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ABSTRACT
In this demonstration, we present the main-memory based stream-
ing XQuery engine GCX which implements novel buffer manage-
ment strategies that combine static and dynamic analysis tokeep
main memory consumption low. Depending on the progress made
in query evaluation, memory buffers are dynamically purgedand
minimized. In this demo, we show the various stages in evaluat-
ing a practical fragment of XQuery with GCX. We present the ma-
jor steps in static analysis and demonstrate the mechanismsof dy-
namic buffer minimization. We apply our system to XML streams
and demonstrate the significant impact of our approach on reducing
main memory consumption and running time.

1. MOTIVATION
It has been repeatedly observed that memory consumption re-

mains a crucial bottleneck when XQuery is evaluated by main-
memory based systems [2–4,10,12,18]. In particular when process-
ing large XML streams, it is often impossible to buffer the complete
input prior to query evaluation, and an effective buffer management
becomesthe key prerequisite to performance. In virtually all cur-
rent systems, the decisions regarding what to buffer and when to
delete from buffers are made at compile-time only, based on purely
static query analysis [4,10–12,14]. Among the proposals discussed
in previous works are the static projection of the input [2,3,12] and
the streaming evaluation of parts of the query with no or onlylittle
buffering [5, 10, 11, 18]. However, for many practical queries in-
volving blocking operators or descendant axes and wildcards, little
can be evaluated on the fly [1,10].

In [17], we show that acombination of static analysis and dy-
namic buffer minimization techniques further reduces mainmem-
ory consumption during XQuery evaluation. The concept ofactive
garbage collection forms the groundwork for the buffer manage-
ment in our streaming XQuery engine GCX. GCX exploits static
and dynamic analysis to actively purge main memory buffers based
on the progress in query evaluation. GCX is an open source project
and available online [8].

2. ACTIVE GARBAGE COLLECTION
Garbage collection [19] is a well-understood technique forauto-

matic memory management in programming languages. The basic
principle of any garbage collector is to determine which data ob-
jects in a program will not be accessed in the future, and conse-
quently, to reclaim the storage used by these objects. A simple yet
effective garbage collection strategy isreference counting where
every object counts the number of references to it. When a ref-
erence is created to an object, its reference count is incremented.
Likewise, the reference count is decremented when a reference is

removed. Once the count reaches zero, the object is deleted and its
memory is reclaimed. A major advantage of this approach is that
the memory overhead is small.

Active garbage collection for XQuery engines [17] is strongly re-
lated to reference counting, as each single node in the buffer keeps
track whether it is still relevant to the remaining XQuery evalu-
ation. Instead of counting references, we employ the concept of
roles which are assigned to nodes. Intuitively, a role serves as a
metaphor for the future relevance of a node. Roles are statically
derived from the query. While reading the input, the XML nodes
are matched against the set of roles. A node can be assigned sev-
eral roles when it is used in the query in several different contexts.
Moreover, a role can be assigned to a node multiple times when
queries involve the XPath descendant axis.

As an example, let us consider the XQuery below, which first
outputs all children of the bib node for which no price exists. It
then outputs all titles of books.

<r> {

for $bib in /bib return
(for $x in $bib/* return

if (not(exists $x/price)) then $x else (),
for $b in $bib/book return $b/title)

} </r>

Below we show the roles for this query and the paths addressing
the nodes to which they will be assigned. For instance, roler3 is
assigned to all nodes in the document selected by XPath expres-
sion /bib/∗. In order to verify the existence of a price node, we are
only interested in the first witness (hence the predicate[1] in iden-
tifying r4). These paths closely correspond to the notion ofprojec-
tion paths [2,3,12], and are evaluated accordingly: While the input
stream is read, only the XML nodes that are matched by a projec-
tion path are considered query-relevant and consequently put into
the buffer. While the input stream is being projected incrementally,
roles are assigned to the buffered nodes on-the-fly.

r1: /
r2: /bib
r3: /bib/∗

r4: /bib/ ∗ /price[1]
r5: /bib/ ∗ /descendant-or-self::node()
r6: /bib/book
r7: /bib/book/title/descendant-or-self::node()

Figure 1(a) shows the buffer contents for the input stream prefix
“〈bib〉〈book〉〈title/〉〈author/〉〈/book〉 . . . ”. Each node is assigned
roles, for instance, thebib node is assigned roler2. Nodebook is
matched by three projection paths, and is thus assigned three roles.
Only nodes that carry at least one role are copied into the buffer.

At compile-time, we determine the moments during query evalu-
ation when nodes lose roles. At thesepreemption points, the buffer
manager is notified that all nodes reachable from the currentvari-
able via a path lose a role. Once a node has lost all of its roles, it
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Figure 1: Active garbage collection.

can be discarded by the garbage collector, provided that none of its
descendants is assigned a role. We need a mechanism which sig-
nals the buffer manager that nodes are about to lose roles. Tothis
end,signOff -statements are inserted into queries at compile-time.
We assume a sequential semantics to XQuery evaluation. Thenthe
query from our running example is rewritten as follows.

<r> {
for $bib in /bib return
((for $x in $bib/* return

(if (not(exists $x/price)) then $x else (),
signOff($x,r3),
signOff($x/price[1],r4),
signOff($x/descendant-or-self::node(),r5))),

(for $b in $bib/book return
($b/title,

signOff($b,r6),
signOff($b/title/descendant-or-self::node(),r7)

)),
signOff($bib,r2)) }

</r>

If the rewritten query is evaluated on the input tree from Figure 1(a),
we first output the opening tag〈r〉. Subsequently, variable$x is
bound to thebook node, which then is written to the output to-
gether with its subtree. Next, thesignOff -statements are executed.
For instance, “signOff($x,r3)” causes the bufferedbook node to
lose roler3, because this is the node to which variable$x is cur-
rently bound to. This node further loses roler5. Likewise, thetitle
and theauthor nodes each lose one instance of roler5. Figure 1(b)
shows the effect of role removal on the buffer.

ThesignOff -statements also trigger the garbage collection. Fig-
ure 1(c) shows the buffer contents after purging all nodes that are
now irrelevant for the remaining query evaluation. The remaining
nodes are required for the evaluation of the for-loop binding vari-
able$b, once the evaluation of the current for-loop has finished.

3. THE GCX XQUERY ENGINE
We have implemented active garbage collection for a prototype

XQuery engine, called GCX. GCX supports the practical fragment
of composition-free XQuery [9] with single-step nested for-loops1,
conditions, and joins, but does not yet cover aggregation. The sys-
tem is implemented inC++ which, in contrast to garbage collected
languages, gives direct control over memory allocation anddeallo-
cation. This is crucial, as we want deletions put into effectimmedi-
ately, to keep the main memory consumption of our query proces-
sor low throughout query evaluation.

Static analysis. Given an XQuery expression, a set of projec-
tion paths is derived (see [17]). Each projection path defines a
role. When the input stream is read, each node that is matched
1A for-loop is single-step if it is of the form “for $x in $y/axis::ν
returnα” whereaxis is an XPath axis andν is an XPath node test.

by a projection path is copied into the buffer and assigned the cor-
responding roles. This can be done on-the-fly, with a lookahead
of just one token. To mark the moments in time when buffered
nodes are deleted during query evaluation, the preemption points
in query evaluation are defined andsignOff -statements are inserted
into the query. The key to efficiency is to issuesignOff -statements
as early as possible so that the size of the main memory bufferre-
mains small. At the same time, these commands must not be issued
too early, as this could corrupt the query result.

In our demo, we will visualize the mapping between query ex-
pressions, paths, and roles, as shown in Figure 3(a). When a role
in the role browser is selected, the corresponding line in the input
query and the preemption points in the execution plan are high-
lighted. This allows the audience to interactively explorethe con-
nections between roles, paths, andsignOff -statements.

Figure 2: The GCX Runtime Architecture.

The runtime engine. The architecture of GCX comprises the
query evaluator, thestream preprojector, and thebuffer manager,
as sketched in Figure 2. The interaction between the components
is pull-based. The query evaluator sequentially evaluates the query
expressions until it has toblock either because a new node is re-
quired (e.g., when a variable is bound to the next node in its for-
loop) or a signOff -statement is encountered. In consequence, a
request is issued to the buffer manager, and query evaluation re-
mains blocked until the buffer manager has responded. The buffer
manager answers to the query evaluator. If data is required that
is not resident in the buffer, the buffer manager sendsnextNode()-
requests to the stream preprojector until the data is available in the
buffer or it has become evident that the data does not exist inthe
input (e.g., as the input has been exhausted). The receptionof sig-
nOff -statements triggers garbage collection. The stream preprojec-
tor reads the input until a token is matched by a projection path.
The token is copied directly into the buffer, and roles are assigned.
Via this chain of commands, GCX evaluates the query on-the-fly
while processing the input stream.

Dynamic buffer management. At runtime,signOff-statements
cause buffered nodes to lose roles. Eventually, the buffered nodes
can be purged from the buffer. In our demonstration, we visual-
ize the dynamic buffer behavior as shown in Figures 3(b) and (c).
Consider the query from the introduction. We show the buffercon-
sumption for different inputs. Each input document contains abib
root node with ten children of the form

〈t〉〈author〉〈/author〉〈title〉〈/title〉〈price〉〈/price〉〈/t〉

where t is either tagbook or article, a total of 82 tags forming
41 document nodes. For each new token read from the input (x-
axis), we plot the number of buffered nodes after the token has
been processed (y-axis). Figure 3(b) plots the buffer consumption
for documents consisting of ninearticle nodes and onebook node
(in this order). Resuming the discussion from the introduction, ar-
ticle nodes and their descendants are assigned rolesr4 andr5, and
receivesignOff-commands immediately after the article has been
processed in the firstfor-loop. Thus, articles are processed one at



(a) Visualization of input query, the set of roles, and the preemption points for garbage
collection computed by static query analysis
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(b) 9×article + 1×book
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(c) 9×book + 1×article

Figure 3: Exploration of Static Analysis and Dynamic Buffer Management.

a time and memory consumption is bounded. The document for
Figure 3(c) starts with9 book nodes. For these nodes, thetitle
child with role r7 must be kept, whileprice and author children
are removed when receiving the signOff-commands from the first
for-loop. Although nodes that have become irrelevant are removed
timely, buffer consumption increases. When the closing tagof the
bib-node is read,23 nodes are buffered in total.

Figure 4 plots the buffer for two XMark queries [20] on a 10MB
document generated with the XMark data generator. As the frag-
ment supported by GCX does not cover the full XQuery standard,
queries were adapted accordingly. The rewritten queries can be
found at the GCX download page [8]. Note that they-axes in Fig-
ure 4 scale differently.
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(a) Query Q6 (b) Query Q8

Figure 4: Buffer Plots for Queries on 10MB XMark Document.

The XMark DTD divides the document into six larger sections,
namelyregions, categories, catgraph, people, open auctions, and
closed auctions. Query Q6 requiresitem tags beneathregions,
which are located at the beginning of the document. GCX pro-
cesses items one at a time and maintains a low main memory con-
sumption of less than100 buffered nodes. Once theregions sec-
tion has been processed, the buffer becomes almost empty. Incon-
trast, queryQ8 performs a value-based join between persons (in
thepeople section) and closed auctions. In the first three sections,
no relevant tokens are encountered. In thepeople section, the first

partition of join partners is loaded into the buffer (the first diago-
nal), followed by a phase where no relevant tokens are matched (the
plane). The join partners are found in theclosed auction section.

In the buffer plots, both types of queries show a characteristic
buffer footprint. Query Q6 can be evaluated in streaming fashion
with low memory consumption, while the join query Q8 is inher-
ently blocking, and has a main memory consumption that is linear
in the size of the input.

Performance results. We present excerpts from our experi-
ments [8,17] with our C++ prototype, using queries and data from
the XMark benchmark [20]. The queries were adapted as described
at [8], to match the XQuery fragment supported by GCX. Our exe-
cution platform is a 3GHz CPU Intel Pentium IV with 2GB RAM,
running with SuSe Linux 10.0. The Java-based systems were exe-
cuted using J2RE v1.4.2.

GCX is an in-memory XQuery engine geared towards streaming
query evaluation. We chose the following reference systems.

• The FluXQuery engine (in Java) [6,10] is the most natural choice
for a reference implementation which was available to us. FluX-
Query is also a main-memory XQuery engine geared towards
XML stream processing, and it implements a similar XQuery
fragment. FluXQuery can exploit schema information, and was
provided the XMark DTD in our experiments.

• The in-memory query engines Galax [7] (OCaml), QizX/open
v1.1 [15] (Java), and Saxon v8.7.1 [16] (Java) implement full
XQuery. While Galax has not been designed with XML stream
processing in mind, it is often consulted in XQuery benchmarks
and – for this reason – also included here.

Unfortunately, there are only few implementations of streaming
XQuery engines publicly available. This makes it difficult to set up
extensive comparative experiments. Acting from this necessity, we
further considered experiments with MonetDB [13] v4.12.0 with
XQuery v0.12.0, a mature XML database system. As a secondary-
storage implementation, MonetDB uses index structures to speed up
query evaluation, which is not done by the GCX engine. On the



Query GCX FluXQuery Galax MonetDB Saxon QizX

10MB 0.18s / 1.2MB 1.59s / 50MB 5.45s / 186MB 0.86s / 30MB 1.48s / 80MB 1.20s / 38MB
XMark 50MB 0.92s / 1.2MB 3.96s / 111MB 42.33s / 880MB 3.69s / 98MB 4.29s / 292MB 3.74s / 195MB

Q1 100MB 1.87s / 1.2MB 6.94s / 111MB 02:07 / 1,8GB 7.19s / 225MB 7.96s / 547MB 6.56s / 285MB
200MB 3.53s / 1.2MB 12.27s / 111MB timeout 13.60s / 244MB 14.30s / 973MB 11.82s / 480MB

10MB 0.34s / 1.2MB n/a 7.66s / 240MB 0.98s / 29MB 1.73s / 82MB 1.56s / 33MB
XMark 50MB 1.68s / 1.2MB n/a 57.98s / 1.2GB 5.06s / 111MB 5.78s / 292MB 6.13s / 169MB

Q6 100MB 3.33s / 1.2MB n/a 5:08 / 2GB 9.94s / 253MB 10.85s / 622MB 11.74s / 484MB
200MB 6.42s / 1.2MB n/a timeout 19.95s / 337MB 20.14s / 1.2GB 20.33s / 805MB

10MB 13.15s / 9.8MB 18.04s / 128MB 01:04 / 377MB 02:56 / 407MB 6.61s / 145MB 9.89s /148MB
XMark 50MB 05:13 / 43MB 06:51 / 169MB 33:08 / 1.8GB 03:26 / 1.35GB 02:02 / 352MB 03:38 /265MB

Q8 100MB 22:07 / 86MB 27:01 / 216MB timeout - 08:39 / 650MB 14:27 / 397MB
200MB timeout timeout timeout - 32:43 / 1.15GB 52:05 / 636MB

10MB 0.17s / 1.2MB 1.60s / 52MB 5.92s / 182MB 0.80s / 31MB 1.53s / 48MB 1.26s / 28MB
XMark 50MB 0.85s / 1.2MB 3.98s / 111MB 43.91s / 899MB 3.64s / 98MB 4.45s / 292MB 3.85s / 195MB

Q13 100MB 1.69s / 1.2MB 7.00s / 111MB 02:04 / 1.8GB 7.34s / 224MB 8.35s / 547MB 6.81s / 285MB
200MB 3.24s / 1.2MB 12.33s / 111MB timeout 13.52s / 271MB 15.02s / 1.05GB 12.30s /480MB

10MB 0.25s / 1.2MB 1.65s / 48MB 6.95s / 215MB 0.85s / 34MB 1.65s / 62MB 1.43s / 39MB
XMark 50MB 1.24s / 1.2MB 4.19s / 111MB 53.08s / 1,5GB 4.17s / 120MB 4.90s / 292MB 4.18s /195MB

Q20 100MB 2.48s / 1.2MB 7.37s / 111MB 03:14 / 2GB 8.47s / 247MB 9.13s / 622MB 8.71s / 350MB
200MB 4.74s / 1.2MB 13.14s / 111MB timeout 16.40s / 296MB 16.58s / 1.15GB 15.80s /628MB

Figure 5: GCX Benchmark Results.

other side, MonetDB XQuery stores the entire data physically be-
fore query evaluation. To account for the fact that GCX and the
other main memory engines read the complete input document for
each query evaluation, we forced the MonetDB server to reload the
complete document in each run.

Figure 5 shows the behavior of GCX and the other systems in
comparison to the reference implementations for several XMark
queries. We measure the high watermark of non-swapped mem-
ory consumption and the query evaluation time in seconds. With
the Java-based engines, we observe that due to automatic memory
management and the Java Virtual Machine, memory consumption
often increases with the document size even though the amount of
data buffered remained constant (e.g. for FluXQuery). Query Q6
contains descendant axis XPath expressions which is not supported
by FluXQuery (denoted by “n/a”). Failures are denoted by “-”.

It is remarkable that GCX evaluates all queries on inputs of up
to 200MB, except forQ8, which computes an XQuery join and re-
quires a certain amount of buffering, with only1.2MB main mem-
ory consumption. In summary, the experiments confirm that our
buffer management approach via active garbage collection performs
well both w.r.t. main memory consumption and execution time. For
a large class of queries, our prototype even outperforms query en-
gines which exploit schema information [10].

4. THE GCX PROJECT ONLINE
GCX is a C++ project. The first version of GCX was released

in January 2007 and is freely available as open source under the
Berkeley Software Distribution license, to facilitate related research
in this area. For current information on the GCX project, see
http://www.infosys.uni-sb.de/projects/streams/gcx/.
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