,an)=>(r)], then I j= o[m@(a1,: : :,an)=>()] (analogously for multi-valuedsignatures).9 Rules and QueriesRules. Based upon a given object base (which can be considered as a set a facts), ruleso�er the possibility to derive new information, i.e., to extend the object base intensionally.Rules encode generic information of the form: \Whenever the precondition is satis�ed, theconclusion also is". The precondition is called rule body and is formed by a conjunctionof subgoals, i.e., possibly negated P- or F-molecules. The conclusion, the rule head, is aconjunction of P- and F-molecules. Syntactically the rule head is separated from the rulebody by the symbol \:-" and every rule ends with a dot followed by a whitespace (blank, tabor return).10Non-ground rules use variables for passing information between subgoals and to the head.Variables can be considered as implicitly universally quanti�ed and range over one rule at atime. Thus, using the same variable in di�erent subgoals in fact de�nes a join condition.Assume an object base de�ning the methods father and mother for some persons, e.g., theset of facts given in Example (2.1). The rules in (9.1) compute the transitive closure of thesemethods and de�ne a new method ancestor:X[ancestor->>Y] :- X[father->Y].X[ancestor->>Y] :- X[mother->Y].X[ancestor->>Y] :- X[father->Z], Z[ancestor->>Y].X[ancestor->>Y] :- X[mother->Z], Z[ancestor->>Y]. (9.1)Queries. A query can be considered as a special kind of rule with empty head. For syntac-tical distinction, a query begins with the query symbol \?-" followed by a rule body and endswith a dot followed by a whitespace. The following query asks about all female ancestors ofJacob:?- jacob[ancestor->>Y:woman]. (9.2)The answer to a query consists of all variable bindings such that the corresponding groundinstance of the rule body is true in the object base. Considering the object base described bythe facts of Example (2.1) and the rules in (9.1), the query (9.2) yields the following variablebindings:Y/rebekahY/sarah10The condition that every rule or query has to end with a dot followed by a whitespace is necessary toavoid ambiguities because the dot is also used in path expressions:X[grandma->sarah] :- X:man.father[mother->sarah].Note that if the dot and father in that rule would be separated by a whitespace (typing error!), this would beequal to the following rule and an additional fact.X[grandma->sarah] :- X:man.father[mother->sarah].



9 RULES AND QUERIES 27Don't Care Variables. When asking queries, it is often useful to have variables for inter-mediate results that do not show up in the answer set. This can be achieved with don't carevariables, that is, variable names starting with the underscore symbol, e.g., 1, Y, little. Inrules, such a variable is not propagated to the head (using don't care variables in rule headswill cause an error message). The grandchildren of sarah could be queried ad hoc by theequivalent queries?- X:man.father[mother->sarah]. and?- X:man[father-> Y], Y[mother->sarah]. (9.3)The variable \ " (a single underscore) plays a special role: every occurrence is considered asa distinct don't care variable (internally, they are transformed into distinct variable nameslike _#1,_#2).Don't care variables can often be avoided by using path expressions, but not in every case.Don't care variables can even spare additional rules when occurring in negated subgoals.Negated Subgoals and Safety. Similar to Datalog, a rule has to satisfy some constraintsto guarantee that the number of newly derived facts remains �nite. A rule is called safe if allits variables are limited. A variable in a rule is limited if it is limited by at least one subgoal.A subgoal containing a variable X limits this variable if it is positive and none of the followingcases applies:� The subgoal is an equality P-molecule where the variable X or the molecule X is one of thearguments and the other argument is{ either an arithmetic expression containing a variable that is not limited by anothersubgoal in the same rule, e.g., X = Y + 3{ or it is just a variable, say Y, or a molecule of the form Y, where Y is not limited byanother subgoal in the same rule, e.g., X = Y, X = Y, X = Y.� The variable X or the molecule X appears as a an operand in an arithmetic expression11,e.g., Z = X + 2, Z = 3 * X.� The subgoal is a subclass F-molecule where both arguments are exactly a variable or avariable followed by empty brackets and none of them is limited by another subgoal in thesame rule, e.g., X::Y, X::(Y).� The subgoal is an F-molecule of the form X::Y.� The subgoal is just the variable X followed by an empty speci�cation, i.e., X.� The subgoal consists of the built-in predicate integer with the variable X or the moleculeX as its argument, i.e., integer(X), integer(X).� The variable X or the molecule X is one of the arguments of a comparison P-molecule, e.g.,X > 5, X > 5, X > Y.Additionally, a don't-care variable in a negated subgoal is considered as limited, if this is theonly occurrence of this variable in the rule.Note that the concept of limited variables is slightly di�erent from Datalog since equalityas a re
exive relation is de�ned only for active object names (see Section 8). Hence, in F-Logicthe variables in the subgoal f(X) = Y are limited, while in Datalog, they are not. Moreover, avariable appearing in a path expression or an F-molecule is always limited, e.g., the variableX is limited by each of the following subgoals:11Remember that arithmetic expressions are only allowed in equality P-molecules



9 RULES AND QUERIES 28X[father->Y] = ZX.father = ZX.age > 5integer(X.age) (9.4)However, the restriction to active object names does not solve all problems because the numberof active object names is in�nite due to the existence of the integer objects. For this reason asubgoal like X = Y does not limit the variables X or Y. But if just one of the two variables islimited by another subgoal, the other one is limited, too. This analogously holds for subgoalsof the form X::Y.The following Examples (9.5) and (9.6) illustrate the concept of limited variables and saferules:X[father->Y] :- X:person.X:bachelor :- X:person, not X[spouse->Y].X:object :- X.isaac[age->X] :- rebekah[age->Y], Y = X - 10. (9.5)None of these rules is safe. In the �rst rule, the variable Y only appears in the rule headand therefore it cannot be limited by a subgoal. The second rule contains a negated subgoalwith the variable Y which is not limited by any other subgoal. Nevertheless, replacing Y bya don't care variable makes it safe:X:bachelor :- X:person, not X[spouse-> Y].In the third rule, the variable X is not limited because it is used as a single variable with anempty speci�cation and due to the integer objects the number of variable bindings for X isin�nite. However, by replacing the subgoal by f(X) the rule would become safe because thereis only a �nite number of active object names matching the term f(X). Finally, the last rulecontains an equality P-atom with an arithmetic expression as argument. Since the variableX is not limited by another subgoal the rule is not safe. Actually in the last case the problemis not the derivation of an in�nite number of new facts. However, the evaluation strategy forarithmetic expressions requires that all their variables are bound. The rule can be made safeby rewriting the equation s.t. Y (bound) occurs in the arithmetic part instead of X:isaac[age->X] :- rebekah[age->Y], X = Y + 10.These following rules are safe:X:adult :- X[age->Y], Y = Z, Z > 18.X[older->>Y] :- X.age > Y.age.X:person :- X.father. (9.6)In the �rst one, the variables X and Y are limited by the �rst subgoal. The equality P-atomlimits the variable Z because Y is already limited. In the second rule the arguments of thecomparison predicate are not single variables, so they are limited. This becomes even moreobvious by rewriting the rule body as X[age->A], Y[age->B], A > B. In the third rule thevariable X is limited because of the method father since in any object base this method isonly de�ned for a �nite number of objects.In�nite number of object names. Another problem is the creation of an in�nite numberof new object names by the use of function symbols or path expressions. Consider the followingrule:X.father:person :- X:person.



10 PROGRAMS AND EVALUATION 29If our object base contains at least one object belonging to the class person, an in�nite numberof new objects is created by evaluating this rule again and again. Every time another fatherobject is created and the evaluation will never stop. As this kind of recursion may also occurindirectly involving several rules, it cannot be �xed by a static check.10 Programs and EvaluationAn F-Logic program is a collection of facts and rules in arbitrary order. Evaluating thesefacts and rules bottom-up, an object base is computed which may then be queried. Note,however, that queries are not part of a program.10.1 Fixpoint SemanticsThe evaluation strategy for F-Logic programs (without inheritance) is basically the sameas for Datalog programs. The bottom-up evaluation of an F-Logic program starts with agiven object base. Initially, this is the empty object base. Facts are rules with an emptybody, therefore always considered as true. The rules and facts of a program are evaluatediteratively in the usual way. If there are variable bindings such that the rule body is valid inthe actual object base, these bindings are propagated into the rule head. New informationcorresponding to the ground instantiations of the rule head or deduced due to the closureproperties is inserted into the object base12. This evaluation of rules is continued as longas new information is obtained. As in the case of Datalog, the evaluation of a negation-freeF-Logic program reaches a �xpoint which coincides with the unique minimal model of thatprogram13. The minimal object base of an F-Logic program is de�ned as the smallest set ofP- and F-atoms such that all closure properties and all facts and rules of the program aresatis�ed.10.2 Negation and Strati�cationNegation in Florid is handled according to the in
ationary semantics [KP88]. Rememberthat in a safe rule, every variable in a negated subgoal has to be limited by other subgoals.Thus, only ground instantiated negated subgoals have to be considered during the evaluation.Such an instantiation of a negated subgoal is evaluated as true if and only if the interme-diate object base given in the moment of the evaluation of the rule does not contain thecorresponding information.Consider the following program:isaac[father->abraham].isaac:orphan :- not isaac[father->abraham].?- sys.eval.?- isaac:orphan. (10.1)You may be surprised to get the answer true. However, this is correct under the in
ationarysemantics because in the �rst iteration of the evaluation the object base still is empty, so thenegated subgoal evaluates as true and the information that Isaac is an orphan is inserted into12To avoid redundancy, in Florid most of the information generated by the closure properties is not insertedinto the object manager explicitely, but deduced when retrieving information.13Note that this �xpoint is not necessarily �nite, cf. Example 9.



10 PROGRAMS AND EVALUATION 30the object base as well as the fact that Abraham is Isaac's father. In the second iteration,the rule does not �re any more, but information inserted in the object base is never removedfrom there. Hence, the answer to the query is true.As in the case of Example (10.1) in
ationary semantics often yields unintended results.Hence, there are other concepts to handle negation in logic programs. One of the most generalsolutions is the three-valued Well-Founded Semantics [VGRS91]. A three-valued model isnot supported by Florid but can easily be simulated [MLL97] (cf. Example 14.10). A verycommon approach is to stratify logic programs and to compute the perfect model [ABW88,Prz88]. Unfortunately, due to the powerful syntax of F-Logic, the class of strati�ed programsis very small. Thus, automatic strati�cation cannot be done by Florid for a reasonable largeclass of programs. To enable the programmer to specify an explicit strati�cation, Floridprovides a system command \?- sys.strat.doIt." which divides a program into several strata.Information queried by a negated subgoal has always to be derived in lower strata than thestratum of the rule containing the negated subgoal14.The strati�cation command causes the evaluation of the rules in the higher stratum to bedeferred until the �xpoint of the lower stratum is computed. Moreover, the rules of the lowerstratum are not considered any more during the further evaluation. To illustrate this weextend Example (10.1) by the strati�cation command:isaac[father->abraham].?- sys.strat.doIt.isaac:orphan :- not isaac[father->abraham].?- sys.eval.?- isaac:orphan. (10.2)The �rst stratum of the program consists only of the fact that Abraham is Isaac's father.Hence, this is the only information inserted into the object base during the evaluation of the�rst stratum. Next, the rule belonging to the second stratum is evaluated. Since it is alreadyderived that Abraham is the father of Isaac the rule does not �re anymore and Isaac is notsaid to be an orphan.Negation of Complex Molecules. Negated subgoals may consist not only of atoms butalso of molecules as the following example shows. This rule states that two persons are notrelated to each other if they have no common ancestor15:X[notrelated->>Y] :- X:person, Y:person,not X[ancestor->>Y..ancestor]. (10.3)Although Florid can handle negated molecules, their decomposition is not as easy as it is forpositive molecules. It is not possible to transform this rule into a single one consisting of F-atoms only without changing the semantics. On the one hand, negated conjunctions becomedisjunctions of negated atoms what cannot be expressed in F-Logic. Path expressions on theother hand have to be decomposed by introducing existentionally quanti�ed variables whatis not possible in F-Logic, either16.14There are other possibilities to ensure that the negated subgoal becomes active only after the informationto be negated has been inferred, cf. Example 14.10.15To achieve the desired result the ancestor relation has to be re
exive, i.e., X[ancestor->>X] :- X:person.16In version 2.0, don't-care variables have been introduced that can be viewed as existentionally quanti�ed ifthey occur in negated subgoals. However, for safety reasons, negated don't-care variables cannot be propagatedto another subgoal, so that this is no solution for 
attening the rule (10.3). See also Section 9.



11 INHERITANCE 31Instead, decomposing negated molecules requires an additional rule with a new predicatesymbol in its head. The arguments of this predicate are all the variables appearing in thenegated molecule and it is de�ned by a new rule whose body consists of the decompositionof the molecule (see Sections 4 and 6.3). Then, the negated molecule in the original rule isreplaced by the negation of this new redicate. The result of decomposing the negated moleculein Example (10.3) is:common anc(X,Y) :- X[ancestor->>Z], Y[ancestor->>Z].?- sys.strat.doIt.X[notrelated->>Y] :- X:person, Y:person, not common anc(X,Y).Strati�cation to Enhance E�ciency. The system command \?- sys.strat.doIt." mayalso be used in negation-free F-Logic programs to speed up the evaluation. Consider the factsdenoting the father and mother relationships in Example (2.1) and assume that we want tode�ne the relationship ancestor and its inverse descendant:% facts defining the father and mother relationships...X[ancestor->>Y] :- X[father->Y].X[ancestor->>Y] :- X[mother->Y].% all direct ancestors are computed so these two rules% do not have to be considered anymore?- sys.strat.doIt.X[ancestor->>Y] :- X.father[ancestor->>Y].X[ancestor->>Y] :- X.mother[ancestor->>Y].% all ancestors are computed and the derivation of the descendant% relation is deferred until now?- sys.strat.doIt.X[descendant->>Y] :- Y[ancestor->>X].
(10.4)

The strati�cation command may enhance e�ciency by dividing a negation-free program intoseveral strata whenever every subgoal in a rule only depends on rules belonging to the sameor lower strata. This way we can avoid to evaluate non-recursive rules again and again alwaysderiving the same information.Another strategy to avoid redundant derivation of information is semi-naive evaluation[Ban86]. An adoption of this strategy is included in Florid version 2.0. However, it turnedout in practice that reasonably subdivide the programs into strata is still advantageous andwill keep the overhead of semi-naive evaluation small.11 InheritanceFlorid provides nonmonotonic behavioral inheritance, i.e., propagation of results of a methodapplication from a class to its instances and subclasses. Example (11.1) illustrates how inher-itance works in the case of overriding. This program states that all persons believe in Baalexcept for Abraham and his descendants, who believe in god.



11 INHERITANCE 32abraham:person[believes in->god; descendant->>fisaac:persong].ahab:person.person[believes in*->baal].X[believes in->god] :- abraham[descendant->>X:person].?- sys.eval.?- X[believes in->god]. (11.1)Evaluating each rule and fact of the program once derives that Abraham, Isaac and Ahab arepersons, Isaac is a descendant of Abraham, Abraham believes in god and persons in generalbelieve in Baal. Note that the method believes in cannot be inherited to Abraham becauseit is already de�ned. However, this method could { at �rst sight { be inherited to Isaac.But this inheritance would lead to a wrong answer. Instead, inheritance is deferred until a�xpoint of the program is reached. Computing this �xpoint, it is derived that Isaac believesin god because he is a descendant of Abraham. Since the method believes in is now de�nedfor Isaac, inheritance is blocked then. Only inheritance of believes in to Ahab is still possibleand, since the evaluation has reached a �xpoint, is applied.To improve e�ciency, new information inherited from a class to an instance or a subclassis only derived when this information is needed to evaluate a rule body or to answer a query.For example, evaluating the facts in Example (11.2) without any other rule or query does notyet infer that Abraham believes in god:person[believes in*->god].abraham:person. (11.2)Only when a query is stated?- abraham[believes in->X].inheritance is evaluated and the answer is X/god.To implement this concept Florid uses inheritance triggers [KLW95, MK98]: An inher-itance trigger is a tuple (c; o;m; v), meaning \class c can inherit the result v of the methodapplication m to the object o". Given an inheritable method, two conditions have to besatis�ed to activate an inheritance trigger:1. The inheritable method is not yet de�ned for the object which would inherit the method.2. There has to be an appropriate subgoal in a rule body or query which matches the inher-itable method. With regard to Example (11.2) the following query meets this condition.The corresponding inheritance trigger consists of the method believes in applied to theobject abraham.?- X[believes in->Y]. (11.3)However, �ring an inheritance trigger is deferred until the evaluation of the program hasreached a �xpoint. The reason is that by evaluating the rules of a program new informationcould be derived that overrides the inherited information and deactivates the inheritancetrigger. Thus, logic rules are given priority over inheritance.Multiple Inheritance. Dealing with multiple inheritance is a common problem in objectoriented systems. Multiple inheritance means that an inheritable method is de�ned for twodi�erent classes which have a common instance. We have to distinguish two cases:If there is a subclass relationship between these two classes, the method result of the superclassis overridden by the one of the subclass. This means that the method de�ned by the subclass is



12 TYPE CHECKING 33inherited to the object. In Example (11.4) the object potiphar inherits the method believes infrom the class egyptian, hence, Potiphar believes in the Pharaoh.person[believes in*->god].egyptian::person[believes in*->pharaoh].potiphar:egyptian.?- sys.eval.?- potiphar[believes in->X]. (11.4)In the other case there is no subclass relationship, i.e., there are two classes, incomparable inthe partial order induced by the class hierarchy, which may inherit information to the sameobject.Inheriting a functional method from both classes would cause the result objects to beequated. Again, this problem is solved by �ring only one inheritance trigger at a time.However, the choice which one will �re is non-deterministic. In Example (11.5) Paul eitherserves Jesus or he serves Caesar but not both of them because inheriting the method servesonce deactivates the trigger to inherit it from the other class, too.paul:roman.paul:christian.roman[serves*->caesar].christian[serves*->jesus].?- sys.eval.?- paul[serves->X]. (11.5)The question is which of the two inheritance triggers �res and which one is deactivatedafterwards. This problem is similar to dealing with a disjunction in a rule head of a logicprogram. Hence, it is non-deterministic which of the two instances inherits the method fromthe class (see also [Kan97]). So, there are two minimal models satisfying Example (11.5).Let us summarize the concept of inheritance in Florid. Having reached a �xpoint wedetermine which inheritance triggers are active and �re exactly one of them. Next, we checkif the inherited information may be used to derive other information by evaluating all rulesagain until a �xpoint is reached. So, �xpoint computation and �ring a single inheritancetrigger at a time alternate until a �xpoint is reached where no inheritance triggers are activeanymore.This strategy avoids the inheritance of lots of information which is not needed for theevaluation of a given F-Logic program. Nevertheless, the strategy is correct since everyinherited method appearing in a rule body or query activates a trigger and other inheritedmethods not occurring in any rule body or query have no in
uence on the evaluation of theprogram.On the other hand, the performance of evaluation may become very low if a lot of inheri-tance triggers are active because they are �red successively, only one at a time. Example 14.9illustrates how evaluation may be improved in this case.For a theoretical investigation of inheritance and a comparison with Default Logic, see[MK98]. In [MSL97] it is shown how interitance can also be used to model dynamic processes.12 Type checkingAlthough signature-F-atoms are supported, automatic type checking is not implemented inFlorid because static type checking is not possible for general F-Logic programs. This is due



13 QUERYING THE WORLD WIDE WEB WITH FLORID 34to the possibility to generate new subclass relationships or equalities dynamically by rules.However, given an object base (e.g., the �xpoint of an F-Logic program), type checking maybe realized by some additional rules.To verify whether every method in an object base is typed correctly we have to examinetype safety and type correctness. Type safety means that there is no method applicationwithout a corresponding signature in the object base. Type correctness implies that everysignature covering a given method application is satis�ed by the latter, i.e., the result object ofa method application has to be an instance of all result classes of the appropriate signatures.The following rules check if every functional method without parameters is type safe andtype correct. Other kind of methods may be handled analogously. To defer the evaluationof the type checking rules until the �xpoint of the original program is computed we use thestrati�cation command \?- sys.strat.doIt." (see Section 10.2).?- sys.strat.doIt.type safe(O,M,R,funct) :- O[M->R], O:C, C[M=>()].?- sys.strat.doIt.type unsafe(O,M,R,funct) :- O[M->R], not type safe(O,M,R,funct).type incorrect(O,M,R,funct) :- O[M->R], O:C, C[M=>D], not R:D.?- sys.eval.?- type unsafe(Object,Method,Result,KindOfMethod).?- type incorrect(Object,Method,Result,KindOfMethod).13 Querying the World Wide Web with FloridSince version 2.0, Florid allows access of the World Wide Web via a generic Web interface. Inthis section, an integration of Web access into F-Logic is presented which allows to explore,query, and restructure Web information, combining Web data and the local database in auniform way. More detailed presentations and case-studies can be found in the followingpapers:� [LHL+98] Using Florid for handling semistructured data, especially on the World-WideWeb.� [May99a] A case study in all details.� [May99b] The data model and internal representation of the Web in Florid.� [MHLL99] Using generic rules for typical wrapping tasks.� [May00b] Architecture and data-driven Web exploration.13.1 Modeling the Web in F-LogicEvery resource available in the Web has a unique address, called Uniform Resource Locator(URL). URLs can be used to initiate Web access. When a Web document is fetched, Floridassociates it with an object name derived from its URL by exploiting the object creationfeature of scalar path expressions (see Section 6). There is a prede�ned class url containingWeb address strings and a prede�ned built-in active method get that, when applied to amember of url, accesses the corresponding Web document and integrates it into the database.The schema for Web access is:url::string[get => webdoc].



13 QUERYING THE WORLD WIDE WEB WITH FLORID 35Whenever for an instance u of class url the method u.get is called by a rule head, the documentat the address u is automatically loaded and analyzed (u.get in a rule body simply addressesthe object u.get).By evaluating rules of the formu.get :- <body> ,the internal database is extended by a new Web document according to the Web model:� the Web document which is accessible via the url u is accessed,� it is assigned to the newly created object u.get (conceived as a large string),� it is made an instance of class webdoc, and� several properties are automatically �lled in (cf. Figure 2):{ The references to other urls are stored in the built-in attribute hrefs:u.get[hrefs@(`) ->> u0] , u.get contains \<a href = u0 > ` </a>" .{ If the Web access fails when a document is accessed via its url, u.get[error ->> <error msg>]holds for the resulting error message.url::string[get=>webdoc]. % signature of url andwebdoc[url =>url; author =>string; % ... webdoctype =>string; hrefs@(string) =>>url ;modif =>string; error =>>string].wd1:webdoc[url->"url1"; hrefs@(" label")->>f"url2"g; . . . ]wd2:webdoc[url->"url2"; type->"html"; ...]"url1" :<HTML><HEAD>...</HEAD>...<A HREF="url2">label</A>...</HTML>| {z }wd1
"url2" :<HTML><HEAD>...</HEAD>...<A HREF=...">...</A>...</HTML>| {z }wd2

hrefs@(label)
Figure 2: F-Logic Web model: signature and example dataThus, loading Web documents is completely data-driven. New documents are fetched de-pending on information and links (i.e., URLs) found in already known documents.Web documents can be seen from two points of view:� Large strings: then, substr and pmatch are used for analyzing them (cf. Example 1).� Trees of HTML tags: then, navigation on their parse-trees is used for analyzing them (seeSection 13.3).13.2 Traversing the Web: A First ExampleWe present some examples to illustrate the practical usage of these concepts. The �rst exampledeals with graph traversal of a limited area of the Web, starting at the homepage of ourresearch group: "http://www.informatik.uni-freiburg.de/~dbis/" denotes an instance



13 QUERYING THE WORLD WIDE WEB WITH FLORID 36of class url. The object representing the corresponding document is created by the fact"http://www.informatik.uni-freiburg.de/~dbis/".get."http://www.informatik.uni-freiburg.de/~dbis/" = ourUrl.ourUrl:url.ourServer = "www.informatik.uni-freiburg.de/".X.get:ourPage :- X:ourUrl.Y.get:ourPage :- X:ourPage[hrefs@( ) ->> Y], substr(ourServer,Y). (13.1)The facts in the �rst two lines declare the URL of our homepage to be a member of theclass url and its subclass ourUrl. The third fact de�nes a shorthand for the hostname of ourserver, which is later used to restrict the graph traversal. Then the call of the method X.getinitializes the traversal. It implicitly triggers loading the document under ourUrl and puts itinto the class ourPage. The last rule resembles the well-known transitive closure example andfetches all pages from our server which are reachable by following links from our homepage.As our server is not left, the search is limited and will terminate.After evaluating the program above, the properties of the loaded pages can be examined.In order to detect missing links or documents that are not processed, type?- X:ourPage[error ->> Y]. (13.2)If it is not known what properties are de�ned, you may use variables at method position, e.g:?- X:ourPage[Y -> Z].?- X:ourPage[Y ->> Z]. (13.3)In the context of Example (13.1) it might be interesting to get all mail addresses found onthe visited pages:?- X:ourPage[hrefs@( ) ->> Y], substr("mailto:",Y). (13.4)By the system command \?- sys.prn.style@("html").", a special output style is set that writesall query answers to an html �le and calls a Netscape browser to display it. This has theadvantage that URLs in the output are automatically tagged and highlighted, so they can beimmediately examined with Netscape.Another way to control graph traversals is to limit the search depth. Using the facts ofExample (13.1) again, all pages are visited that can be reached from the start in less thanfour steps:X.get:ourPage[depth ->> 0] :- X:ourUrl.Y.get:ourPage[depth ->> N] :- X:ourPage[depth ->> M;hrefs@( )->>Y],N = M + 1, N < 4. (13.5)Note that the method depth is multi-valued because there are possibly di�erent paths leadingto the same document from the start. If these di�er in length, depth may have more thanone result value. In case of a scalar method di�erent integer values would be equated, whichleads to system error messages.13.3 Parse-Trees of Web documentsSimilar to url.get, the active method url.parse generates the F-Logic representation of theparse-tree of an SGML document (for this, Florid employs the SGML-parser nsgmls).Florid 2.0 provided only a 0-ary u.parse which generated an internal parse-tree repre-sentation which can serve as input for wrapper rules; although, the modeling does not fully



13 QUERYING THE WORLD WIDE WEB WITH FLORID 37mirror the SGML or XML ideas. Florid 2.5 and subsequent versions will support it forcompatibility reasons, but we recommend to use the extended versions u.parse@(sgml) andu.parse@(xml) which are described in [May00a].The parse-tree is transformed into an object-oriented representation and is made an objectu.parse :parsetree:� for every Web document wd, every SGML-tagged group <tag> . . . </tag> is made an object.The class wd.tag contains all such objects <tag> . . . </tag> on wd, e.g., x: (wd.table) holdsfor all tables x on wd.� each tag induces a method for navigation in a parse-tree: Let x : (wd:tag) be a node ofthe parse-tree, then x.tag@(0), . . . , x.tag@(n) address the distinguished segments inside x,e.g.,- For suitable k = 0; 1; 2; : : :, wd.html@(k) addresses all distinguished segments of wd between<html> and </html>, e.g., wd.html@(0) is the head, providing wd.html@(0).head@(i) (i =1; 2; : : :) and wd.html@(1) is the body, providing wd.html@(1).body@(j) (j = 1; 2; : : :).Example 3 (Tables) Tables are represented in HTML by the tags <table>, <tr> (table row),<td> (column elements containing data), and <th> (column elements containing header en-tries), e.g.,<table><tr><th>Name</th><th>Birthday</th><th>Affiliation 1998</th></tr><tr><td>D.E.Knuth</td> <td>10-01-1938</td>Stanford Univ.<td></td></tr><tr><td>...</td> <td>...</td> <td>...</td></tr>...</table>- all tables whose header contains '1998' in any header row/column are identi�ed byT :(wd.table), T.table@(R).tr@(C)[th@(0)->S], substr(S,``1998''). (13.6)- the third column of the 17th row of a given table tab is addressed by tab.table@(17).tr@(3).Example 4 (Parsetree in F-Logic representation) Figure 4 shows the parsetree of theInformation Systems, Vol. 1 page of the DBLP server [DBL98] as given Figure 3.Note the di�erence between tag instances, tag classes, tag attributes, and tag contents:element class attribute contents\journals/is/is1".parse html { html@(0),html@(1)\journals/is/is1".parse.html@(1) body { body@(0),. . . ,body@(4)\...".parse.html@(1).body@(0) h1 { h1@(0)\...".parse.html@(1).body@(0).h1@(0) a href a@(0)\...".parse.html@(1).body@(0).h1@(0).href url { \is/index.html"\...".parse.html@(1).body@(0).h1@(0).a@(0) string { \Information Systems"\...".parse.html@(1).body@(2) ul { ul@(1),. . .\...".parse.html@(1).body@(2).ul@(0) li { li@(0),li@(1)\...".parse.html@(1).body@(2).ul@(0).li@(0) a href a@(0)\...".parse.html@(1).body@(2).ul@(0).li@(0).href url { \a-tree/s/Senko.html"\...".parse.html@(1).body@(2).ul@(0).li@(0).a@(0) string { \M.E. Senko"Then, rules containing path expressions can be used for extracting information from theparse-trees.
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<html><head><title>Information Systems, Volume 1 </title></head><body><h1><a href="index.html"> Information Systems </a>, Volume 1, 1975</h1><h2> Volume 1, Number 1 </h2><ul><li><a href="../../indices/a-tree/s/Senko:Michael_E=.html">Michael E. Senko</a>:Information Systems Records, Relations, Sets, Entities, andThings. 3-13<li><a href="../../indices/a-tree/g/Ghosh:Sakti_P=.html">Sakti P. Ghosh</a>,<a href="../../indices/a-tree/l/Lum:Vincent_Y=.html">Vincent Y. Lum</a>:Analysis of Collisions when Hashing by Division. 15-22<li><a href="../../indices/a-tree/s/Schneider:G=_Michael.html">G. Michael Schneider</a>,<a href="../../indices/a-tree/d/Desautels:Edouard_J=.html">Edouard J. Desautels</a>:Creation of a File Translation Language for Networks. 23-31</ul><h2>Volume 1, Number 2 </h2><ul><li> [...]<li> [...]<li> [...]</ul></body></html> Figure 3: Sourcecode of the DBLP Information Systems, Vol. 1 page
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\journals/is/is1":url\journals/is/is1".parse = <html>. . . </html>parse

<head>. . . </head>html@(0)<title>. . . </title>head@(0)\Inf.Sys.,Vol.1"title@(0) <body>. . . </body>html@(1)
<h1>. . . </h1>

body@(0)
<a>. . . </a>h1@(0)\is/index.html"href \Volume 1, 1975"h1@(1)\Information Systems"a@(0) <h2>. . . </h2> body@(1)

\Vol. 1, No. 1"h2@(1) <ul>. . . </ul>body@(2) <h2>. . . </h2>body@(3)
\Vol. 1, No. 2"h2@(1) <ul>. . . </ul>body@(4)

...<li>. . . </li> ul@(0)<a>. . . </a>li@(0) \Information SystemsRecords, Relations,Sets, Entities, andThings. 3-13"li@(1)
\a-tree/s/Senko.html"href \M.E.Senko"a@(0)

<li>. . . </li>ul@(1)
<a>. . . </a>li@(0) <a>. . . </a>li@(1) \Analysis of Colli-sions when Hashingby Division. 15-22"li@(2)

\a-tree/g/Ghosh.html"href \a-tree/l/Lum.html"href\S.P.Ghosh"a@(0) \V.Y.Lum"a@(0)
Figure 4: F-Logic representation of the parse-tree of the DBLP Information Systems, Vol. 1 page



13 QUERYING THE WORLD WIDE WEB WITH FLORID 40SGML and XML. For the SGML/XML handling functionality of Florid, see [May00a].



14 SOME EXAMPLE PROGRAMS 4114 Some Example ProgramsThe programs presented in this section demonstrate data modeling in F-Logic and serve toexplain some typical problems that may arise. All these programs are found in the directory
orid/examples/tutorial. For additional information about installing and using the system seethe user manual.14.1 Rules and Path Expressions%% family.flp%% Shows the use of scalar and multivalued methods and path expressions/* henry|------------------| |tim theo| |---------- ----| | |paul peter mike| | |---- --- ---| | | |john jack cliff abe*/henry : person.tim:person[father -> henry].theo:person[father -> henry].paul:person[father -> tim].peter:person[father -> tim].mike:person[father -> theo].john:person[father -> paul].jack:person[father -> paul].cliff:person[father -> peter].abe:person[father -> mike]./* RULES */X[son ->> Y] :- Y[father -> X].X[brother ->> Y] :- X[father -> Z], Y[father -> Z], not X=Y.% equivalent rule with path expressions:% X[brother ->> Y] :- X[father -> Y.father], not X=Y.X[uncle ->> Y] :- X[father -> Z] , Z[brother ->> Y].



14 SOME EXAMPLE PROGRAMS 42% equivalent rule with path expressions:% X[uncle ->> Y] :- X.father[brother ->> Y].Y[nephew ->> X] :- X[uncle ->> Y].X[cousin ->> Z] :- X[uncle ->> Y] , Z[father -> Y].X[ancestor ->> Y] :- X[father -> Y].X[ancestor ->> Y] :- X[ancestor ->> Z[father -> Y]].% equivalent rule with path expressions:% X[ancestor ->> Y] :- X..ancestor[father -> Y].?- sys.eval./* QUERY */?- X[cousin ->> Y].?- X[ancestor ->> Y].This example models a (somewhat patriarchalic) family tree. The rules de�ne the methodsson, brother, uncle, nephew, cousin and ancestor in terms of the given method father. Thenegation in the brother rule is not critical because no user de�ned method or predicate, butonly a built-in predicate is involved.Variables only occurring in the rule body may often be avoided by using path expressions,as the alternative rules for brother and uncle show17. Replacing a variable in the rule head bya path expression, however, may alter the semantics. For example, if we change the son ruleintoY.father[son ->> Y] :- Y:person.a new object henry.father would be created.14.2 Generic Methods%% generic_methods.flp%% Demonstrates a more complex use of path expressions%% calculate transitive closure of a method MX[(M.tc) ->> Y] :- X[(M:basicmethod) -> Y].X[(M.tc) ->> Y] :- X..(M.tc)[(M:basicmethod) -> Y].%% define the inverse of a method MX[(M.inv) ->> Y] :- Y[(M:basicmethod) -> X].%% same generation problem for a method MX[(M.sg) ->> X] :- X:object, M:basicmethod.17In most cases, keeping the number of subgoals small will lead to a faster evaluation because the additionalinformation from the complex molecules can be used in the matching algorithm.



14 SOME EXAMPLE PROGRAMS 43X[(M.sg) ->> Y] :- X.(M:basicmethod)..(M.sg)[(M.inv) ->> Y].%% apply this to family.flp:father:basicmethod.person::object.?- sys.consult@("family.flp").?- X[(father.tc) ->> Y].?- X[(father.inv) ->> Y].?- X[(father.sg) ->> Y].Here a similiar functionality as in family.
p is implemented in a more involved but generalway. The variable M is bound to every instance of the class basicmethod and its transitiveclosure, inverse and same generation relation is calculated. Here, it is applied to the methodfather of the preceding example18. The new method (father.tc) is just the same as anc, and(father.inv) corresponds to son. However, the relation expressed by (father.sg) denotes a propersuperset of the relation de�ned by cousin since it also contains the brother relation and theidentity relation.Note: The way F-Logic handles variables ranging over methods is similar to HILOG[CKW93]. Note also that path expressions in rule heads may cause the creation of newobjects (e.g., father.tc). As mentioned above, the names of such objects are path expressions.14.3 Using Equality to Ensure Finiteness%% cycles.flp%% Eliminate cycles from pathes by equating/* Schema */edge[start =>node; end =>node].path[start =>node; end =>node;add@(edge) =>path;add@(path) =>path].edge::path.cycle::path./* Facts */e7:edge[start -> n1; end -> n2]. %% This is a simple 3-cyclee8:edge[start -> n2; end -> n3].e9:edge[start -> n3; end -> n1].18The consult command assumes that Florid is started from a directory containing family.
p



14 SOME EXAMPLE PROGRAMS 44/* RULES */%% add edges to pathsP.E:path[start -> X; end -> Z] :-P:path[start -> X; end -> Y],E:edge[start -> Y; end -> Z].%% concatenate pathsP1[(P2.E) -> P3]:-P1.P2[E -> P3], E:edge.%% detect cyclesP:cycle :- P:path[start -> P.end].%% eliminate cycles by equatingP.C = P :- P.(C:cycle).?- sys.eval./* Query */?- P:path.When scanning a graph that possibly has cycles, it is often necessary to avoid situationslike in Example 9 to keep the model �nite. In such cases, the use of equating can be helpful.In the example above, the three edges e7,e8,e9 form a cycle. The �rst two rules de�ne thepossible paths in this graph as usual. Due to object creation, this rules alone would not yielda �nite model because cycling generates arbitrary long paths. The last two rules detect cyclesin the EDB graph and equate paths that di�er only in the number of cycles. This means thatthe path e7.e8.e9.e7 is only a di�erent (and longer) name for the object denoted by e7 andthus the �xpoint remains �nite.14.4 Unintended Equality%% blasphemy.flp%% Example for side effects of equality in%% combination with scalar methodsZ[arrow@(X) -> Y]:- Z[X -> Y]. %% This seems to be independent of theZ[arrow@(X) -> Y]:- Z[X *-> Y]. %% rest of the programcreation[createdBy *-> god]. %% God created everythingman::creation.male::man.female::man.adam:male.eve:female.



14 SOME EXAMPLE PROGRAMS 45%% But the devil sent a snake...snake::creation[createdBy -> devil].%% It turned man into a creation of the devil:?- sys.eval.?- adam[createdBy -> devil].This example shows that an implicite object equating may have unexpected side e�ects tothe rest of the program. The crucial point is that for the class snake the method createdBy isoverloaded with respect to the inheritability. This means that the invocation of the methodcreatedBy to the object snake yields two di�erent results: Since snake is a subclass of creationit inherits the method createdBy which remains inheritable and results in god. On the otherhand the method createdBy is directly de�ned as a non-inheritable method yielding devil.The arrow rules are apparently independent of the rest of the program19 but in fact theyderive the equality god = devil. The �rst rule de�ning the method arrow derives the fact\snake[arrow@(createdBy)->devil].", the fact \snake[arrow@(createdBy)->god]." is derived bythe second rule. Since the method arrow is functional and it is applied to the same objectwith the same parameter the result objects god and devil are equated. We can eliminate thise�ect by using a multi-valued method arrow instead.Note: See also the section about debug modi in the user manual.14.5 Negation and Strati�cation%% bachelor.flp%% User stratification is needed to achieve the%% intended negation semantics/* john --- mary|---------| |tina peter --- sally|-----------| |tim jack*/john : person[spouse -> mary].peter : person[father -> john; mother -> mary; spouse -> sally:person].19Initially the aim of these rules was to collect all methods de�ned for an object, whether inheritable ornon-inheritable, so that they could be queried in a uniform way. The case that both are de�ned was notconsidered.



14 SOME EXAMPLE PROGRAMS 46mary : person.tina : person[father -> john; mother -> mary].tim : person[father -> peter; mother -> sally].jack : person[father -> peter; mother -> sally].X[spouse -> Y] :- Y[spouse -> X].X : married :- X[spouse -> Y].X[par ->> Y] :- X[father -> Y].X[par ->> Y] :- X[mother -> Y].X[anc ->> Y] :- X[par ->> Y].X[anc ->> Y] :- X..anc[par ->> Y].married :: person.bachelor :: person.?- sys.strat.doIt.X : bachelor :- X : person, not X : married.?- sys.eval.?- X : bachelor.To use negation on user-de�ned information (i.e., information that is not part of the built-in concepts) you have to specify a strati�cation of the program. This is done by inserting thesystem command \?- sys.strat.doIt." between the strata. If all facts that may match thenegated subgoal are derived in previous strata, not in the same stratum or higher strata, theprogram will yield the intended answer. In the example above, the class married is establishedin the �rst stratum and used negatively in the second one.Note: Due to the expressive power of F-Logic, no su�ciently large class of strati�edprograms exists which is statically decidable. So additional information has to be suppliedby the user. It is topic of current research to provide this in a declarative way instead of thenondeclarative one described above.14.6 Subset relationship%% set_comparison.flp%% Example for subset relationship of multi-valued methodsabraham[son ->> {ishmael, isaac}].sarah[son ->> {isaac}].% Is the set of Abraham's sons a subset of Sarah's sons??- sys.strat.doIt.nosubset(abraham,son,sarah,son) :- abraham[son ->> Z], not sarah[son ->> Z].?- sys.strat.doIt.



14 SOME EXAMPLE PROGRAMS 47?- not nosubset(abraham,son,sarah,son).Although variables in F-Logic can only range over objects, not over sets, set operationsmay be expressed by rules. This example asks for the subset relationship of two sets givenas the result of a multi-valued method application. The query whether the set of Abraham'ssons is a subset of Sarah's sons (the answer is false) is evaluated in two steps. First, it hasto be inferred whether there are any sons of Abraham who are not sons of Sarah, then thenegation of this answer is taken as result.Note the di�erence to the query?- sarah[son ->> abraham..son].from Example (6.8)% Is the set of X's sons a subset of Y's friends??- sys.strat.doIt.nosubset(X,son,Y,friend) :- X[son ->> Z], Y[friend ->> {}], not Y[friend ->> Z].?- sys.strat.doIt.?- X[son ->> {}], Y[friend ->> {}], not nosubset(X,son,Y,friend).All F-atoms containing the empty set as result are only needed for safety reasons to limitthe variables occurring in the negated subgoal (see Section 9).14.7 Inheritance and Negation%% jonathan.flp%% negation together with inheritance triggering causes problemsbird::animal.bird[can *-> fly].jonathan:bird.?- sys.strat.doIt.X[can -> swim] :- X:animal, not X[can -> fly].?- sys.eval.?- jonathan[can -> fly].?- jonathan[can -> swim].In this example the negation does not work as intended. The outcome of the programis that jonathan can swim but cannot 
y. What happens is that in the �rst stratum the(active) trigger that makes jonathan inherit the method can from the class bird is not �redbecause there is no subgoal in this stratum activating this trigger. So in the second stratumjonathan[can->swim] is inferred and when asking the query the inheritance trigger is not activeanymore. To avoid this we have to enforce inheritance triggering with a dummy rule in the�rst stratum:



14 SOME EXAMPLE PROGRAMS 48bird::animal.bird[can *-> fly].jonathan:bird.dummy:- X[can -> Y]. % dummy rule to enforce triggering?- sys.strat.doIt.X[can -> swim] :- X:animal, not X[can -> fly].This version will yield the correct result.Note: Negation combined with inheritance triggering is a major problem. See also ap-pendix B in [KLW95] for a theoretical approach.14.8 Negation with In
ationary Semantics%% adulterer.flp%% Inflationary semantics of negation yields unsupported model%% Here, the problem is caused by crosswise negation and equatingjohn[spouse -> jane].john[kissed -> peter.sister].john:adulterer:-john[kissed -> Woman], not john[spouse -> Woman].john[spouse -> Woman]:-john[kissed -> Woman], not john:adulterer.?- sys.eval.?- john:adulterer.?- john[kissed -> X].?- peter[sister -> Y].The �rst evaluation round derives the facts that John is married to Jane and kissed Peter'ssister. In the next round it is deduced that John is an adulterer because Jane is not knownto be Peter's sister. At the same time it follows from the second rule that John is marriedto Peter's sister because John is not known to be an adulterer. The scalarity of the methodspouse forces the equating of the two objects jane and \peter.sister".In a third round none of the rules �res and the inferred facts are not removed from theobject base. So John is an adulterer because he kissed his wife.Note: This behavior is due to the pure in
ationary treatment of negation and only avoid-able by strati�cation. However, this program is not strati�ed because the correspondingdependency graph is cyclic [Ull89]. Another solution of this problem is be the application ofthe well-founded semantics [VGRS91]. See Example 14.10.14.9 Speed up Inheritance%% tones.flp%% Calculates the intervals between tones within one octave%% Heavy use of inheritance triggering



14 SOME EXAMPLE PROGRAMS 49%% base tonesa:tone[number -> -1;chro -> -2].b:tone[number -> 0;chro -> 0].c:tone[number -> 1;chro -> 1].d:tone[number -> 2;chro -> 3].e:tone[number -> 3;chro -> 5].f:tone[number -> 4;chro -> 6].g:tone[number -> 5;chro -> 8].tone::note.%% notes are derived from base tones by sharpening or flatteningsharp(X):note[number -> X.number;chro -> Y]:- Y=X:tone.chro + 1.flat(X):note[number -> X.number;chro -> Y]:- Y=X:tone.chro - 1.%% base intervals are defined by the distance between base tonesprime::interval[diff *-> 0].second::interval[diff *-> 1].third::interval[diff *-> 2].fourth::interval[diff *-> 3].fifth::interval[diff *-> 4].sixth::interval[diff *-> 5].seventh::interval[diff *-> 6].%% there are derivates of base intervals with different real distanceplainPrime:prime[chrodiff -> 0].augPrime:prime[chrodiff -> 1].dimSecond:second[chrodiff -> 0].smallSecond:second[chrodiff -> 1].bigSecond:second[chrodiff -> 2].augSecond:second[chrodiff -> 3].dimThird:third[chrodiff -> 2].smallThird:third[chrodiff -> 3].bigThird:third[chrodiff -> 4].augThird:third[chrodiff -> 5].dimFourth:fourth[chrodiff -> 4].plainFourth:fourth[chrodiff -> 5].augFourth:fourth[chrodiff -> 6].plainFifth:fifth[chrodiff -> 7].



14 SOME EXAMPLE PROGRAMS 50dimFifth:fifth[chrodiff -> 6].augFifth:fifth[chrodiff -> 8].dimSixth:sixth[chrodiff -> 7].smallSixth:sixth[chrodiff -> 8].bigSixth:sixth[chrodiff -> 9].augSixth:sixth[chrodiff -> 10].dimSeventh:seventh[chrodiff -> 9].smallSeventh:seventh[chrodiff -> 10].bigSeventh:seventh[chrodiff -> 11].%% (insert optimization here)%% Two notes give an intervalX[to@(Y) -> Z] :- X:note,Y:note,V=Y.chro-X.chro, U=Y.number - X.number,Z:interval[diff -> U;chrodiff -> V].?- sys.eval.?- X[to@(Y) -> Z].There is no semantic problem here. The program works �ne but is quite slow. Thereason is that all intervals inherit the attribute di� from their respective base intervals. Thetrigger concept of F-Logic requires that these triggers �re one at a time with computing acomplete �xpoint afterwards. So 24 �xpoints are needed for this simple program and the timeconsuming last rule is evaluated over and over.The �rst approach to an optimization is to separate the interval de�nitions from thelast rule by strati�cation (inserting \?- sys.strat.doIt." before the last rule). Unfortunatelythis does not change anything because Florid only �res a trigger when it is enabled by asubgoal20. However, as there is no appropriate subgoal no inheritance trigger �res in the �rststratum. In the second stratum �ring one trigger and computing a new �xpoint alternates,just as it was the case without strati�cation.The solution is that all interesting triggers are enforced to �re already in the �rst stratumwhich can be achieved by a dummy rule:dummy:-X:interval[diff -> Z]. %% dummy rule forcing inheritance triggering?- sys.strat.doIt. %% user stratificationThe evaluation is sped up with this optimization approximately by factor 20.Note: Version 2.0 of Florid now contains an adoption of the semi-naive evaluationstrategy. This also speeds up inheritance triggering, but it turned out that the e�ect of thedummy rule is by far greater. However, combining the dummy rule with semi-naive evaluationis even better and yields the best results.20This is sort of a top-down element in the evaluation algorithm used.



14 SOME EXAMPLE PROGRAMS 5114.10 Well-founded Semantics%% wellfounded.flp%% uses F-Logic triggers to emulate well-founded semantics%---------- CONTROL RULES FOR WELL-FOUNDED DATALOG -------------% inherit 'fixpoint' after fixpoint is reached:state[fixpoint *-> t].% initial state:0:state.% after fixpoint of an active state [S] is reached, create [S+1]:s(S):state :- S:active.fixpoint.% create all even states (while [S] is active)0:even.s(s(S)):even :- (S:state):even.% [0] is active.% [S+1] is active if [S] is an active even state.% [S+2] is active if [S] is even and new tuples have been computed.0:active.s(S):active :- (S:active):even.s(s(S)):active :- S:even, win(s(s(S)),X), not win(S,X).% the first inactive even state is the final stateS:final :- (S:even).fixpoint, not S:active.% compute the final outcome:% everything in the (even) final state is true% everything in the previous but not in the final state is undefinedwin_true(X) :- S:final, win(S,X).win_undef(X) :- s(S):final, win(S,X), not win(s(S),X).%------------- USER-DEFINED WELL-FOUNDED RULES ------------------------------% EDBmove(a,b).move(b,a).move(b,c).move(c,d).move(d,e).move(e,f).



14 SOME EXAMPLE PROGRAMS 52% IDB:% for negated subgoals use previous state!win(s(S),X) :- s(S):state, move(X,Y), not win(S,Y).//?- sys.theEval.debugOn@(cout).?- sys.eval.?- win_true(X).In this example, the procedural part of the inheritance de�nition via triggers is used to emulatethe well-founded semantics for Datalog. This serves as a wrap for any Datalog program, herethe prototypic example for the well-founded semantics, the win-move program is used. Themethod carries over to all F-Logic programs that do not use inheritance. Programs withinheritance can be handled, too, if the control rules generating the next state are the lastones in the program. Florid always �res the �rst active trigger found in the program. Thus,the next state is only generated when there is no more active trigger in the target programfor the actual state.Acknowledgements. First of all, we want to thank Georg Lausen, the head of our group,who made the Florid project possible. Furthermore, our thanks go to the former teammembers J�urgen Frohn, Rainer Himmer�oder, Paul-Th. Kandzia, Bertram Lud�ascher, Chris-tian Schlepphorst, Markus Seilnacht, and Heinz Upho� who developed Florid up to version2.0 together with students from the universities at Mannheim and Freiburg.



A GRAMMAR OF F-LOGIC SYNTAX IN BACKUS-NAUR-FORM 53A Grammar of F-Logic Syntax in Backus-Naur-FormA.1 Lexical structureBefore de�ning how F-Logic expressions are correctly built we describe the basic lexical struc-ture of F-Logic in Figure 5:RuleDelimiter = \." WhitespaceWhitespace = Blankj Tabulatorj ReturnISASymbol = \:" j \::"ImplicationSymbol = \:-"QuerySymbol = \?-"MethodArrow1 = \->" j \*->"MethodArrow2 = \->>" j \*->>"MethodArrow3 = \=>" j \=>>"Dot = \." j \.." j \!" j \!!"Predicate = character string starting with a lower case letterBuiltInPredicate = \integer"In�xBuiltInPred = \>" j \<" j \=" j \>=" j "\<="BuiltInOperator = \+" j \-" j \*" j \/"Functor = character string starting with a lower case letterVariable = character string starting with an upper case letter or \ "String = character string enclosed in \ "Integer = integerFigure 5: Lexical structureA.2 Grammar of F-Logic syntaxFigure 6 shows the BNF grammar of the F-Logic syntax. Expressions enclosed in curly bracesare optional.



A GRAMMAR OF F-LOGIC SYNTAX IN BACKUS-NAUR-FORM 54Program = f ListOfRules gListOfRules = Rule RuleDelimiter f ListOfRules gRule = Head f ImplicationSymbol Body gQuery = QuerySymbol Body RuleDelimiterHead = ListOfMoleculesListOfMolecules = Molecule f \," ListOfMolecules gBody = ListOfLiteralsListOfLiterals = Literal f \," ListOfLiterals gLiteral = f \not" g MoleculeMolecule = F-Molecule j P-MoleculeP-Molecule = Predicate f \(" ListOfExpressions \)" gj BuiltInPredicate \(" ListOfExpressions \)"j ArithExpr In�xBuiltInPred ArithExprListOfExpressions = Expression f \," ListOfExpressions gExpression j PathExpressionj F-Moleculej AggregateArithExpr = Expressionj ArithExpr BuiltInOperator ArithExprj \(" ArithExpr \)"Aggregate = ID-Term \f" Variable f \[" ListOfVars \]" g\;" ListOfLiterals \g"F-Molecule = PathExpression Speci�cationPathExpression = ID-Termj \(" Expression \)"j PathExpression Dot MethodApplicationj F-Molecule Dot MethodApplicationSpeci�cation = ISASpeci�cation \[" f ListOfMethods g \]"j ISASpeci�cationj \[" f ListOfMethods g \]"ISASpeci�cation = ISASymbol ID-Termj ISASymbol \(" Expression \)"MethodApplication = ID-Term f \@(" ListOfExpressions \)" gj \(" Expression \)" f \@(" ListOfExpressions \)" gListOfMethods = MethodApplication MethodResult f \;" ListOfMethods gMethodResult = MethodArrow1 Expressionj MethodArrow2 Expressionj MethodArrow2 \f" f ListOfExpressions g \g"j MethodArrow3 Expressionj MethodArrow3 \(" f ListOfExpressions g \)"ID-Term = BasicID-Termj Functor \(" ListOfExpressions \)"BasicID-Term = Functor j Variable j String j IntegerListOfVars = Variable f \," ListOfVariables gFigure 6: Grammar of F-Logic syntax



B SYNTAX OF REGULAR EXPRESSIONS 55B Syntax of Regular ExpressionsThe following description of regular expression was taken from a xemacs21 info �le. Regularexpressions have a syntax in which a few characters are special constructs and the rest are\ordinary". An ordinary character is a simple regular expression which matches that characterand nothing else. The special characters are `$', `^', `.', `*', `+', `?', `[', `]' and`\'; no new special characters will be de�ned. Any other character appearing in a regularexpression is ordinary, unless a `\' precedes it.For example, `f' is not a special character, so it is ordinary, and therefore `f' is a regularexpression that matches the string `f' and no other string. (It does not match the string`ff'.) Likewise, `o' is a regular expression that matches only `o'.Any two regular expressions A and B can be concatenated. The result is a regular expres-sion which matches a string if A matches some amount of the beginning of that string and Bmatches the rest of the string.As a simple example, you can concatenate the regular expressions `f' and `o' to get theregular expression `fo', which matches only the string `fo'. To do something nontrivial,you need to use one of the following special characters:� `. (Period)'is a special character that matches any single character except a newline. Using concate-nation, you can make regular expressions like `a.b', which matches any three-characterstring which begins with `a' and ends with `b'.� `*'is not a construct by itself; it is a su�x, which means the preceding regular expression isto be repeated as many times as possible. In `fo*', the `*' applies to the `o', so `fo*'matches one `f' followed by any number of `o's. The case of zero `o's is allowed: `fo*'does match `f'.`*' always applies to the smallest possible preceding expression. Thus, `fo*' has arepeating `o', not a repeating `fo'.The matcher processes a `*' construct by immediately matching as many repetitions asit can �nd. Then it continues with the rest of the pattern. If that fails, backtrackingoccurs, discarding some of the matches of the `*'-modi�ed construct in case that makesit possible to match the rest of the pattern. For example, matching `ca*ar' against thestring `caaar', the `a*' �rst tries to match all three `a's; but the rest of the pattern is`ar' and there is only `r' left to match, so this try fails. The next alternative is for `a*'to match only two `a's. With this choice, the rest of the regexp matches successfully.� `+'is a su�x character similar to `*' except that it requires that the preceding expression bematched at least once. For example, `ca+r' will match the strings `car' and `caaaar'but not the string `cr', whereas `ca*r' would match all three strings.� `?'is a su�x character similar to `*' except that it can match the preceding expression eitheronce or not at all. For example, `ca?r' will match `car' or `cr'; nothing else.� `[ ... ]'`[' begins a "character set", which is terminated by a `]'. In the simplest case, the21xemacs is free software under the GNU General Public License.



B SYNTAX OF REGULAR EXPRESSIONS 56characters between the two form the set. Thus, `[ad]' matches either one `a' or one `d',and `[ad]*' matches any string composed of just `a's and `d's (including the emptystring), from which it follows that `c[ad]*r' matches `cr', `car', `cdr', `caddaar',etc.You can include character ranges in a character set by writing two characters with a `-'between them. Thus, `[a-z]' matches any lower-case letter. Ranges may be intermixedfreely with individual characters, as in `[a-z$%.]', which matches any lower-case letteror `$', `%', or period.Note that inside a character set the usual special characters are not special any more. Acompletely di�erent set of special characters exists inside character sets: `]', `-', and`^'.To include a `]' in a character set, you must make it the �rst character. For example,`[]a]' matches `]' or `a'. To include a `-', write `---', which is a range containingonly `-'. To include `^', make it other than the �rst character in the set.� `[^ ... ]'`[^' begins a "complement character set", which matches any character except the onesspeci�ed. Thus, `[^a-z0-9A-Z]' matches all characters except letters and digits.`^' is not special in a character set unless it is the �rst character. The character followingthe `^' is treated as if it were �rst (`-' and `]' are not special there).Note that a complement character set can match a newline, unless newline is mentionedas one of the characters not to match.� `^'is a special character that matches the empty string, but only if at the beginning of a linein the text being matched. Otherwise, it fails to match anything. Thus, `^foo' matchesa `foo' that occurs at the beginning of a line.� `$'is similar to `^' but matches only at the end of a line. Thus, `xx*$' matches a string ofone `x' or more at the end of a line.� `\'does two things: it quotes the special characters (including `\'), and it introduces addi-tional special constructs.Because `\' quotes special characters, `\$' is a regular expression that matches only `$',and `\[' is a regular expression that matches only `[', and so on.Note: for historical compatibility, special characters are treated as ordinary ones if theyare in contexts where their special meanings make no sense. For example, `*foo' treats `*'as ordinary since there is no preceding expression on which the `*' can act. It is poor practiceto depend on this behavior; better to quote the special character anyway, regardless of whereis appears.Usually, `\' followed by any character matches only that character. However, there areseveral exceptions: characters which, when preceded by `\', are special constructs. Suchcharacters are always ordinary when encountered on their own. Here is a table of `\' con-structs.� `\|'speci�es an alternative. Two regular expressions A and B with `\|' in between form anexpression that matches anything A or B matches.



B SYNTAX OF REGULAR EXPRESSIONS 57Thus, `foo\|bar' matches either `foo' or `bar' but no other string.`\|' applies to the largest possible surrounding expressions. Only a surrounding `\( ... \)'grouping can limit the grouping power of `\|'.Full backtracking capability exists to handle multiple uses of `\|'.� `\( ... \)'is a grouping construct that serves three purposes:1. To enclose a set of `\|' alternatives for other operations. Thus, `\(foo\|bar\)x'matches either `foox' or `barx'.2. To enclose a complicated expression for the post�x `*' to operate on. Thus, `ba\(na\)*'matches `bananana', etc., with any (zero or more) number of `na' strings.3. To mark a matched substring for future reference.This last application is not a consequence of the idea of a parenthetical grouping; it is a sep-arate feature which happens to be assigned as a second meaning to the same `\( ... \)'construct because in practice there is no con
ict between the two meanings. Here is anexplanation:� `\DIGIT'after the end of a `\( ... \)' construct, the matcher remembers the beginning and endof the text matched by that construct. Then, later on in the regular expression, you canuse `\' followed by DIGIT to mean "match the same text matched the DIGIT'th time bythe `\( ... \)' construct."The strings matching the �rst nine `\( ... \)' constructs appearing in a regular expres-sion are assigned numbers 1 through 9 in order that the open-parentheses appear in theregular expression. `\1' through `\9' may be used to refer to the text matched by thecorresponding `\( ... \)' construct.For example, `\(.*\)\1'matches any newline-free string that is composed of two identicalhalves. The `\(.*\)' matches the �rst half, which may be anything, but the `\1' thatfollows must match the same exact text.� `\`'matches the empty string, provided it is at the beginning of the bu�er.� `\''matches the empty string, provided it is at the end of the bu�er.� `\b'matches the empty string, provided it is at the beginning or end of a word. Thus,`\bfoo\b' matches any occurrence of `foo' as a separate word. `\bballs?\b' matches`ball' or `balls' as a separate word.� `\B'matches the empty string, provided it is not at the beginning or end of a word.� `\<'matches the empty string, provided it is at the beginning of a word.� `\>'matches the empty string, provided it is at the end of a word.� `\w'matches any word-constituent character. The editor syntax table determines which char-acters these are.� `\W'



B SYNTAX OF REGULAR EXPRESSIONS 58matches any character that is not a word-constituent.� `\sCODE'matches any character whose syntax is CODE. CODE is a character which represents asyntax code: thus, `w' for word constituent, `-' for whitespace, `(' for open-parenthesis,etc.� `\SCODE'matches any character whose syntax is not CODE.Here is a complicated regexp used by Emacs to recognize the end of a sentence together withany whitespace that follows. It is given in Lisp syntax to enable you to distinguish the spacesfrom the tab characters. In Lisp syntax, the string constant begins and ends with a double-quote. `\"' stands for a double-quote as part of the regexp, `\\' for a backslash as part ofthe regexp, `\t' for a tab and`\n' for a newline."[.?!][]\"')]*\\($\\|\t\\| \\)[ \t\n]*"This regexp contains four parts: a character set matching period, `?' or `!'; a character setmatching close-brackets, quotes or parentheses, repeated any number of times; an alternativein backslash-parentheses that matches end-of-line, a tab or two spaces; and a character setmatching whitespace characters, repeated any number of times.
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