Stop the Chase: Short Contribution

Michael Meier, Michael Schmidt and Georg Lausen

University of Freiburg, Institute for Computer Science
Georges-Kodhler-Allee, 79110 Freiburg, Germany
{nmei erm nschmi dt, | ausen}@ nf ormati k. uni -frei burg. de

Abstract. The chase procedure, an algorithm proposed 25+ years agoctui
straint violations in database instances, has been stigttgs®plied in a variety
of contexts, such as query optimization and data exchatgyerdcticability, how-
ever, is limited by the fact that — for an arbitrary set of dosisits — it might not
terminate; even worse, chase termination is an undecigabldem in general. In
response, the database community has proposed suffic&rittiens on top of
the constraints that guarantee chase termination on aapals instance. In this
paper, we propose a sufficient termination condition, dateuctive restriction
which strictly generalizes previous conditions, but carchecked as efficiently.

1 Introduction

The chase procedure is a fundamental algorithm that has saemessfully applied
in a variety of database applications [7, 10,5, 9, 11, 15,23]L Originally proposed to
tackle the implication problem for data dependencies [@fs] to optimize Conjunctive
Queries (CQs) under data dependencies [3, 10], it has bezoemral tool in Semantic
Query Optimization (SQO) [14, 1, 16]. For instance, the ehzan be used to enumer-
ate minimal CQs under a set of dependencies [1], thus supgdhe search for more
efficient query evaluation plans. Beyond SQO, it has beefieapjm many other con-
texts, such as data exchange [15], peer data exchange {2]intiegration [11], query
answering using views [9], and probabilistic databasek [13

The core idea of the chase algorithm is simple: given a se¢péddencies (also called
constraints) over a database schema and an instance asitifipes constraint viola-
tions in the instance. One problem with the chase, howev#nait — given an arbitrary
set of constraints — it might never terminate; even worse gftoblem is undecidable in
general, also for a fixed instance [4]. Addressing this issufficient conditions for the
constraints that guarantee termination on any databasaaehave been proposed [15,
4,16]. Such conditions are the central topic in this paperimfoduce the class drf-
ductively restricted constraintfor which the chase terminates in polynomial time data
complexity. Like existent sufficient termination condit& inductive restriction asserts
that there are no positions in the schema where fresh labelésimight be cyclically
created during chase application. It relies on a sophtsticatudy of (a) positions in
the database schema where null values might appear, (tsudfghe constraints that
cyclically pass null values, and (c) connections betweeh sycles. The combination

* The work of this author was funded by DFG grant GRK 806/3.

of these aspects makes inductive restriction more gerfeaal previous sufficient ter-
mination conditions, thus making a larger class of constssamenable to the chase.
Structure. We start with some preliminaries in the following sectiorcton 3 in-
troduces inductive restriction, our sufficient data-inglegent termination condition.
Finally, Section 4 concludes the paper.

Remark. An extended version of this paper including full proofs carfdund in [12].

2 Preliminaries

General mathematical notation.Forn € N, we denote byn| the se{1, ...,n}. Fora
setM, we denote b its powerset.

DatabasesWe fix three pairwise disjoint infinite sets: the setaoinstants4, the set

of labeled nullsA,,,,;;, and the set ofariablesV . A database schenm®& is a finite set

of relational symbol§ Ry, ..., R,,}. In the rest of the paper, we assume the database
schema and the set of constants and labeled nulls to be fixddtabase instancé

is a finite set ofR-atoms that contains only elements frafru A,,,;; in its positions.
We denote an element of an instancdas The domain ofl, dom(I), is the set of
elements fromA U A,,.,;; that appear id.

We use the ternpositionto denote a position in a predicate, e.g. a three-ary preglica
R has three position®!, R?, R3. We say that a variable, labeled null, or constant
appears e.g. in a positidR! if there exists a facR(c, ...).

Constraints. Let 7, be tuples of variables. We consider two types of database con
straints:tuple generating dependenci€BGDs) andequality generating dependencies
(EGDs). A TGD has the fornw := VZ(¢(Z) — Jyu(T,7)) such that bothp and
are conjunctions of atomic and equality-frReatoms, possibly with parameters from
A and all variables fror that occur iny must also occur i. We denote byos(a)

the set of positions i. An EGD has the formy := VZ(¢(T) — z; = z;), where
x;, x; occur ing and¢ is a non-empty conjunction of equality-fré&atoms, possibly
with parameters fromA. We denote bypos(a) the set of positions ig. As a nota-
tional convenience, we will often omit theequantifier and respective list of universally
quantified variables. For a set of TGDs and EGDsve setpos(X) := ;¢ 5 pos(§).
Chase.We assume that the reader is familiar with the chase proeegha give only

a short introduction here, referring the interested reaoldi5] for a more detailed

discussion. A chase stdp™ J takes a relational database instadcguch that! ¥
a(a@) and adds tuples (in case of TGDs) or collapses some elemermase of EGDS)
such that the resulting relational databdss a model ofx(a). If J was obtained from
I in that kind, we sometimes also wrifeg & C,, instead ofJ. A chase sequence is an

Q0,00 a1,a1

exhaustive application of applicable constraifts— I; —— ..., where we impose

no strict order on what constraint to apply in case sevenasitaints are applicable. If
this sequence is finite, sdy being its final element, the chase terminates and its result
I3’ is defined ad,.. The length of this chase sequence.idlote that different orders of
application orders may lead to a different chase result.éd@w as proven in [15], two
different chase orders always lead to homomorphicallyedeint results, if these exist.
Therefore, we writd * for the result of the chase on an instadaender constraints’.

It has been shown in [7,5, 10] that’ |= X. If a chase step cannot be performed (e.g.,

because application of an EGD would have to equate two catstar in case of an
infinite chase sequence, the result of the chase is undefined.

3 Data-independent Chase Termination

In the past, sufficient conditions for constraint sets haaenbdeveloped that guarantee
chase termination for any instance. One such conditiaveisk acyclicity{15], which
asserts that there are no cyclically connected positiotisiconstraint set that may in-
troduce fresh labeled null values, by a global study of retestbetween the constraints.
In [4], weak acyclicity was generalized stratification which enforces weak acyclic-
ity only locally, for subsets of constraints that might dgally cause to fire each other.
We further generalized stratification $afe restrictionin [16]. We start by reviewing
its central ideas and formal definition, which form the bdeisour novel condition
inductive restriction

Safe Restriction.The idea of safe restriction is to keep track of positions netieesh
null values might be created in or copied to. As a basic toelbarrow the definition
of affected positionfrom [6]. We emphasize that, in [6], this definition has beerdi
in a different context: there, the constraints are integates axioms that are used to
derive new facts from the database and the problem is quereaing on the implied
database, using the chase as a central tool.

Definition 1. [6] Let X be a set of TGDs. The setaffected positionaff(Y') is defined
inductively as follows. Letr be a position in the head of ane X.

¢ If an existentially quantified variable appearsidnthens € aff(X).

¢ If the same universally quantified variable appears both in position, and only
in affected positions in the body of, thenr € aff(X). O

Akin to the dependency graph in weak acyclicity [15], we definsafety condition

that asserts the absence of cycles through constraintsthaintroduce fresh null val-

ues. As an improvement, we exhibit the observation that walyes created due to or
copied from affected positions may cause non-terminatWdmintroduce the notion of

propagation graphwhich refines the dependency graph from [15] by taking &dfeéc

positions into consideration.

Definition 2. Let X' be a set of TGDs. We define a directed graph cgbegbagation
graph prop(X) := (aff(X), E) as follows. There are two kinds of edgesih Add
them as follows: for every TGDZ(4(Z) — Iy3(Z,7)) € X and for everyr in T that
occurs im) and every occurrence afin ¢ in positionm;

e if = occurs only in affected positions inthen, for every occurrence afin ¢ in
positionms, add an edge; — - (if it does not already exist).

o if z occurs only in affected positions i then, for every existentially quantified
variabley and for every occurrence gfin a positionr,, add a special edgg =
(if it does not already exist). O

Definition 3. A set X of constraints is calledafeiff prop(X) has no cycles going
through a special edge. O

Safety is a sufficient termination condition which strictjgneralizes weak acyclicity
and is different from stratification [16]. The idea behinfesastriction now is to assert
safety locally, for subsets of the constraints that mayicglty cause each other to fire
in such a way that null values are passed in these cycles.

Definition 4. Let X abe given and® C pos(X). Foralle, 8 € X, we definen <p 3
iff there are tupleg, b and a database instantes.t. (i) I ¥ «(a), (i) I E B(b), (iii)

1497, (iv) J ¥ B(b), (v) I contains null values only in positions frofand (vi) there

is a null valuen € b N A,y in the head of3(b). O

Informally, « <p (holds if & might cause3 to fire s.t., when null values occur only
in positions from P copies some null values. We next introduce a notion for &dfic
positions relative to a constraint and a set of positions.

Definition 5. For any set of position® and a TGDa« let aff-cl(a, P) be the set of
positionsr from the head o such that
o for every universally quantified variablein 7: « occurs in the body ofr only in
positions fromP or
e 7 contains an existentially quantified variable. O

On top of previous definitions we introduce the central tdakstriction systems

Definition 6. A restriction systenis a pair(G’(Y), f), whereG'(X) := (¥, E) is a
directed graph and : X — 2r°s(¥) js a function such that

e forall TGDs« and forall(a, 8) € E: aff-cl(«, f(«)) Npos({B}) C f(B),

e forall EGDsa and forall(«, 8) € E: f(a) Npos({B}) C f(B), and

o foralla,f € Yo <5 8 = (o, B) € E.
A restriction system isninimalif it is obtained from (X, 0),{(«,0) | « € X}) by a
repeated application of the constraints from bullets onthtee (until all constraints
hold) s.t., in case of the first and second bullet, the imagg6j is extended only by
those positions that are required to satisfy the condition. O

Example 1.Let predicate Ef,y) store graph edges and predicate)3tore some nodes.
The constraintsy = {a;,as} with oy := S(), E(x,y) — E(y,x) andas := S(x),
E(z,y) — 3z E(y,2), E(z,x) assert that all nodes in S have a cycle of lengdmd2.
It holds that aff>) = {E!,E?} and it is easy to verify thak is neither safe nor strati-
fied (see Def. 2 in [4]). The minimal restriction system s G'(X):=(X {(a2,1)})
with f(a1) := {E',E*} and f(x2) = 0; in particular,ar £f,) o1, a1 Afay) @2,
Qa9 '<f(a2) aq, andaz ﬁf(QQ) Qa9 hold. O

As shown in [16], the minimal restriction system is uniquel @an be computed by
an NP-algorithm. We are ready to define the notion of safeicésn:

Definition 7. X is calledsafely restrictedf and only if every strongly connected com-
ponent of its minimal restriction system is safe. O

Example 2.Constraint set’ from Example 1 is safely restricted: its minimal restriatio
system contains no strongly connected components. O

part(X: Set of TDGs and EGDs))

1. compute the strongly connected components (as sets sfraons)Ci, . .., Cy,
of the minimal restriction system adf;

2. D0
3: if (n==1) then
4: if (C1 # X) then returnpart(C,); endif
7: return{X'};
8: endif
6: for i=1ton do D «— D U part(C;); endfor
11: returnD; }

Fig. 1. Algorithm to compute subsets of.

As shown in [16], safe restriction (a) guarantees chaseitation in polynomial time
data complexity, (b) is strictly more general than stradifien, and (c) it can be checked
by acoNP-algorithm if a set of constraints is safely restricted.

Inductive Restriction. We now introduce the novel classiofuctively restricted con-
straints which generalizes safe restriction but, like the lattéreg polynomial-time
termination guarantees. We start with a motivating example

Example 3.We extend the constraints from Example Btb:= YU{a3}, whereas :=
3z,yS(x), E(z,y). Then G'"):=(2" {(a1, az),(az,a1),(as,01),(a3,02) }) with (1)

= f(a) = {EL,E2,S'} and f(s) := 0 is the minimal restriction system. It contains the
strongly connected componefitr;,«2}, which is not safe. Consequentl’ is not
safely restricted. O

Intuitively, safe restriction does not apply in the examal®ve becauses “infects”
position S in the restriction system. Though, null values cannot beaggly created in
S': a3 fires at most once, so it does not affect chase terminationn@uel termination
condition recognizes such situations by recursively caingtthe minimal restriction
systems of the strongly connected components. We formtdigecomputation in Al-
gorithm 1, calledpart(y). Based on this algorithm, we define an improved sufficient
termination condition.

Definition 8. Let X' be a set of constraints. We call inductively restrictedff for all
X' € part(Y) it holds thaty” is safe. O

As stated in the following lemma, inductive restrictionctty generalizes safe restric-
tion, but does not increase the complexity of the recogmipimblem.

Lemma 1. Let X' be a set of constraints.
o If X is safely restricted, then it is inductively restricted.
e There is somé’ that is inductively restricted, but not safely restricted.
e The recognition problem for inductive restriction isGoNP. O

Example 4.ConsiderX’ from Example 3. It is easy to verify thatrt(X’) = () and
we conclude that” is inductively restricted. As argued in ExampleX3,is not safely
restricted, which proves the second claim in Lemma 1. O

The next theorem gives the main result of this section, shgttiat inductive restriction
guarantees chase termination in polynomial time data cexitgl To the best of our
knowledge inductive restriction is the most general sudfittermination condition for
the chase that has been proposed so far.

Theorem 1. Let X' be a fixed set of inductively restricted constraints. Thieerée exists
a polynomiaky € N[X] such that for any database instad¢céhe length of every chase
sequence is bounded BY(||I]|), where||I|| is the number of distinct valuesih [

4 Conclusions

We considered the termination of the chase algorithm. Asneain contribution, we
generalized all sufficient data-independent terminatmmditions that were known so
far. Our results on chase termination directly carry ovaagpplications that rely on the
chase and also to the so-called core-chase presented Fhte are some interesting
open questions left. First, it is unknown if the recognitjgmoblem for inductive re-
striction, which was shown to be iDONP, is also coNP-hard. Second, it is left open
if the positive results on core computation in data exchaegtings from [8] extend to
inductive restriction.

References

1. A. Deutsch et al. Query Reformulation with ConstrainBiGMOD Record35(1):65-73,
2006.
2. A. Fuxman et al. Peer data exchan§g€M Trans. Database Sys81(4):1454-1498, 2006.
3. A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient Optimizatimf a Class of Relational
ExpressionsACM Trans. Database Sys#(4):435-454, 1979.
4. Alin Deutsch et al. The Chase Revisited. A®DS pages 149-158, 2008.
5. C. Beeri and M. Y. Vardi. A Proof Procedure for Data Depemiles. J. ACM 31(4):718-
741, 1984,
6. A. Cali, G. Gottlob, and M. Kifer. Taming the Infinite CleaQuery Answering under Ex-
pressive Relational Constraints. Descr. Logicsvolume 353, 2008.
7. D. Maier et al. Testing Implications of Data DependenciEsSIGMOD, pages 152-152,
1979.
8. G. Gottlob and A. Nash. Efficient Core Computation in Dakatange. J. ACM 55(2),
2008.
9. A.Y. Halevy. Answering Queries Using Views: A SurvéL DB J, pages 270-294, 2001.
10. D. S. Johnson and A. Klug. Testing Containment of Cortjuacueries under Functional
and Inclusion Dependencies. RODS pages 164-169, 1982.
11. M. Lenzerini. Data Integration: A Theoretical Perspextin PODS pages 233-246, 2002.
12. M. Meier, M. Schmidt, and G. Lausen. Stop the Chase, TeahiReport. CoRR
abs/0901.3984, 2009.
13. D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs. Eagam@Plans for Tuple-
Independent Probabilistic DatabasesI@DE, 2009. To appear.
14. L. Popaand V. Tannen. An Equational Chase for Path-@atijie Queries, Constraints, and
Views. InICDT, pages 39-57, 1999.
15. R. Fagin et al. Data Exchange: Semantics and Query Amsyveiheor. Comput. Sgi.
336(1):89-124, 2005.
16. M. Schmidt, M. Meier, and G. Lausen. Foundations of SPAR@ery Optimization, Tech-
nical Report.CoRR abs/0812.3788, 2008.

