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ABSTRACT removed. Once the count reaches zero, the object is deletkitsa
memory is reclaimed. A major advantage of this approachas th
the memory overhead is small.

Active garbage collection for XQuery engines [17] is strongly re-
lated to reference counting, as each single node in therthed&ps
track whether it is still relevant to the remaining XQuenalkem
ation. Instead of counting references, we employ the cdanaep
roles which are assigned to nodes. Intuitively, a role serves as a
metaphor for the future relevance of a node. Roles are aligtic
derived from the query. While reading the input, the XML nede
are matched against the set of roles. A node can be assigned se
eral roles when it is used in the query in several differemtexts.
Moreover, a role can be assigned to a node multiple times when
queries involve the XPath descendant axis.

1. MOTIVATION As an example, let us consider the XQuery below, which first

It has been repeatedly observed that memory consumption re-outputs all children of the bib node for which no price exisls
mains a crucial bottleneck when XQuery is evaluated by main- then outputs all titles of books.
memory based systems [2—4,10,12,18]. In particular whecgss- <r> {

In this demonstration, we present the main-memory basedrstr
ing XQuery engine GCX which implements novel buffer manage-
ment strategies that combine static and dynamic analydiedp
main memory consumption low. Depending on the progress made
in query evaluation, memory buffers are dynamically purgad
minimized. In this demo, we show the various stages in etalua
ing a practical fragment of XQuery with GCX. We present the ma
jor steps in static analysis and demonstrate the mecharmsdys
namic buffer minimization. We apply our system to XML stream
and demonstrate the significant impact of our approach arcied
main memory consumption and running time.

ing Iarg(_a XML streams, it is_ often impossible_to buffer thenete for $bibin /bib return
input prior to query evalu.a'glon, and an effective buffer ageEment (for $x in $bib/* return
becomeghe key prerequ]sne to perfprmance. In virtually all cur- i f (not(exists $x/price)) then $x else (),
rent systems, the decisions regardlng what to buffer anchvine for $b in $bib/book return $b/title)
delete from buffers are made at compile-time only, based.oely } <>
static query analysis [4,10-12,14]. Among the proposals disclisse ] )
in previous works are the static projection of the input [223 and Below we show the roles for this query and the paths addrgssin
the streaming evaluation of parts of the query with no or ditthe the nodes to which they will be assigned. For instance, rolis
buffering [5, 10, 11, 18]. However, for many practical qesrin- assigned to all nodes in the document selected by XPath expre
volving blocking operators or descendant axes and wildgdittle sion/bib/x. In order to verify the existence of a price node, we are
can be evaluated on the fly [1, 10]. c_JnI_y interested in the first witness (hence the predi{:B]_tm iden-

In [17], we show that aombination of static analysis and dy-  tifying r4). These paths closely correspond to the notioprofec-
namic buffer minimization techniques further reduces nmagm- tion paths[2,3,12], and are evaluated accordingly: While the input
ory consumption during XQuery evaluation. The concepative stream is read, only the XML nodes that are matched by a projec

garbage collection forms the groundwork for the buffer manage- tion path are considered query-relevant and consequeatlint
ment in our streaming XQuery engine GCX. GCX exploits static the buffer. While the input stream is being projected inazatally,

and dynamic analysis to actively purge main memory buffeset roles are assigned to the buffered nodes on-the-fly.
on the progress ip guery evaluation. GCX is an open sourgegiro . rat Joibl + fprice[1]
and available online [8]. S r5:  Ibibl « /descendant-or-self::node()
T2 . et Ibibibook

2 ACTIVE GARBAGE COLLECTION 3 r7:.  [bib/book/title/descendant-or-self: :node()

Garbage collection [19] is a well-understood techniqueaidn- Figure Xa) shows the buffer contents for the input stream prefix
matic memory management in programming languages. The basi “(bib)(book)(title/) (author/) (/book) . ..”. Each node is assigned
principle of any garbage collector is to determine whichadatb- roles, for instance, thbib node is assigned role;. Nodebook is
jects in a program will not be accessed in the future, andesons matched by three projection paths, and is thus assignee tbies.
quently, to reclaim the storage used by these objects. Alsiygi Only nodes that carry at least one role are copied into thiebuf
effective garbage collection strategyriference counting where At compile-time, we determine the moments during queryweval
every object counts the number of references to it. When-a ref ation when nodes lose roles. At thggeemption points, the buffer
erence is created to an object, its reference count is iremtsd. manager is notified that all nodes reachable from the cuuaix

Likewise, the reference count is decremented when a rafersn able via a path lose a role. Once a node has lost all of its,ritles



pib{r2} pib{r2} pib{r2}
book{3:75:76} bocﬁ{\f*@\fsfe} boOT{T's}
titte{rs>7} authods}  title(rs;77} authof™sd title{r7}
(a) Input document (b) Executing signOff (c) Garbage
with role assignment commands collection

Figure 1: Active garbage collection.

by a projection path is copied into the buffer and assignectth-
responding roles. This can be done on-the-fly, with a lookdhe
of just one token. To mark the moments in time when buffered
nodes are deleted during query evaluation, the preempborsgp
in query evaluation are defined asidnOff -statements are inserted
into the query. The key to efficiency is to isssignOff -statements
as early as possible so that the size of the main memory tnaffer
mains small. At the same time, these commands must not begissu
too early, as this could corrupt the query result.

In our demo, we will visualize the mapping between query ex-
pressions, paths, and roles, as shown in Figure 3(a). Whelea r
in the role browser is selected, the corresponding line énitiput

can be discarded by the garbage collector, provided that abits query and the preemption points in the execution plan arb-hig

descendants is assigned a role. We need a mechanism which sigjighieq. This allows the audience to interactively expltie con-
nals the buffer manager that nodes are about to lose rolethislo - ions between roles paths, aghOff-statements

end, signOff -statements are inserted into queries at compile-time.

We assume a sequential semantics to XQuery evaluation. theen
query from our running example is rewritten as follows.

<r> {
for $bib in /bib return
((for $x in $bib/* return
(if (not(exists $x/price)) then $x else (),
si gnOf f ($x, 73),
signOff ($x/price[1], ry),
si gnOf f ($x/ descendant - or-sel f:: node(), r5))),
(for $b in $bib/book return
($b/title,
si gnOf f ($b, 76) ,
signOff ($b/titl e/ descendant -or-self::node(), r7)
)
signOff ($bib, r2)) }
</[r>

If the rewritten query is evaluated on the input tree fromuFeyl(a),
we first output the opening ta@). Subsequently, variablgz is
bound to thebook node, which then is written to the output to-
gether with its subtree. Next, tlegnOff -statements are executed.
For instance, “signOff($xy3)” causes the bufferedook node to
lose rolers, because this is the node to which variadieis cur-
rently bound to. This node further loses role Likewise, thetitle
and theauthor nodes each lose one instance of ngJeFigure 1b)
shows the effect of role removal on the buffer.
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Figure2: The GCX Runtime Architecture.

The runtime engine. The architecture of GCX comprises the
query evaluator, the stream preprojector, and thebuffer manager,
as sketched in Figure 2. The interaction between the conmp®ne
is pull-based. The query evaluator sequentially evaluates the query
expressions until it has tblock either because a new node is re-
quired (e.g., when a variable is bound to the next node imits f
loop) or asignOff -statement is encountered. In consequence, a
request is issued to the buffer manager, and query evatuegio
mains blocked until the buffer manager has responded. Tiierbu
manager answers to the query evaluator. If data is requived t
is not resident in the buffer, the buffer manager semeNode()-
requests to the stream preprojector until the data is dleila the
buffer or it has become evident that the data does not existein
input (e.g., as the input has been exhausted). The receytzg-
nOff -statements triggers garbage collection. The stream qjespr

ThesignOff -statements also trigger the garbage collection. Fig- tor reads the input until a token is matched by a projecticth.pa
ure 1(c) shows the buffer contents after purging all nodes that are The token is copied directly into the buffer, and roles asgaed.

now irrelevant for the remaining query evaluation. The riging
nodes are required for the evaluation of the for-loop bigdiari-
able$b, once the evaluation of the current for-loop has finished.

3. THE GCX XQUERY ENGINE

We have implemented active garbage collection for a prptoty
XQuery engine, called GCX. GCX supports the practical fragm
of composition-free XQuery [9] with single-step nestedwops,
conditions, and joins, but does not yet cover aggregatitie. sys-
tem is implemented i€'++ which, in contrast to garbage collected
languages, gives direct control over memory allocationdesdlo-
cation. This is crucial, as we want deletions put into effechedi-
ately, to keep the main memory consumption of our query @oce
sor lowthroughout query evaluation.

Static analysis. Given an XQuery expression, a set of projec-

tion paths is derived (see [17]). Each projection path dsefime

role. When the input stream is read, each node that is matched

LA for-loop is single-step if it is of the form “for $x in $y/axis:.:v
returna” whereaxisis an XPath axis and is an XPath node test.

Via this chain of commands, GCX evaluates the query on-the-fl
while processing the input stream.

Dynamic buffer management. At runtime, signOff-statements
cause buffered nodes to lose roles. Eventually, the buffecgles
can be purged from the buffer. In our demonstration, we Wsua
ize the dynamic buffer behavior as shown in Figures 3(b) ahd (
Consider the query from the introduction. We show the budter-
sumption for different inputs. Each input document corgaibib
root node with ten children of the form

(t) (author) (/author) (title) (/title) (price) (/price) (/t)

wheret is either tagbook or article, a total of 82 tags forming
41 document nodes. For each new token read from the input (
axis), we plot the number of buffered nodes after the token ha
been processed/{axis). Figure 3(b) plots the buffer consumption
for documents consisting of nireticle nodes and onbook node

(in this order). Resuming the discussion from the introunctar-
ticle nodes and their descendants are assignedolasdrs, and
receivesignOff-commands immediately after the article has been
processed in the firdor-loop. Thus, articles are processed one at
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<r>{ Select a role:
for Shib in /bib return -/ _j
( for §x in Shib/* return =R
if (not(exists (Sx/price)) 2
then $x else (),
for S§bh in Shib/book return Sh/title ) 1}
</r>
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<r>] (b) 9xarticle + 1xbook
for Sbhib in /bib return
( for Sx in Sbhib/* return
(if (not(exists (Sx/price))
then $x else (),
signoff (Sx,r3),
signoff ($x/price[l], rd),
signoff (Sx/descendant-or-self::node(), r5) )
for S$b in Shib/book return
(Sh/title,
signoff (Sb, reé),
signoff (Sb/title/descendant-or-self::node() ,x7) ), ),
signoff (Sbhib, r2) 1}
</r>
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Figure 3: Exploration of Static Analysis and Dynamic Buffer Management.

a time and memory consumption is bounded. The document for partition of join partners is loaded into the buffer (thetfilgago-

Figure 3(c) starts witl) book nodes. For these nodes, ttide nal), followed by a phase where no relevant tokens are madithe
child with role r must be kept, whilgrice and author children plane). The join partners are found in ttiesed_auction section.
are removed when receiving the signOff-commands from tisé fir In the buffer plots, both types of queries show a charadieris
for-loop. Although nodes that have become irrelevant are rechov  buffer footprint. Query Q6 can be evaluated in streaminditas
timely, buffer consumption increases. When the closingofate with low memory consumption, while the join query Q8 is inher
bib-node is read?23 nodes are buffered in total. ently blocking, and has a main memory consumption that &salin

Figure 4 plots the buffer for two XMark queries [20] on a 10MB  in the size of the input.
document generated with the XMark data generator. As thge fra Performance results. We present excerpts from our experi-
ment supported by GCX does not cover the full XQuery standard ments [8, 17] with our C++ prototype, using queries and diatmn f
queries were adapted accordingly. The rewritten queriasbea the XMark benchmark [20]. The queries were adapted as dbestri
found at the GCX download page [8]. Note that raxes in Fig- at [8], to match the XQuery fragment supported by GCX. Our exe

ure 4 scale differently. cution platform is a 3GHz CPU Intel Pentium IV with 2GB RAM,
running with SuSe Linux 10.0. The Java-based systems were ex
100 25K cuted using J2RE v1.4.2.

GCX is an in-memory XQuery engine geared towards streaming
query evaluation. We chose the following reference systems

80 20k

60 15k

e The FluXQuery engine (in Java) [6,10] is the most naturalaho
for a reference implementation which was available to ugXFl

40 10k

number of XML nodes buffered
number of XML nodes buffered

2 sk Query is also a main-memory XQuery engine geared towards
of o — — L — — — XML stream processing, and it implements a similar XQuery
number of tokens processed number of okens processed fragment. FluXQuery can exploit schema information, and wa
(a) Query Q6 (b) Query Q8 provided the XMark DTD in our experiments.
Figure4: Buffer Plotsfor Querieson 10M B XMark Document. e The in-memory query engines Galax [7] (OCaml), QizX/open

v1.1 [15] (Java), and Saxon v8.7.1 [16] (Java) implemerit ful
XQuery. While Galax has not been designed with XML stream
processing in mind, it is often consulted in XQuery benctksar
and — for this reason — also included here.

The XMark DTD divides the document into six larger sections,
namelyregions, categories, catgraph, people, open_auctions, and
closed_auctions. Query Q6 requiresitem tags beneathegions,
which are located at the beginning of the document. GCX pro-  Unfortunately, there are only few implementations of sty
cesses items one at a time and maintains a low main memory con-XQuery engines publicly available. This makes it difficaltstet up
sumption of less tham00 buffered nodes. Once thegions sec- extensive comparative experiments. Acting from this nseitgsve
tion has been processed, the buffer becomes almost empmtgnin further considered experiments with MonetDB [13] v4.12.ithw
trast, queryQ8 performs a value-based join between persons (in XQuery v0.12.0, a mature XML database system. As a secondary
the people section) and closed auctions. In the first three sections, storage implementation, MonetDB uses index structurgsdedup
no relevant tokens are encountered. Inpbeple section, the first query evaluation, which is not done by the GCX engine. On the



Query GCX FluXQuery Galax MonetDB Saxon QizX
10MB  0.18s/1.2MB 1.59s / 50MB 5.45s/186MB 0.86s / 30MB 1.48s/80MB 1.20s/ 38MB
XMark  50MB  0.92s/1.2MB 3.96s/111MB  42.33s/880MB 3.69s /98MB 4.29s / 292MB 3.7435MB
Q1 100MB 1.87s/1.2MB 6.94s/111MB 02:07/1,8GB 7.19s/ 225MB 7.96s / 547MB 6.5635N\2B
200MB  353s/12MB  12.27s/111MB timeout 13.60s/244MB  14.30s/973MB  11.80MB
10MB  0.34s/1.2MB n/a 7.66s / 240MB 0.98s / 29MB 1.73s/82MB 1.56s / 33MB
XMark 50MB  1.68s/1.2MB n/a 57.98s/1.2GB 5.06s/111MB 5.78s/292MB 6.13s/169MB
Q6 100MB 3.33s/1.2MB n/a 5:08/2GB 9.94s/253MB  10.85s/622MB  11.74s/484MB
200MB  6.42s/1.2MB n/a timeout 19.95s/337MB  20.14s/1.2GB  20.33s/805MB
10MB 13.15s/9.8MB  18.04s/128MB  01:04/377MB  02:56 / 407MB 6.61s/145MB 9.8248MB
XMark 50MB  05:13/43MB  06:51/169MB 33:08/1.8GB 03:26/1.35GB  02:02/352MB  03:283MB
Q8 100MB 22:07/86MB 27:01/216MB timeout - 08:39/650MB  14:27 / 397MB
200MB timeout timeout timeout - 32:43/1.15GB  52:05/636MB
10MB  0.17s/1.2MB 1.60s / 52MB 5.92s/182MB 0.80s /31MB 1.53s/48MB 1.26s/28MB
XMark  50MB  0.85s/1.2MB 3.98s/111MB  43.91s/899MB 3.64s/98MB 4.45s [ 292MB 3.815MB
Q13 100MB 1.69s/1.2MB 7.00s/111MB 02:04/1.8GB 7.34s/224MB 8.35s / 547MB 6.8185N\2B
200MB  3.24s/12MB  12.33s/111MB timeout 13.52s/271MB  15.02s/1.05GB  12.3BOMB
10MB  0.25s/1.2MB 1.65s / 48MB 6.95s / 215MB 0.85s / 34MB 1.65s/62MB 1.43s/39MB
XMark  50MB  1.24s/1.2MB 4.19s/111MB 53.08s/1,5GB  4.17s/120MB 4.90s / 292MB 4.1%5MB
Q20 100MB 2.48s/1.2MB 7.37s/111MB 03:14/2GB 8.47s/247MB 9.13s/622MB 8.71s N8B0
200MB  4.74s/12MB  13.14s/111MB timeout 16.40s/296MB  16.58s/1.15GB  15.8%8MB

Figure5: GCX Benchmark Results.

other side, MonetDB XQuery stores the entire data physidzdh
fore query evaluation. To account for the fact that GCX ara th
other main memory engines read the complete input docuroent f
each query evaluation, we forced the MonetDB server to cetioa
complete document in each run.

Figure 5 shows the behavior of GCX and the other systems in [5]

comparison to the reference implementations for severabkM

queries. We measure the high watermark of non-swapped mem-

ory consumption and the query evaluation time in secondsh Wi
the Java-based engines, we observe that due to automatiorgnem
management and the Java Virtual Machine, memory consumptio
often increases with the document size even though the amebun
data buffered remained constant (e.g. for FluXQuery). Qg6
contains descendant axis XPath expressions which is nposigol

by FluXQuery (denoted by “n/a”). Failures are denoted by “-”

It is remarkable that GCX evaluates all queries on inputspof u
to 200MB, except fo8, which computes an XQuery join and re-
quires a certain amount of buffering, with only2MB main mem-
ory consumption. In summary, the experiments confirm that ou
buffer management approach via active garbage collecédiomms
well both w.r.t. main memory consumption and execution tifar
a large class of queries, our prototype even outperforms/agre
gines which exploit schema information [10].

4. THE GCX PROJECT ONLINE

GCX is a C++ project. The first version of GCX was released
in January 2007 and is freely available as open source uhder t
Berkeley Software Distribution license, to facilitateatd research
in this area. For current information on the GCX project, see
http://ww. i nfosys. uni -sb. de/ proj ect s/ streans/gcx/ .
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