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ABSTRACT

Both semantic and type-based query optimization rely on
the idea that queries often exhibit non-trivial rewritings if
the state space of the database is restricted. Despite their
close connection, these two problems to date have always
been studied separately. We present a unifying, logic-based
framework for query optimization in the presence of data
dependencies and type information. It builds upon the clas-
sical chase algorithm and extends existing query minimiza-
tion techniques to considerably larger classes of queries and
dependencies. In particular, our setting requires chasing
conjunctive queries (possibly with union and negation) in
the presence of dependencies containing negation and dis-
junction. We study the applicability of the chase in this
setting, develop novel conditions that guarantee its termi-
nation, identify fragments for which minimal query compu-
tation is always possible (w.r.t. a generic cost function), and
investigate the complexity of related decision problems.

Categories and Subject Descriptors: H.2.4 [Database
Management|: Systems - relational databases, query pro-
cessing

General Terms: Algorithms, theory

Keywords: Query optimization, types, constraints, chase

1. INTRODUCTION

Typing is a central component of many practical database
systems, including (but not limited to) relational databases,
object-oriented database models [25, 35], typed datalog [42],
and semi-structured data [33]. In response, to date a rich
theory of type-based optimization has been developed [38,
19, 29, 28, 21, 23, 4]. These optimization approaches often
use type inference algorithms and have a background in the
world of programming languages (cf. [12]).

From a logical point of view, types restrict the state space
of the database and therefore can be understood as con-
straints that each valid database instance must satisfy. In
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this regard, type-based query optimization is quite similar
to semantic query optimization (SQO), where general con-
straints that are known to hold on the database instance
(also called data dependencies) are used to find equivalent
query rewritings, with the goal to obtain more efficient eval-
uation plans [24, 9, 37, 1, 39]. Beyond query optimization,
constraint-based rewriting has been successfully applied in
many other database areas, such as query rewriting using
views [22], data exchange [17], peer data exchange [20], data
integration [27], and probabilistic databases [34].

Due to their close connection, it is natural to integrate
both typing knowledge and integrity constraints, such as tu-
ple generating dependencies (TGDs) and equality generating
dependencies (EaDs) [16, 3], into a single logical framework
[5, 18]. In such a framework, one can fall back on established
techniques, such as the classical chase algorithm [11, 24, 3],
to deploy a uniform optimization process. To this aim, sev-
eral authors have studied encoding the typing knowledge,
mainly with the following two formalisms: Datalog (and ex-
tensions) [10, 15] and Description Logics (DL) [7, 8]. How-
ever, the lack of value creation (which can be captured by
TaDs) in Datalog prevents it from being a suitable candidate
for modeling integrity constraints. Although some DLs can
capture TGDs, they are unable to express EGDs. There have
also been attempts to integrate EGDs in DLs [41] but very
strong syntactic restrictions are required to obtain decid-
ability of reasoning. Recently, Cali et al. [6] have proposed
Datalog®, to extend plain Datalog with guarded Tabs and
stratified negation. Yet, Datalog® can not express disjunc-
tive rules. In order to express typing knowledge, integrity
constraints containing negation and disjunction are required.
To the best of our knowledge, a framework targeted at query
optimization has not been investigated before.

As a motivating example, let us consider query optimiza-
tion in the context of an employee database, where the fol-
lowing typed relations are given (types are prefixed with @):

Person(id : @employee, gender : @gender)
UpperFloor(id : @ceo, room : @int)
MiddleFloor(id : @manager, room : @int)
LowerFloor(id : @associate, room : @int)
Further assume that, in the style of an object-oriented
database, the following type hierarchy is given.

@employee
/ \

@executive @associate

/N

@ceo  @manager



For short, @ezecutive and @associate are subtypes of @em-
ployee, and @executive splits up into @ceo and @manager.
Further assume that (i) @associate, @ezecutive partition
@employee, and (ii) @ceo, @manager partition @executive.

We represent types as unary relations over the domain of
the database, identified by a leading “@” symbol, e.g. write
@employee(z) to denote that x is of type @employee. Sup-
pose that, in coexistence with the restrictions imposed by
the type system itself, the two constraints

a1 = Person(z,y), @ceo(x) — Iz UpperFloor(x, z),

ag := Person(z,y), @manager(x) — Iz MiddleFloor(x, z)
are given, enforcing that all CEOs are sitting in the upper
floor and all managers are sitting in the middle floor. Having
described the setting, we now turn towards query optimiza-
tion. Consider the following two conjunctive queries

q1 : ans(z) «— Person(x,y), UpperFloor(z, z),
g2 : ans(x) «— Person(x,y), MiddleFloor(z, z)

and assume that we are interested in computing the union
Qiv2 := q1 V q2, i.e. all persons sitting in the middle and
upper floor. It is easy to see that, when given only the
data dependencies a1,z or only the type information as
input, Q1v2 is minimal w.r.t. to the number of atoms and
unions in the query. Yet, when combining both typing and
constraint knowledge, we can derive that Q1v2 is equivalent
(on each database instance satisfying the constraints and
type restrictions) to the simpler query

qiva : ans(z) < Person(z,y), Qezecutive(z).

To see why, consider ¢1 and first observe that @ceo(x)
must hold, due to the type restriction in the first position of
relation UpperFloor; hence, we can add the literal @ceo(x)
to the body of ¢1. But then «; implies that there is an entry
in relation UpperFloor that contains x in its first position,
so q1 is equivalent to ¢| : ans(z) «— Person(z,y), @ceo(x).
With similar argumentation, we obtain that g2 is equivalent
to g5 : ans(z) < Person(z,y), @manager(z). Given these
two rewritings and the type constraint that Qezecutive is
exactly the union of @ceo and @manager, we conclude that
Q1v2 is equivalent to ¢iyo above. Another possible rewriting
for Q1v2 is the conjunctive query with (safe) negation

qive : ans(z) «— Person(z,y), ~@associate(z),

because @Qezecutive and @associate partition @employee.

The previous example does not only show that queries
may exhibit non-trivial rewritings in the presence of con-
straints and types, but also demonstrates that a framework
that exploits data dependencies and type information at the
same time may give us better optimization results than a
sequential, isolated application of these information.

We implement our combined optimization approach in
a logic-based framework, where we encode both the data
dependencies and the type restrictions in first-order logic.
To give an example, for our type hierarchy from before we

use constraints like 31 := @ezecutive(x) — @employee(x)
to fix the subtype relations, and may use the constraint
B2 = @ezxecutive(x) N\ @Qassociate(x) — —@associate(z) to

enforce that @associate and @executive are disjoint. Follow-
ing the de-facto standard approach, we then use the classical
chase algorithm for the optimization process. In particu-
lar, we use a variation of the Chase & Backchase algorithm
(C&B) [1], an extension of the chase developed to enumerate
minimal queries in the presence of constraints.

While straightforward by idea, our approach brings along
many new technical challenges, mainly due to the fact that

the encoding of non-trivial type systems involves constraints
containing disjunction and negation (cf. constraint 32 above).
Previous work on semantic query optimization, though, has
mainly focused on tuple-generating and equality-generating
dependencies, which contain neither negation nor disjunc-
tion. Here, we consider TGDs with disjunction and nega-
tion (denoted as TGD"" ") and EGDs containing disjunction
(EgDY). While the chase algorithm can easily be extended
to these constraint classes (cf. [13]), to date only few is
known about its properties in that setting. Such proper-
ties are the central topic in this paper. In the following, we
sketch the major contributions of our work in more detail.

Contributions. (1) We develop a framework that inte-
grates type-based optimization into the semantic optimiza-
tion process. In this framework, data dependencies (mod-
eled as first-order sentences) coexist with a so-called type
system, which is represented as (i) a set 7 of unary pred-
icate symbols, one for each type, (ii) a type interpretation
for constants, and (iii) a set of full constraints (i.e., con-
straints without existential quantification) modeling inter-
relations between types, such as inclusion or disjointness
constraints. We are not aware of (database-related) type
interrelations that cannot be encoded using this framework.

(2) On top of our framework, we present an algorithm
that, in the style of the C&B algorithm from [1], can be
used to optimize and minimize unions of conjunctive queries
with negation w.r.t. a constraint base, a type system, and
a generic cost function. Whether this framework gives us
the power to compute minimal rewritings of an input query
lastly depends on the termination of the underlying chase,
just like in the context of standard T'GDs and EGDs. As two
central results, we show that, given a conjunctive query Q
with union and safe negation, a constraint base X, a type
system S, and a generic cost function c¢ as input, query min-
imization under ¥ and S is possible whenever (i) ¥ contains
full TepY"™ and EGDY constraints only or (ii) X contains
TcepY'™ and EGDY constraints, negation in the query and
constraints is restricted, and we can guarantee termination
of the chase of @ with 3. Although stated for our specific
optimization framework, these results can be understood as
consequent enhancements of previous results on containment
testing and minimization under dependencies. The second
result also improves previous results on containment testing
in the context of negation from [13], which — as we will show
in Section 4.1 — is essentially restricted to full TGDs.

(3) In response to the central role of chase termination
in our setting, we develop novel chase termination condi-
tions for constraint sets involving disjunction and negation.
Rather than developing these termination conditions from
scratch, our approach is to carry over existing sufficient ter-
mination conditions for standard TGDs and EGDs, i.e. we
show how to make existing conditions applicable in the con-
text of constraint sets involving disjunction and negation.

(4) Previous work on chase termination has focused on
asserting termination for all chase sequences. We relax this
restriction and identify situations where we can guarantee
the existence of at least one terminating chase sequence.
As we can statically derive this terminating sequence, these
termination guarantees allow us to compute the chase result
and therefore are of immediate practical relevance.

(5) We study the complexity of decision problems related
to our type-based semantic optimization scheme. Our re-
sults confirm that — whenever we can guarantee chase ter-



mination — important problems like query equivalence or
minimality testing under constraints and types w.r.t. a cost
function fall into low levels of the polynomial hierarchy [40].
Referring to the experimental evaluation of the related C&B
algorithm [36], we shall expect that our techniques are fea-
sible in practice, in particular if the query is small and the
number of constraints and type information is limited.
Structure. The remainder of the paper is structured as
follows. We start with the preliminaries in the following sub-
section. In Section 3 we introduce our first-order logic based
framework to semantic query optimization in the presence of
types, before presenting central results in Section 4. Next,
we investigate the complexity of related decision problems
in Section 5. We then turn towards an investigation of chase
termination in the presence of disjunction and negation in
Section 6 and conclude with final remarks in Section 7.

2. PRELIMINARIES

General mathematical notation. The natural num-
bers N do not include 0. For n € N, we denote by [n] the set
{1,...,n}. For a set M, we denote by |M| its cardinality.

Databases. We fix three pairwise disjoint, infinite sets:
the set of constants A, the set of labeled nulls Anui, and
the set of wvariables V. Often we will denote a sequence
of variables, constants or labeled nulls by @ if the length
of this sequence is understood from the context. A database
schema R is a finite set of relational symbols. To every rela-
tional symbol R € R we assign a natural number ar(R) > 1
called its arity. A database position is a pair (R,:) where
R € R and i € [ar(R)], for short we write R'. Additionally,
we have a set 7 of unary relational symbols that represent
types for our schema. In the rest of the paper, we assume the
database schema, the type symbols and the set of constants
and labeled nulls to be fixed. A database instance I is a set
of R-atoms that contains only elements from AUA,,,;; in its
positions. The domain of I, dom([I), is the set of elements
from A U A, appearing in [.

Homomorphisms. As usual, a homomorphism from a
set of literals A; to a set of literals A; is a mapping p :
AUV — AUA,uu such that the following conditions hold:
(i) if ¢ € A, then u(c) = ¢, (ii) if R(c1,...,cn) € A1, then
R(p(c1), ..., plen)) € Az, and (iii) if —=R(c1,...,cn) € A,
then —R(u(c1), ..., p(cn)) € Az. We write A1 — Az to ex-
press that there is a homomorphism from A; to As.

Conjunctive queries (with union and negation). A
conjunctive query with negation (CQ™) is an expression of
the form ans(Z) «— (T, Z), where ¢ is a conjunction of re-
lational R-literals, T, Z are sequences of variables and con-
stants, and it holds that every variable in T also occurs in ¢.
We restrict our discussion to safe queries, i.e. every CQ™ has
the property that every variable that occurs in the query also
occurs in some positive R-atom. This is an easy syntactic re-
striction that ensures domain-independence. Whenever we
speak of a query in this paper, we tacitly assume that it
fulfills this safety condition. If a CQ™ contains no negation
we call it a conjunctive query CQ.

A union of conjunctive queries with negation (UcQ™) is an
expression of the form \/, e[n) 3is where all ¢; are conjunctive
queries with safe negation and all head predicates have the
same arity. If a UcQ™ contains no negation we call it a
union of conjunctive queries UcQ. The result of evaluating
Q € UcQ™ on a finite database instance [ is defined as usual
and denoted by Q(I). If Q,Q" € UcqQ~ we say that Q is

contained in Q' (Q C Q') iff for all databases I it holds that
Q) CQ'(I). Q and Q' are equivalent, Q@ = Q', if Q C Q’
and Q' C Q. Given a set of first-order sentences Y, we say
that @ is contained in Q' under ¥ iff for all databases I s.t. I
satisfies X it holds that Q(I) C Q'(I). We write Q =x Q' iff
Q Cs Q' and Q' Cs Q. By convention, we denote CQ~ by
lowercase and UcQ™ by uppercase letters. We write ¢ € Q
iff ¢ is a disjunct of Q). Abusing notation, we write ¢g1 — ¢
iff there is a homomorphism from the set of atoms in ¢1
(including the head atom) to the set of atoms in g2 (also
including the head atom). By Q|- we denote the query Q
from which all non-7-literals were dropped.

If g € CQ, then db(q) is the database that consists of one
tuple for each positive atom in ¢, where each variable = has
been replaced by constant ¢,. We define ans(q) to be the
tuple in the head of ¢ where again each variable = has been
replaced by constant c;. We say that g is satisfiable if there
is a database instance I such that ¢(I) # 0. Notice that g
is satisfiable iff it contains no atom that appears positively
and negatively in ¢. For Q € UcqQ™, we set db(Q) := {db(q) |
g € Q} and say that it is satisfiable iff there is a database I
such that Q(I) # 0.

Constraints. Let T,y be sequences of variables. We
consider two types of database constraints: tuple-generating
dependencies with union and negation (TGDY"") and equality
generating dependencies with union (EGDY). A TeDY'™ ¢
is a first-order sentence VZ(¢(T) — V¢, ;i (T, ¥;)) such
that (a) ¢, 41, ...,¥n are conjunctions of literals, possibly
with constants, (b) 11, .., ¥n are not empty, (c) ¢ is possibly
empty, (d) @, 91, ..., ¥n do not contain equality atoms and (e)
for all 4 € [n] all variables from T that occur in ¢; must also
occur in ¢. We obtain the classes Tap™~, TGpY, and TGD
by disallowing V, =, and both V and —. By ¢’ we denote
the Tap VZ(¢p(T) — Ty,4:(T,7,;)) and set @ := {¢1, ..., pn}-

An EGDY ¢ is a first-order logic sentence of the form
VZ(p(T) — Vie[n] Zi1 = Ti,2), where all x;1, 2,2 occur in ¢
and ¢ is a non-empty conjunction of equality-free R-atoms,
possibly with constants. We obtain the subclass EGD from
EcbpY by disallowing V in the conclusion. By ¢* we denote
the EGD VZ(P(T) — i1 = x4,2) and set @ := {©1, ..., on }.

When using the word “constraints” in the following, we al-
ways mean the union of the classes TGDY'~ and EGDY . Sat-
isfaction of constraints by databases is defined in the stan-
dard first-order manner. We write I = « if a constraint « is
satisfied by I and I = o otherwise. As a notational conve-
nience, we will often omit the V-quantifier and the respective
list of universally quantified variables. A set of constraints
is full if it contains no existentially quantified variables.

We use the term body(a) for a constraint « as the set of
atoms in its premise; analogously head(c) is the set of sets
of all atoms in some disjunct of the constraint’s conclusion.
By X|; we denote the set ¥ from which all non-7-literals in
the constraint bodies were dropped. If « is a constraint and
@ is a sequence of labeled nulls and constants, then «a(a)
is the constraint « without universal quantifiers but with
parameters a. We shall abuse this notation and say that a
labeled null occurs in «(@), meaning that a labeled null is
the parameter for some universally quantified variable in a.

Chase steps. Let ¢ € CQ and a € TGDY'™ of the form
$1(T) = V,epn FVi¥i(T,7;). We say that a is applicable to ¢
if there is a homomorphism g from body(«) to g and for every
A € head(a) it holds that p cannot be extended to a homo-
morphism g’ D u from A to g. In such a case the chase step



i3 qu is defined as follows. For every i € [n] we define a

homomorphism v; as follows: (i) v; agrees with p on all uni-
versally quantified variables in «, (ii) for every existentially
quantified variable y in ¥; we choose a “fresh” labeled null
Ny € Apuu\dom(db(q)) and define v(y) = ny,;. We set
gu to be the union of safe conjunctive queries with negation
Viepn @b(q) A vi(ti) from which all unsatisfiable disjuncts
are removed. In case that this results in the empty query
the result of the chase step is FALSE.

A chase step with an EGD is just a standard chase step
in case the query is satisfiable, otherwise the result of the
chase step is the empty query FALSE.

Finally, we lift chase steps to apply to unions of conjunc-
tive queries. For a union of safe conjunctive queries with

negation ¢ := \/;.; ¢ we write ¢ () q' iff there is ¢ € [I]

o, u(T)

such that ¢; —— gy is defined and ¢’ := q, V \/je[l (i} G-

Chase sequences. A chase sequence is defined analo-
gously to standard chase sequences using the chase steps
defined before, i.e. it is an exhaustive application of chase
steps until no more chase step is applicable. Note that differ-
ent orders of constraint application may lead to a different
chase result. However, as proved in [13], two different termi-
nating chase orders that do not fail lead to homomorphically
equivalent results. Therefore, we write QF for the result of
the chase on @@ € UcqQ™ under constraints ¥. In case that
the constraint set involves disjunction, a chase sequence can
be represented as a chase tree, as in [17]. The disjunction of
the tree’s leaves represents the resulting query.

Chase termination. In the course of this paper, we in-
vestigate two flavors of chase termination, defined as follows.

e CTyy := {X | for every finite database instance I and for
every chase sequence the chase with ¥ and I terminates}

e CTvys := {X | for every finite database instance I there
exists a terminating chase sequence with 3}

If ¥ € CTys we can compute a terminating chase se-
quence by applying the chase in a breadth-first manner, i.e.
generating a tree whose root is the start instance, its chil-
dren are obtained by applying one chase step on the start
instance and the tree is expanded in breadth-first manner.

Canonical databases and completeness. We say that
a query ¢ € CQ™ is complete [13] iff it is satisfiable and for
all ¢ € CQ™ it holds that ans(q) € ¢'(db(q)) implies ¢’ — q.
Q € UcqQ™ is complete iff all disjuncts are complete. It was
shown in [13] that for every Q € UcQ™ we can compute a
unique Q' € UcqQ™ that is complete and Q = Q’. Therefore,
we denote Q' by comp(Q). Let ADom ¢ RUT. It was
shown in [13] that comp(Q) = Q%" |ruT, where we define
3~ as the set which contains for every R € R U7 with
ar(R) = k the constraints

ADom(x1), ..., ADom(zy) — R(z1,...,zk) V " R(z1, ..., Tk)

R(z1,...,xx) — ADom(z1), ..., ADom(zk).

For ¢ € CQ™, we use size(q) as an abbreviation for the
number of literals in g. We extend size(Q) to Q € UcQ™ by

size(Q) = Xgeqsize(q).

3. CONSTRAINTS AND TYPES

Our approach to combined semantic and type-based opti-
mization relies on a rigorous first-order logic formalization.
Given our relational schema R, we assume a special vocab-
ulary 7 consisting of unary relation symbols. For a € A we
define its associated type interpretation TYPE(a) which is a

set of literals that exactly contains for every T' € 7 either
T(a) or =T'(a). Abusing notation we identify 7' with the
set {a € A | T(a) € TYPE(a)} and analogously write =7’
instead of {a € A | =T'(a) € TYPE(a)}. A type hierarchy
H is a set of full constraints over the schema 7. A type
system over 7 is a tuple (H, TYPE). We are interested in
type systems in which the type hierarchy adheres to the type
interpretation according to the following definition®.

DEFINITION 1. We say that a type hierarchy H reflects
TYPE if H is logically equivalent to the set of constraints ob-
tained as follows: for all1 < k,1 < |T| and for all Ay, ..., Ak,
Bi,...,B € {T7 =T | T e T},

o if) £ AiN...NAx C B1U...UBy, we have a full constraint
of the form Ay(z), ..., Ax(z) — Bi(z) V ...V Bi(z),

o if ) # A1 N ...N Ay is finite, we have an EGDY of the
form Ay(x), ..., Ax(z) = V,ea,n..na, T = a, and

e if =A1N..NAg, a TGD Ai(z), .y Ag(z) — 2 A1 (z).0

Informally speaking, a type system reflects a type interpre-
tation if (i) all subsumption relationships between types can
be derived from the type hierarchy, (ii) whenever a type
or the intersection of several types is finite but non-empty,
there is a constraint that fixes the domain of the type, and
(iii) whenever two types are disjoint, we can derive this in-
formation using the constraints in the type hierarchy. The
following example illustrates the previous definition.

EXAMPLE 1. We formalize the type system of our moti-
vating example from the Introduction. First, we define the
vocabulary T; := {@employee, @manager, @ceo, . .. }, where
we interpret the elements of 11 as unary relation symbols.
We then fix a type interpretation TYPEy that reflects the
type relationships that were informally discussed in the In-
troduction. Consider for instance the constant a1 := ‘CEO1’
standing for a CEQ. Its interpretation is defined as

TYPE1(a1) :={Qceo(a1), Qezecutive(a), @employee(ar),

—@manager(a1), 7 @associate(ai),
—@gender(a1), ~@int(a1)},

stating that a1 is of type @ceo, @ezecutive, and @Qem-
ployee, but not of type @manager, Qassociate, and so on.
The type hierarchy Hi, which we define as

H; := {1 := @ceo(z) — Qexecutive(z),

B2 := @manager(z) — Qezecutive(x)
B3 1= @ezecutive(x) — @Qemployee(x)
B4 @associate(x) — @employee(z),

Bs @gender(x) — x = ‘male’V z = ‘female’,

B6 := @manager(z), @ceo(x) — —@manager(x),

B7 := Q@ezecutive(x), @associate(x) — —Q@ezxecutive(z),

0B := @employee(x), @gender(x) — —@employee(z),

Bo := @employee(z), Qint(z) — —@employee(x),

B0 := @gender(x), @int(x) — —Q@gender(zx)},

satisfies Definition 1: (1 — (B2 model all type subsump-

tion relationships (cf. bullet one of the definition). Neuxt,
Bs fizes the domain of type @gender (cf. bullet two), which
we assume to be the only finite type in our scenario. Fi-
nally, constraints Bs — PBio express disjointness between in-
compatible types (cf. bullet three). Observe that Hi implic-
itly contains other relationships, for instance the constraint
@ceo(x) — @employee(x) can be derived from B1 and Bs;
this is in line with Definition 1, which enforces only logical
equivalence to a “complete” list of constraints. a

)
)

Definition 1 must not be understood as an algorithm. It
provides means for a database schema designer to represent
a type hierarchy as a set of constraints.



Our framework is able to model object-oriented features.
Object-oriented Datalog can be reduced to normal Datalog
with negation with a compilation scheme as in [2].

Having established a framework to express type hierar-
chies in first-order logic, we now extend it to general data
dependencies used in semantic query optimization.

DEFINITION 2. We call a tuple (3, H, TYPE) a typed re-
lational schema iff (i) ¥ is a set of integrity constraints over
RUT, (i) ¥ contains no negative R-literals, (iii) for all
o € X it holds that every variable in o appears in some R-
atom, and () (H, TYPE) is a type system over T such that
H reflects TYPE. m]

Note that X is defined over RU T, so it may contain both
data dependencies in the common sense and dependencies
involving types. In particular, we can use X to encode type
information implicitly given by the schema:

EXAMPLE 2. To capture our erxample scenario from the
Introduction, we define 31 := {a1, a2, v1,7v2,73, 73}, where
a1 and a2 are the constraints from the Introduction asserting
that CEOs are sitting in the upper floor and managers are
sitting in the middle floor and 1 — va are defined as

~1 := Person(z,y) — Qemployee(x), @Qgender(y),
2 := UpperFloor(z,y) — @Qceo(x), Qint(y),

3 := MiddleFloor(z,y) — @manager(z), Qint(y),
~4 := LowerFloor(z,y) — @associate(x), Qint(y).

Using TYPE1 and Hi introduced in Example 1, the tuple
S1:= (X1, H1, TYPE1) is a typed relational schema. O

Given a typed relational schema S := (Cy,C2,C3), we
will use the conventions that X(S) := Ci, H(S) = Cq,
and TYPE(S) := C3. The following definition of satisfying
database instances is straightforward.

DEFINITION 3. An R U 7 -database instance I satisfies a
typed relational schema S, I = S, iff I|lr # 0, for every
constant a € dom(I)NA we have that I = TYPE(S)(a), and
it holds that I |= S(S) U H(S). O

We are now in the position to define the notions of query
containment, equivalence, and minimality in typed schemas.

DEFINITION 4. Let S be a typed relational schema. For
Q,Q" € Ucq™, we write Q Cs Q' iff for all I E S, we have
that Q(I) C Q'(I). Q,Q" are equivalent under S, Q =s Q’,
iff Q Es Q" and Q' Cs Q. m

As we are not aware of a generally accepted notion of
minimality for the class UcQ™, we abstract from a concrete
cost measure and use a generic cost function instead.

DEFINITION 5. Let £ € {UcqQ~,Ucq,Cq ™, CQ} be a query
language. A cost function for L is a polynomial-time com-
putable ¢ : L — N such that size(Q) < ¢(Q) and for every
subquery sub C @Q we have that c(sub) < ¢(Q). Given a
typed relational schema S and a query Q € L, we say that Q
is (L, ¢, S)-minimal iff there is no Q' € L such that Q =s Q'
and ¢(Q") < ¢(Q). We say that Q' is an (L,c,S)-rewriting
of Q iff Q' =s Q and ¢(Q') < c(Q). An (L', c,S)-minimal
rewriting of Q is a query Q' € L' such that Q" is (L', ¢c,S)-
minimal and Q =s Q’. O

It is easily shown that the generic cost function imposes
an upper bound on the size of minimal rewritings:

PROPOSITION 1. Let Q € UcqQ. The set of Q' € Ucq™
with ¢(Q') < ¢(Q) is finite and its size can be bounded by
ar(RUT) - ¢(@Q)P - 3- [RUTND - ar(RUT) - (¢(Q) -
ar(RUT) + |[dom(Q)| + |dom(X(S)UH(S))|). Thus, the set
of (Ucq™, ¢, S)-minimal rewritings of @ is also bounded by
this number. O

We conclude this section with an example that illustrates
the cost function, rewritings, and minimality.

EXAMPLE 3. Let @ := qi1V---Vgn be a UcQ™. Let pos(¢;)
denote the number of positive literals and neg(q;) the number
of negative literals in the body of q;. We exemplarily consider
the cost function c1(Q) := Y, <, (P0s(qi) + 2 * neg(q:)).

Given query Q1v2 from the Introduction and the typed re-
lational schema S1 from Ezample 2, we have that both qi\
and qiyo from the Introduction are (UcQ™, c1,S1)-rewritings
of Qiva: it is easily verified that Qivz =s; qive =s; qive
and we have c1(Q1v2) =4 > c1(qiva) = 3 > c1(qive) = 2.

By enumerating all candidate (UCQ™, c1, S1)-rewritings of
Q1v2 it can be shown that g1 is (UcQ™, c1, S1)-minimal.O

4. SEMANTIC QUERY OPTIMIZATION IN
TYPED RELATIONAL SCHEMAS

Having presented our framework, the goal of this section is
to develop rewriting techniques and to identify fragments for
which rewritings (and hence, by Proposition 1, also minimal
rewritings) can be computed. Note that, in the general case,
query containment for conjunctive queries under TGDs and
EcDs is already undecidable,so it follows immediately that
query containment in our fragment (where we consider ex-
tended classes of TGDs and EGDs, as well as CQs with union
and negation) is generally undecidable. Therefore, the study
of decidable fragments is of high practical interest.

In our effort to provide a mechanism for containment test-
ing, we start with a slight variant of the standard chase al-
gorithm which, after each chase step, adds type information
for constants that were introduced during the chase.

DEFINITION 6. Let @ €UcQ™. The sequence (Qi)ien is
inductively defined as follows. Q1 := Q. For i > 2 we set
Qi = \/quz(s)uH(S) q', where q' is defined as q to which

i—1

TyPE(a) has been added to the body of the query for all a €
ANdom(db(q)). If there is some i € N such that Q; = Qi+1,
then Q° := Q;. o

EXAMPLE 4. Consider S1 := (X1, Hi, TYPE1) from Ez-
ample 2, query q : ans() «— Person(‘CEO1’y), and assume
that @ceo(‘CEO1’) € TYPE;(‘CEO1’). When chasing q ac-
cording to Definition 6, we obtain the query ¢° defined as

ans() « Person(‘CEO1’,y), UpperFloor(‘CEO1’, z),

@ceo(‘CEO1’), ~@ceo(y), ~Qceo(z),
@manager(‘CEO1’), ~@manager(y), “Qmanager(z),

where the rest of the query contains some more type in-
formation. The interesting thing here is that, by adding the
type restriction @Qceo(‘CEO1’) according to our modified ver-
sion of the chase, we obtain precise type information for the
constant ‘CEO1’ and therefore in subsequent chase steps are
able to derive the literal UpperFloor(‘CEO1’, z) (which is
implied by the constraint o from the Introduction). O



It can be shown that our modified chase terminates when-
ever the standard chase algorithm terminates:

PROPOSITION 2. Let S be fized. If the mapping Q +—
Qz(S)UH(S) can be computed in polynomial time, then QS
is defined and the mapping Q — Q° can be computed in
polynomial time. m]

In the following, we show that our modified chase with
3(S) and H(S) indeed gives universal models and therefore
always queries that are equivalent under S.

DEFINITION 7. We call a finite set of database instances
{I, ..., In} universal for a typed relational schema S and a
set of database instance J iff (i) for alli € [n]: I; E S, and
(i) for every database instance I it holds that if I = S and
there is some J € J such that J — I, then there is i € [n]
such that I; — I. O

LEMMA 1. Let S be a typed relational schema, @ € UcQ™.
If QF exists, then db(QS) is universal for (S,db(Q)). O

LEMMA 2. Let Q € UcQ™. It holds that Q =s Q°. ]

The central idea of our approach now is to use the modi-
fied chase from Definition 6 to find minimal rewritings. More
precisely, given a query @, typed relational schema S, and
cost function ¢, we first compute Q°, enumerate all candi-
date candidate rewritings @; (whose number is bounded by
Proposition 1), and finally check if @ =s @; holds. Note
that, compared to the C&B algorithm from [1], we lose the
property that every minimal rewriting Q' of @ is a subquery
of QF, as witnessed by the following example.

EXAMPLE 5. Consider the union of the two conjunctive
queries p1 : ans(z) <« Person(x, ‘male’), militaryService(x)
and p2 : ans(x) «— Person(z, ‘female’), extracting all men
who have completed their compulsory military service and
all women. Let 6 := Person(z, ‘male’) — militaryService(z)
and consider S1, c1 from Example 3. Given that position
Person?® is typed with @gender and H(S1) contains the con-

straint Bs := @gender(z) — x = ‘male’V x = ‘female’, it
follows that ans(z) <« Person(z,y) is a minimal rewriting
of p1 V p2 w.r.t. (UcQ™,cr, ({6}, H(S1), TYPE(S1)). O

The only reason that may prevent us from computing
(minimal) rewritings in typed schemas is that the chase (for
the original query or the rewriting candidate queries) does
not necessarily terminate. In the remainder of this section,
we therefore investigate decidable fragments.

4.1 FragmentI

We first carry over the results on containment testing for
conjunctive queries in the presence of negation from [13] into
the context of typed relational schemas. As a side contribu-
tion, we show that this approach works for full TGDs only.

Let SUX- denote the typed relational schema in which 3,
has been added to X(S). The next lemma transfers Theo-
rem 9 from [13] into the context of typed relational schema:

LEMMA 3. Let Q,Q" € UcqQ™. If Q5Y™~ euists, then it
holds that Q Ts Q' iff for every P € QSY™~|rur there is
P’ € Q' such that P' — P. O

From this lemma we obtain the following theorem, which
— in combination with the chase — gives us a query minimiza-
tion algorithm whenever the chase with S U X terminates:

THEOREM 1. There is an algorithm that, given Q € UcQ™
such that Q — QY= is computable, enumerates ezactly all
(UcQ™, ¢, S)-minimal rewritings of Q up to isomorphism. O

The problem with this result, though, is that the extension
of the constraint set by Y- often leads to non-terminating
chase sequences, even if the chase with & terminates.

EXAMPLE 6. If 3(S) := {e1 := R(z1,22) — JyE(z2,y)}
and q() := R(z1,x2), then ¢°“=~ is not defined. To see why,
observe that ¥, contains (amongst others) the constraints

€2 := E(x1,22) — ADom(z1), ADom(z2),
€3 := ADom(z1), ADom(z2) — R(z1,22) V —R(z1,22).

It is easily verified that there is no terminating chase se-
quence for the chase of q with {€1,€2,€e3}. The same still
holds when chasing with the full set 3(S) U X-. ]

In the light of the previous example, there is only little
hope that the chase algorithm terminates when 3 contains
TGDs with existentially quantified variables. With this ob-
servation in mind, the next corollary identifies the only sit-
uation where Theorem 1 is of practical benefit:

COROLLARY 1. Let X(S) consist of full constraints only.
There is an algorithm that, given S and Q € UcQ™ as input,
enumerates ezxactly all (UCQ™, ¢, S)-minimal rewritings of Q
up to isomorphism. O

Our finding that the above approach (and hence, also the
approach proposed in [13]) is essentially restricted to full
constraints motivates the search for fragments in which the
minimization problem can be solved without adding >-. We
will present such a fragment in the next subsection.

4.2 Fragment I1

We now define a fragment of UcqQ™". We call Q € UcQ™
semi-positive, denoted as UcqQ™/2, iff all variables that oc-
cur in a negative R-literal occur also in the head predicate.
Semi-positive queries are interesting because containment
testing using the chase can be done without adding >-:

THEOREM 2. Let ¥ C TGDY'™ U EGDY, Q € Ucq™/?
without negative T -literals and Q' € UcqQ™. W.l.o.g. every
q € Q' contains all constants from Q, Q' and =. If Q'F ex-
ists, then it holds that Q' Cx Q <= for all P’ € comp(Q')*
there exists P € Q such that P — P' <= Q'* C Q. i

As a corollary from the previous theorem we obtain the
following result for typed relational schemas, clarifying that
the constraints in H(S) do not harm this nice property.

COROLLARY 2. Let¥(S) C TepY' " UEGDY , Q € Ucq™/?
without negative T -literals and Q' € UcqQ™. W.l.o.g. every
q € Q' contains all constants from Q, Q' and £(S). If Q°
exists, then Q' Cs Q <= for all P’ € comp(Q’)° there
exists P € Q such that P — P' <= Q" C Q. O

In order to demonstrate why the condition that every
q € @' contains all constants from @, Q" and X(S) is not a
restriction we have a look at the next example.

EXAMPLE 7. Let ¢' : ans() « A(z,y) and q : ans() «
A(x,a), where we want to test for ¢ Cs q. The constant
a occurs in q but not in q', which contradicts our condi-
tion. We rewrite ¢’ to Q' : q1 V g2, where q1 : ans() «
A(z,y), A(a,a) and g2 : ans() — A(z,y),~A(a,a). Obuvi-
ously, ¢ = Q'. We can now proceed by testing for Q' Cs q.



Clearly, the above results are applicable in practice when-
ever X(S)UH(S) is in CTyy or CTy3. The following lemma
gives an even weaker precondition, showing cases when the
constraints in H(S) do not affect chase termination:

LEMMA 4. For Q € UcQ™: Q — Q° is computable if
E(S)|R € CTvv, or E(S) = E(S)l'/z € CTys. O

As our central result, we obtain an algorithm for Ucq™/?
minimization whenever we can guarantee the termination of
the underlying chase according to the previous lemma:

THEOREM 3. There is an algorithm that, given a query
Q € UcQ™/? such that Q — Q° is computable, enumerates
ezactly all (UcQ™/?, ¢, S)-minimal rewritings of Q under %
up to isomorphism. a

5. COMPLEXITY
5.1 Satisfiability

As a first problem in our complexity study, we investigate
the satisfiability of typed relational schemas. We define sat-
isfiability and the associated decision problem as follows.

DEFINITION 8. A typed relational schema S is satisfiable
iff there is a finite R U T -database instance I s.t. I |=S. O

SATISFIABILITY:

Input : A typed relational schema S.
Question: Is there a finite instance I: I = 87
Answer: Yes or no.

It turns out that, whenever there is a terminating chase
sequence for the constraints induced by the data dependen-
cies and the type hierarchy, we can use the chase algorithm
to test whether a satisfying model exists or not:

THEOREM 4. Let £(S)U H(S) € CTvs. There is an al-
gorithm that, given a typed relational schema S as input,
decides whether S is satisfiable. m]

A reduction from CNF-SAT gives us an NP lower bound:

THEOREM 5. SATISFIABILITY is NP-hard. This still holds
if the set of integrity constraints 3(S) contains no negation
and no EGDY. a

The next theorem identifies a large class of typed rela-
tional schemas for which we obtain a £ upper bound:

THEOREM 6. Let X(S) U H(S) € CTy3 ensuring polyno-
mial depth of the chase tree. Then SATISFIABILITY € ¥4 .0

We obtain even better bounds when restricting the size of
the constraint’s heads:

COROLLARY 3. Let 3(S)U H(S) € CTvys ensuring poly-
nomial depth of the chase tree and assume that the size of
the head of every a € X(S)U H(S) is bounded by some con-
stant k. Then SATISFIABILITY 4s in NP. O

Observe that the previous (and some of the following)
results rely on the polynomial depth of the chase tree. We
will come back to this issue in Section 6, where we indicate
chase termination conditions that guarantee this property.

5.2 Query Optimization

We now come to the central complexity results of this
paper, namely the complexity of testing whether a query is
a rewriting or a minimal rewriting of another query. We
define these two decision problems as follows.

MINIMAL(L, ¢, S):

Input : QeL.
Question: Is @ (£, ¢, S)-minimal?
Answer: Yes or no.

REWRITE(L, ¢, S):

Input : (Q,Q)eLxL.
Question: Is Q" an (L, ¢, S)-rewriting of Q7
Answer: Yes or no.

By definition, Q' is an (£, ¢, S)-minimal rewriting of Q iff
Q' € MINIMAL(L, ¢,S) and (Q,Q’) € REWRITE(L, ¢, S). A

reduction from the containment problem for conjunctive queries

with inequalities gives us a lower bound for the REWRITE
problem in the general case.

THEOREM 7. REWRITE(CQ, ¢, S) is I -hard. O

Whenever the chase tree is of polynomial depth, we can
also guarantee membership in I15:

THEOREM 8. Let X(S) U H(S) € CTv3 ensuring polyno-

mial depth of the chase tree. Then, PLIEWRITIE(UC(fmm7 S)
is II¥ -complete. O

Having discussed REWRITE, we conclude our complexity
study with a similar results for the minimization problem:

THEOREM 9. Let X(S)UH(S) € CTys ensure polynomial

depth of the chase tree. Then, MINIMAL(UCQﬂ/ac7 S) €
k. O

To put our results into context, we point out that contain-
ment testing under negation- and disjunction-free TGDs and
EcDs is already Np-hard. Nevertheless, the experiments in
[36] confirm that minimization works well in practice, last
but not least because the constraint sets are usually small.
What we have shown here is that semantic query optimiza-
tion in the presence of types, TGD™Y, and EGD" falls into
the lower levels of the polynomial hierarchy.

6. CHASE TERMINATION

We have seen in Section 4 that the applicability of our
framework for semantic query optimization in the presence
of types heavily depends on the termination of the under-
lying chase algorithm. In the past, there has been much
research on the termination of the chase with TGDs and
EcDs only, see e.g. [17, 14, 30, 31]. However, little atten-
tion has been spent on chase termination in the presence of
negation and disjunction in the constraints. Notable excep-
tions are [17], which treats the case of TGDs and EGDVs,
and [13], which uses an adaption of the weak acyclicity con-
dition from [17] to allow for negation and disjunction. We
present a more general approach and eliminate negation and
disjunction in the constraints such that, if a termination
guarantee for the rewritten constraint set can be made, then
a guarantee can be also made for the original constraint set.



This allows us to reduce the problem of chase termination
to a standard setting involving only TGDs and EGDs.

In addition, we study CTys, which ensures the existence
of at least one terminating chase sequence for every database
instance. The literature on the chase lacks a systematic
study of CTys and concentrates solely on CTyy. We fill
this gap by identifying decidable fragments of CTys. To
the best of our knowledge, this is the first study of sufficient
termination conditions for the chase which does not ensure
the termination of all but at least one chase sequence. The
results of our study on sequence-dependent chase termina-
tion have an important additional property. We cannot only
ensure that there is a terminating chase sequence, but we
can determine it statically, while checking our termination
conditions. This has an important implication. We do not
have to apply the chase in breadth-first, but in the usual
depth-first manner, thus saving much time and space.

6.1 Eliminating Negation and Disjunction

Our idea is to eliminate negation and disjunction sym-
bols in the constraint set such that, if we can derive ter-
mination guarantees for the rewritten constraint set, then
termination guarantees follow for the original one. This
elimination process is defined via the two mappings intro-
duced in the following definition. Let 7' = {17, ..., T}, } and
R’ :={Rj, ..., R,} be two additional sets of relational sym-
bols such that (R U7 )N(RUT)=0=R' NnT".

DEFINITION 9. By Lo we denote the set of first order sen-
tences over vocabulary R U T .

e The mapping T- : 2F0 — 250 s defined as follows. For
every ® C Lo we set To(®) := &, where ® equals ®
except that for every i € [n] every occurrence of —=R; (—T;)
is substituted by R} (T;).

e The mapping T\ : 2F0 — 250 s defined as follows. For
every @ C Lo we set T\(®) to be | cq @ O

Note that both mappings are well-defined and computable
in polynomial time. We show by an example how we intend
to use these mappings.

EXAMPLE 8. Let X be a set of TGDY'™ and EcpY . If %
has stratified witness as defined in [13], then it is easy to see
that T (T-(X)) is weakly acyclic. The converse is not true.
Consider e.g. the constraint set 2 consisting of

R(z1,22) — Jy= 8(z1,y), and
S(z1,x2) — Jy— R(z1,y). ]

The example shows that, if we can derive termination
guarantees for Ty (7-(X)), then we are more general than
stratified witness, the only termination condition known so
far that covers constraints containing negation and disjunc-
tion. The next theorem fills this gap and allows to derive
such termination bounds from existing termination condi-
tions for (negation- and disjunction-free) TGDs and EGDs.

THEOREM 10. Let ¥ be a set of TGdY'™ and EGDY.

o IfT(X) € CTvy, then ¥ € CTyy.

o If ¥ =Ty(X) and T-.(X) € CTva, then ¥ € CTys3.

° If T\/(E) S CTvv, then ¥ € CTyy.

o If Tu(T-(%)) € CTyy, then S € CTyy. O

We emphasize that, with this powerful tool at hand, we
subsume both the work on chase termination in the presence
of EGDY from [17] and for Tap""™ from [13].

We now turn towards the question of data complexity
(i.e. in the size of the input query) of chase termination.

THEOREM 11. Let ¥ be a set of TGDY'™ and EcpY. If
there is a function f : UcQ™ — N such that for every Q €
UcQ the depth of every chase tree for T\ (T-(X)) and Q is
bounded by f(Q), then for every Q' € UcqQ™ the depth of
every chase tree for ¥ and Q' is also bounded by f(Q). O

In particular, it follows from this theorem that if we can
data-independently derive polynomial data complexity for
T\ (T-(X)), which is the case for all termination conditions
for the chase that have been developed so far, then the depth
of every chase tree for ¥ is also polynomial.

6.2 Sequence-Dependent Termination

As a starting point for our work, we make the observa-
tion that the stratification condition introduced in [14] does
not belong to CTyy, as stated by the authors of [14], but
to CTvya. It is the cornerstone for all further sequence-
dependent termination conditions that we develop here. We
start with an introduction to stratified constraint sets.

6.2.1 Stratification

The main idea behind stratification is to decompose the
constraint set into independent subsets that are then sep-
arately tested for weak acyclicity [17]. More precisely, the
decomposition splits the input constraint set into subsets
of constraints that may cyclically cause to fire each other.
The idea is that the termination guarantee for the whole
constraint set should follow if weak acyclicity holds for each
subset in the decomposition. The basis for such a decompo-
sition is the binary relation < on the constraint set.

DEFINITION 10. (see [14]) Given two TGDs or EGDs «, 8 €
Y we define a < 3 iff there exists a relational database in-
stance I and @,b such that (i) I = o(a), (ii) I = B(b), (i)
I J, and (iv) J W B(b). o

The actual definition of stratification then relies, as out-
lined before, on the notion of weak acyclicity.

DEFINITION 11. (see [14]) The chase graph G(X) = (%, E)
of a set of constraints ¥ contains a directed edge (o, 3) be-
tween two constraints iff « < B. We call ¥ stratified iff the
constraints in every cycle of G(X) are weakly acyclic. O

Stratification strictly generalizes weak acyclicity [14] in
the sense that (i) if X is weakly acyclic, then it is also strati-
fied, and (ii) there are constraint sets that are stratified but
not weakly acyclic. The authors of [14] state the following:

Let X be a fized set of stratified constraints. Then, there
exists a polynomial Q € N[X]| such that for every database
instance I, the length of every chase sequence is bounded by

Q(|dom(I)]). Thus, ¥ € CTyy. O

Unfortunately, as we show in the following example, this
statement is not true:

EXAMPLE 9. Let ¥ :={a1,...,asa}, where
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Figure 1: Chase graph for Example 9.

a1 = R(z1) — S(z1,21),

ag = S(z1,22) — 2T (22, 2),

as = S(x1,22) — T(21,22), T(22,21), and
as = T(x1,22), T(x1,23), T (23, 21) — R(22).

We now give an instance for which the chase does not
necessarily terminate. Consider the database {R(a)} and
the chase sequence which applies the constraints in the or-
der a1y ..., 04,1, .oy A4, ... and so on. The first steps of the
resulting chase sequence look as follows:

g {R(a),S(a,a)}

28%  {R(a),S(a,a),T(a,n1)}

%% {R(a),S(a,a),T(a,n1),T(a,a)}

LY (R(a), S(a,a), T(a,n1), T(a,a), R(n1)}

I {R(a),S(a,a),T(a,m), T(a,a), R(n), S(n1,m1)}

LM {R(a), S(a,a),T(a,m1), T(a,a), R(n1), S(n1,n1)
T(ni,mn2)}

HEB" S {R(a),S(a,a),T(a,n1), T(a, a), R(n1), S(n1,n1),
T(Tll,n2)7 (nl,n1)}

S R(a), S(a, ), T(a,m), T(a, a), R(na), S(n1,m),

s T(n1,n2),T(n1,n1), R(n2)},

where ni1,n2 are fresh null values. It can be easily seen that
this sequence is infinite. The chase graph for ¥ is depicted
in Figure 1. The only cycle in it contains full TGDs only
and thus is weakly acyclic. It follows that 3 is stratified. O

As a consequence, unlike weak acyclicity, stratification
does not ensure termination in the sense of CTyv as claimed
in [14]. However, we can prove another, equally useful result
for the stratification class. If a set of constraints is strati-
fied, we cannot ensure termination in the sense of CTyy, but
CTya, as stated in the following.

THEOREM 12. Let X be stratified. Then, there exists a
polynomial Q € N[X] such that for any database instance I

there is a terminating chase sequence whose length is bounded
by Q(|dom(I)|). Thus, ¥ € CTys. O

How can we use this result in practice? The first idea is to
apply the chase in a breadth-first manner, i.e. generating a
tree whose root is the start instance, its children are obtained
by applying one chase step on the start instance and the tree
is expanded in breadth-first manner. As it turns out, we are
in a much better situation here. We can use the chase graph
to statically construct the order in which the constraints can
be applied to ensure a terminating chase sequence.

THEOREM 13. Let X be a fized set of constraints. If for
every strongly-connected component ' of G(X) it holds that
Y € CTyy, then ¥ € CTvy3 and a terminating chase se-
quence can be statically constructed. O

The idea of the proof is to impose a partial order on the
strongly connected component of G(X) with the help of <.

This partial order is extended to a total order via topological
sorting. Then, we can chase with each strongly connected
components of G(X) individually. Hence, we avoid the over-
head of branching in the breadth-first chase and therefore
reduce the complexity of generating a chase result.

6.2.2 The v3-T-Hierarchy

We continue our study of CTy3 by combining our ideas
related to the T-hierarchy which we introduced in [31] with
stratification. In particular, we use the 7T-hierarchy as a tool
to define the V3-T-hierarchy, which covers larger fragments
of CTy3 than stratification. We refer the reader to [32] for
a formal definition of the T-hierarchy.

DEFINITION 12. Let k > 2. We say X is in V3-T[k] iff
every cycle of G(X) is in TIk]. a

EXAMPLE 10. The constraint set Xy, := {ax }, where oy, :=
S(zk), Re(x1, ..., k) — JyRe(y, 21, ..., zr—1) s in T[k+1]\ T[k]
(cf. [31]). We also have that oy, < ai, so we can conclude
that Xy € V3-Tlk + 1]\V3-T[k]. o

As a corollary to Theorem 13 we can state that for every
database instance a terminating chase sequence can always
be statically constructed from the underlying chase graph.

COROLLARY 4. Let k > 2 and X be a fixed set of con-
straints in V3-T[k] constraints. For every database instance
I a terminating chase for I and X sequence with length poly-
nomial in |dom(I)| can be statically constructed. O

The corollary’s use is illustrated by the next example.

EXAMPLE 11. Let X be the following set of TGDs:

o1 = R(xl) - S(l’l,xl),
az = S(z1,72) — 32T (22, 2),
(

a3 = S xl,xg) — T(xl,xg),T(:cg,:cl),

as = T(x1,22), T(x1,23), T (x3,21) — R(22),
as = T(x1,22) — E(x1,22),

as = U(z1), E(z1,22) — E(x2,71) and

ar = U(z), E(z1,z2) — JyE(x2,y), E(y,x1).

It is mot hard to see that % € CTy3 because we can first
apply a terminating chase sequence to satisfy {au,...,ca}
and then apply the rest of the constraints afterward. No
termination condition for the chase introduced in previous
work recognizes that there is always a terminating chase se-
quence for ¥: X is not in any level of the T-hierarchy be-
cause for {ai,...,as} there may be non-terminating chase
sequences and X can also not be stratified because {ae, a7}
is not weakly acyclic. We show that ¥ € V3-T|2]. The chase
graph is depicted in Figure 2. There are two strongly con-
nected components, namely {a1,as,as} and {as,az}. As
both are in T[2], we can conclude that ¥ € V3-T[2]. We can
also determine such a sequence statically from the shape of
the chase graph. We chase sequentially with (i) {a1, a3, s}
until they are satisfied, (ii) then take ae and apply it until it
is satisfied, (i) afterwards we perform every possible chase
step with as, and (1) finally chase with the second strongly
connected component {as,ar}. At the end, all constraints
are satisfied and therefore the chase sequence is finite. O

This example shows us that a further decomposition of
the strongly connected components of the chase graph via
the T-hierarchy can lead to an improved chase termination
condition. And indeed it can be shown that V3-T[k] is a
proper extension of T'[k] for every k > 2:
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Figure 2: Chase graph for Example 11.
PROPOSITION 3. Ifk > 2, then T[k] C V3-T/k]. O

It was already shown in Example 11 that the extension is
proper. The containment follows from the observation that
if ¥ € T'[k], then so is every subset of X.

7. CONCLUSION

In previous investigations semantic query optimization and
optimizations based on complex type hierarchies have been
studied separately although both topics have striking com-
monalities. Unifying these two research areas, we have de-
veloped a logical framework that seamlessly integrates both
techniques and, in the general case, provides better opti-
mization results than their application in two isolated, sub-
sequent stages. We also provided algorithms to enumerate
optimized queries as well as results on the complexity of
related decision and satisfiability problems. The applica-
bility of our method depends on chase termination, and in
response we proposed novel termination conditions in the
presence of negation and disjunction, thereby opening up the
field of sequence-dependent chase termination conditions.

In future work, we will investigate extending the use of
negation. More research is required in identifying larger
decidable fragments of CTyy and CTys. On the practical
side we plan to implement and evaluate our approach.
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APPENDIX
A. SELECTED PROOFS

Proof of Lemma 3. Without loss of generality assume
that there is some instance I such that I = S and Q(I) # 0.
Otherwise, the claim is trivial.

The statement of this corollary can be reduced to Theorem
9 in [13]. It states that for W,W’ € UcQ~ we have that
W Cs W iff W22 C W'

Our reduction is as follows. For every constant ¢ in Q’
and in 3(S) U H(S) and for every R € RU7T we add the
constraint

R(C7 T2y eeey ml”"O’b)) - /\ZETYPE(C) l

R(z1,c,23, ..., Tarm)) — N !

1eTYPE(c)

R(z1,, ..., Tarm—1,€) — /\ZETYPE(C) l

to X(S)UH(S) and call the resulting constraint set Xpew .
We conclude that

o for all database instances I it holds that I = SUX- <=

I E Ynew, and
° Q/SUE-.

is homomorphically equivalent to Q'=new .

The first bullet is obvious. For the second bullet note that
Q'S can be viewed as Q' m¢v obtained via a certain chase
order. Then, the statement can be obtained from Theorem
9 in [13].

Proof of Theorem 2. Proof of the first equivalence:
for the forward direction assume that Q' Cx @ holds. Let
comp(Q')* = View P and comp(P;) = Ve Pij. Note
that for every P;, every R € R U7 and every tuple T of
constants in comp(Q’)” and variables in ans(P;) we have
that either R(Z) or ~R(Z) is in the body of P;. We have
that ans(P;) € P;(P;), which implies ans(P;) € Q(F;).
As db(P;) E %, it follows that ans(P;) € Q'(P;). Using
the assumption, we obtain ans(P;) € Q(F;). Assume Q =
Ve Fi- For some j € [I] we have that ans(P;) € Q;(Fi).
We will show that for all j* € [I;] it holds that ans(P;) =
ans(P; ;1) € Q;(P; ;7). Suppose not. Then, there is j” €
[ls] such that ans(P;) = ans(P; ;) ¢ Q;(P; ). Then, for
every homomorphism h that maps Q;L to P; ;i there is some
atom A such that =A € Q; and h(A) € P; j». Let u be a
homomorphism that witnesses ans(P;) € Q;(F;). Let A
be an atom such that -A € Q;. We can conclude that

—u(A) € P because Q € UcQ /2. Therefore, yu witnesses
ans(P;) = ans(P; j») € Q;(P; ), which is a contradiction.
We have shown that for all j* € [I;] it holds that Q; — P, j/,
which implies our claim. For the backward direction assume
that for all P’ € comp(Q')* there exists P € Q such that it
holds that P — P’. Hence, comp(Q')* C Q. Observe that
Q' = comp(Q’) =s comp(Q’)® C Q implies the claim.
The second equivalence is a corollary from the first one.

Proof of Corollary 2. The statement of this corollary
can be reduced to Theorem 2 as follows. For every constant
cin Q" and in ©(8) UH(S) and for every R € RU7T we add
the constraint

]%(C7 T2y eeny $ar(R)) — /\le’I‘YPE(c) l

R(l’l,cy-'fiiy---yzar(li)) _>/\ l

leTYPE(c)

R(z1,, 00 Tarr)—1,€) = /\lGT\’PE(C) !

to X(S)UH(S) and call the resulting constraint set pew.
We conclude that

o for all database instances I it holds that I =S <=1 |=
Yinew, and

e '° is homomorphically equivalent to Q'>"ev.

The first bullet is obvious. For the second bullet note that
Q'S can be viewed as Q' mev obtained via a certain chase
order. Then, the corollary can be obtained from Theorem 2.

Proof of Theorem 3. Without loss of generality, we as-
sume that H(S) contains for every T € 7 some T € 7 such
that T reflects the complement of T, i.e. we have constraints
(1) =T(w) — T(x), (2) ~T(x) — T(w), (3) T(x) — ~T(a),
(4) T(x) — ~T(x), and (5) T(2), T(x) — ~T(x).

We define a mapping F : UcQ™ — UcQ™ that substitutes
all negative 7 -literals —7'(...) by T(...). This operation pre-
serves equivalence under S.

Let Q € UcQ™/? such that Q — Q° is computable. The
algorithm is as follows:

1. Initialize M := 0.

2. Compute comp(Q)S.

3. Enumerate all Q' € UcqQ™/? with ¢(Q’) < ¢(Q):

(a) Rewrite Q' to Q" such that Q" = Q" and every g €
Q" contains all constants from @, Q" and %(S) U
H(S)

(b) Compute comp(Q")S.

(c) Test whether E(Q") =s E(Q) holds with the help
of Corollary 2 and if so, add Q' to M.

4. Output {Q" € M | for all Q"' € M it holds that ¢(Q") <
(@)},
By Proposition 1 this algorithm terminates. It follows

from Corollary 2 that it is sound and complete for finding
(UC(f/z7 ¢, S)-minimal rewritings of the input query.

Proof of Lemma 4.

e We have that 3(S)|rg € CTw = X(S)|r U H(S) C
CTwyw = X(S) U H(S) C CTyy because every variable
that occurs in some 7 -literal also occurs in some R-atom.
Therefore, we can conclude that for every @ € UcqQ™ the
mapping Q — Q° is computable.

e Let 3X(S) = 3(S)|[r € CTvs. We can conclude that
Y(S) U H(S) € CTys because we can first chase with
3(8) according to a strategy that guarantees termination
and afterward apply the constraints in H(S). Therefore,
we can conclude that for every @ € UcqQ™ the mapping
Q — QF is computable.

Proof of Theorem 4. Let X(S) U H(S) € CTys. We
show that S is satisfiable iff (\/,c % ¢() — R(z1, ..., Tarw))® #
FALSE. The backward direction is standard. For the for-
ward direction assume that S is satisfiable but (\ycr q() «
R(x1, .‘.,mw(R)))S = FALSE. Let I be a finite database in-
stance such that I = S and Il # 0. It follows from
the proof of Lemma 1 that for every intermediate (dur-
ing the application of the chase) union of queries @) there
is ¢ € @ such that db(q) — I. We can conclude that
(Vaer 40) < R(x1, ..., Tarw)))® # FALSE, which is a con-
tradiction.

Proof of Theorem 5. We prove Np-hardness by reduc-
tion from CNF-SAT, the satisfiability problem for proposi-
tional formulas in conjunctive normal form.



Let a := /\ie[m] B; be given, where B; = x;1V... VT, V
—yi,1 V...V -y, and the set of propositional variables that
occurs in « is {x1,...,2n}.

We encode « in a typed relational schema as follows. Note
that we denote strings by surrounding quotation marks.

Fa1, s @ (Nsepm) (A BOV, T @i i g))A
jet) BCV 5527 Yis i),
(Njepr,) ROV, 5% 4 @i g, i )N
N ROV 5527 i s vig)
- vje[ki] La(wi,5) v Vje[li] Lo(yi,5), for all i € [m],

R(x1,22,23,%4,25) — Lo(xs5) V L1(ws5),
Lo(z) — —L1(x), and
Li(z) — =Lo(x).

The last two constraints constitute the type hierarchy
H(S) and all other constraints constitute (S), which means
that the constraints obey the syntactic restrictions in order
to form valid typed relational schema. It is standard to ver-
ify that « is satisfiable iff S is satisfiable.

Proof of Theorem 6. We give a ¥f-algorithm that
tests satisfiability, i.e. an NP algorithm with CONP oracle.
Initially, guess some predicate R € R and consider the query
q() — R(x1,...,%qr(r))- Then compute ¢°, using the fol-
lowing modification of the algorithm from Definition 6. In
each chase step starting with query ¢; as input, guess some
a € X(S)UH(S) and constants @ for the universally quanti-
fied variables in « such that db(¢;) | body(a(a)) (testing the
latter condition can be done in polynomial time). Then use
the CONP oracle to verify that there are no constants b for
the existentially quantified variables in the head of a such
that db(¢;) |= head(a(@,b)). If a is a TGD or EGD with dis-
junction in the head, i.e. is of the form o := ¢ — Y1 V- - -V,
guess i € [n] and perform a chase step with o’ := ¢ — ;
instead of a. Otherwise, if the head of constraint « is
disjunction-free, simply perform a chase step with a.

By assumption, the above algorithm terminates in k steps,
where k is polynomially bounded by the depth of the chase
tree, so it is easy to see that the algorithm is in $&. Tt is
standard to show that S is satisfiable iff gx+1 # FALSE (in
case ¢; = FALSE for some i < k + 1, we set qxt1 := FALSE).

Proof of Theorem 7.

We prove I15-hardness by a reduction from the contain-
ment problem for conjunctive queries with inequalities. In
[26] it was shown that this problem is I15'-complete even for
boolean queries. Thus, we can restrict ourselves to boolean
queries which we represent as the set of atoms in the query’s
body. Without loss of generality, we can assume that ¢;
and g2 have disjoint sets of variables when we want to test
whether g1 C g2 holds.

In the first step, we reduce the containment problem for
such queries to the equivalence problem via the reduction
@1 Eg<—= qg=qUqg.

In the second step we reduce the equivalence problem for
conjunctive queries with inequalities to REWRITE(CQ, ¢, S)
for the fixed typed relational schema S with

5(8) ={l(z,2) > T(x)} U {J(z,y) mz=y}U
{(z,y), J(z,y) = T(x)} U

{R(mh ey xar-(R)) — D(£C1)7 ey D(mar(R))|R € R} U
{D(21), D(z2) — I(z1,22) V J(21,22)}, and

H(S) = {T(z) — ~T(x)},

where I, J, D, T are fresh relational symbols. Intuitively, J
simulates the equality predicate and I its complement with
respect to the active domain. Given two conjunctive queries
with inequalities qi1,q2 as input, we translate to ¢; and ¢
by substituting every inequality atom of the form z; # xj
by I(z;,zr). We can conclude that g1 = g2 <= q1 =s ¢
holds, which finishes this proof.

Proof of Theorem 8. Given Theorem 7, it suffices to
prove membership in ITZ. We give an algorithm which is ap-
propriate for our needs. Given (Q, Q') as input our test es-
sentially consists of an application of Theorem 2 and Corol-
lary 2. W.lo.g. every ¢ € Q' contains all constants from
@, Q and . We test whether for all P’ € comp(Q'F)
there is P € @ such that for all P” € comp(P’) it holds that
P — P" and whether for all P € comp(Q*) there is P’ € Q’
such that for all P” € comp(P) it holds that P' — P"”. This
is doable in IT -time.

Proof of Theorem 9. We show that the complement
of MINIMAL(UCQ, ¢,S) is in 35, In order to see this we
can use the following algorithm. Given @ as input, we
guess Q' such that ¢(Q’) < ¢(Q) and test whether (Q,Q’) €
REWRITE(UCQ, ¢, S) (see Theorem 8) holds. Clearly, all this
is doable in X% -time .

Proof of Theorem 10.

e It is immediate from the definition of chase steps that
the set of chase sequences with 7-(X) coincide with the
chase steps of X up to renaming of negative literals with
T-, and unsatisfiability.

e Let ¥ contain no disjunctions. Observe again that the
set of chase sequences with T (X) coincide with the chase
steps of ¥ up to renaming of negative literals with 7., and
unsatisfiability.

e Suppose not. Then, there is an infinite chase sequence
ar,ay Qag,as

Qo — Q1 == Q2..., where {as]t € N} C X. It
follows that there is go € Qo N CQ™ and for every i € N
there is ¢; € CQ” N Q; and @ € & such that go =
Q1 2 @2 - . . is an infinite chase sequence, which implies
Tv(X) ¢ CTyy.

e Follows from bullet one and three.

Proof of Theorem 13. Let the chase graph G(X) =
(X, E) be given. We write a ~ (3 if and only if « and 3 are
contained in a common cycle in G(X) or a = 8. Note that
~ is an equivalence relation.

Let X/ ~={Wi,.., Wy} and E' := {(W;, W;)li,j € [n],i #
J, there is some o; € Wi, 8; € Wj such that a; < §;}. Let
Wi, ..., W, be a topological sorting of (X/ ~, E’). Note that
Wi, ..., W, are the strongly connected components of the
chase graph and constraint sets that are not involved in any
cycle in the chase graph, therefore the chase terminates inde-
pendently of the database instance and independently of the
chase order for these constraint sets. Let Ip be an arbitrary
database instance. Let I; be obtained from I;_; by chasing
with W/ according to the chase strategy fro the prerequi-
sites for every ¢ € [n]. It holds that I = W{. Otherwise
there is some oo € Wy, 8 € W3 and a database instance I

such that I = «, but 28 ¥~ «. But this implies § < «
which means W5 must come before W7 in the topological
sorting of (X/ ~, E). Using induction on n it can be seen
that I, = 3. Observe that Wi, ..., W, is a partition of X.



