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Abstract. Efficient reachability query answering in large directed graphs
has been intensively investigated because of its fundamental importance
in many application fields such as XML data processing, ontology rea-
soning and bioinformatics.
In this paper, we present a novel indexing method based on the concept of
tree decomposition. We show analytically that this intuitive approach is
both time and space efficient. We demonstrate empirically the efficiency
and the effectiveness of our method.

1 Introduction

Querying and manipulating large scale graph-like data has attracted much atten-
tion in the database community, due to the wide application areas of graph data,
such as GIS, XML databases, bioinformatics, social network, and ontologies.

The problem of reachability test in a directed graph is among the fundamental
operations on the graph data. Given a digraph G = (V,E) and u, v ∈ V , a
reachability query, denoted as u → v, ask: is there a path from u to v? One of
the fundamental queries on biological networks is for instance, to find all genes
whose expressions are directly or indirectly influenced by a given molecule [15].
Given the graph representation of the genes and regulation events, the question
can also be reduced to the reachability query in a directed graph.

Recently, tree decomposition methodologies have been successfully applied
to solving shortest path query answering over undirected graphs [17]. Briefly
stated, the vertices in a graph G are decomposed into a tree in which each
node contains a set of vertices in G. Different from other partitioning based
methods, there are overlapping between the tree nodes, i.e., for any vertex v in
G, there could be more than one node in the tree which contains v. However, it
is required that all these nodes constitute a connected subtree (see Definition 1
for the formal definition). Based on this decomposed structure, many otherwise
intractable problems can be solved if the underlying tree decomposition has
bounded treewidth.

In this paper we make an attempt to solve reachability problems over di-
rected graphs by using tree decomposition based index structures. In compar-
ison to shortest path queries, reachability query answering enjoys some nice
properties. For instance, the existing BFS or DFS algorithms are highly effi-
cient. However, these properties might cause challenging problems to occur, if
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substantial improvement on time complexity is desired. Note that one extreme
scheme is to store all the transitive closures in the pre-processing stage, thus
the reachability queries can be answered in constant time. However this requires
an index of size O(n2), which is unrealistic for large scale graphs. Therefore,
finding a better trade-off between time and storage is the ultimate goal of many
reachability query answering algorithms. Surprisingly, we have found that the
tree decomposition-based methodology can be adapted on directed graphs and
moreover, the efficiency of the query algorithm is substantially improved, based
on the index which is much smaller than O(n2). Our main contributions are the
following:

– Linear time tree decomposition algorithm. In spite of the theoreti-
cal importance of the tree decomposition concept, many results are practi-
cally useless due to the fact that finding a tree decomposition with optimal
treewidth is an NP-hard problem, w.r.t. the size of the graph. To overcome
this difficulty, we propose a simple heuristics to achieve a linear time tree
decomposition algorithm.

– Flexibility of balancing the time and space efficiency. From the pro-
posed tree decomposition algorithm, we discover an important correlation
between the query time and the index size. This flexibility enables the users
to choose the best time/space trade-off according to the system requirements.

1.1 Related Work

Most of the current research of reachability query answering concentrates on
methods that first build an index structure to store part of the transitive closures,
then speed up the query answering process, thus to find better trade-offs of index
size and the query answering time. They can be categorized into the two main
groups. The first group of algorithms are based on the 2-Hop approach first
proposed by Cohen et al. [6]. The second are based on the interval labeling
approach by Agrawal et al. [1].
2-Hop based algorithms. The basic idea of the 2-Hop approach is to assign
for each vertex v a list of vertices which are reachable from v, denoted as Lin(v),
and a list of vertices to which v can reach, denoted as Lout(v), so that for any two
vertices u and v, u→ v if and only if Lout(u)∩Lin(v) 6= ∅. The ultimate goal of
the algorithm is to minimize the index size of the form

∑
v∈V Lout(v) + Lin(v).

Clearly if the index is available, the reachability query answering requires only
two lookups. However, this optimization problem is NP-hard. Improvements on
the 2-Hop algorithm can be found in [13, 14] Generally 2-Hop based algorithms
do not scale for large size graphs.
Interval labeling based algorithms. Interval labeling based approaches uti-
lize the efficient method of indexing and querying trees which was applied to
XML query processing in recent years [18]. It is well known that given a tree,
we can label each node v by an interval [start(v), end(v)]. Thus the reachability
query can be answered by comparing the start and the end labels of u and v
in constant time. The labeling process takes linear time and space. The Dual
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Labeling algorithm proposed by Wang et al. [16] achieved to answer reachability
queries in constant time. They first identify a spanning tree from the graph and
label the vertices in the tree with pre- and post-order values. Then the transitive
closure for the rest of the edges is stored. Clearly, the price for the constant query
time is paid by the storage cost of t2 where t is number of the non-tree edges
in the graph. Therefore the Dual Labeling approach achieves good performance
only if the graph is extremely sparse where t� n.

Jin et al. [9] proposed a different index structure called Path Tree. Like other
interval labeling based methods, they extract a tree from the original graph.
But every node in the tree contains a path, instead of a single vertex. This index
structure is superior to the previous ones since it can encode some non-tree
structures such as grid in an elegant way.

All of these algorithms in common is that the performance deteriorate for
non-sparse graphs. In contrast, the index structure proposed in this paper scales
for dense graphs as well.

2 Graph Indexing with Tree Decomposition

2.1 Tree Decomposition of Directed Graphs

A directed graph is defined as G = (V,E), where V = {0, 1, . . . , n − 1} is the
vertex set and E ⊆ V ×V is the edge set. Let n = |V | be the number of vertices
and m = |E| be the number of edges.

For each directed graph, its tree decomposition is defined as follows:

Definition 1. A tree decomposition of G = (V,E), denoted as TG, is a pair
({Xi | i ∈ I}, T ), where {Xi | i ∈ I} is a collection of subsets of V and T = (I, F )
is a tree such that:

1.
⋃

i∈I Xi = V .
2. for every (u, v) ∈ E, there is i ∈ I : u,w ∈ Xi.
3. for all v ∈ V , the set {i | v ∈ Xi} induces a subtree of T .

A tree decomposition contains a set of tree nodes, where each node contains
a set of vertices in V . We call the sets Xi bags. It is required that every vertex
in V should occur in at least one bag (condition 1), and for every edge in E,
both vertices of the edge should occur together in at least one bag (condition 2).
The third condition is usually referred to as the connectedness condition, which
requires that given a vertex v in the graph, all the bags which contain v should
be connected.

Note that from now on, the node in the directed graph G is referred to as
vertex, and the node in the tree decomposition is referred to as tree node or simply
node. For each tree node i, there is a bag Xi consisting of vertices. To simplify
the presentation, we will sometimes use the term node and its corresponding bag
interchangeably.

Given any graph G, there may exist many tree decompositions which ful-
fill all the conditions in Definition 1. However, we are interested in those tree
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decompositions with smaller bag sizes. The width of a bag is the cardinality
of the bag. The width of a tree decomposition ({Xi | i ∈ I}, T ) is defined as
max{|Xi| | i ∈ I} 1. The treewidth of G is the minimal width of all tree decom-
positions of G. It is denoted as tw(G). Note that trees and forests are precisely
the structures with treewidth 2.

Example 1. Consider the graph illustrated in Figure 1(a). One of the tree de-
compositions is shown in Figure 1(b) . Recall that only trees and forests have
treewidth 2, therefore this tree decomposition is optimal and we have tw(G) = 3.

(a) (b)

Fig. 1. The graph G (a) and one tree decomposition TG (b) with tw(G) = 3

Let G = (V,E) be a graph and TG = ({Xi | i ∈ I}, T ) its tree decomposition.
Due to the third condition in Definition 1, for any vertex v in V there exists
an induced subtree of TG in which every bag contains v. We call it the induced
subtree of v and denote it as Tv. Furthermore, we denote the root of Tv as rv
and its corresponding bag as Xrv . For instance, the induced subtree of vertex 3
in Figure 1(b) contains the bags X0, X1 and X2, where r3 = 0.

2.2 Tree Path

Let G = (V,E) be a directed graph, and u, v ∈ V . We say v is reachable from
vertex u, denoted as u → v, if there is a path starting from u and ending at v
with the form (u, v1, . . . , vn, v), where (u, v1), (vi, vi+1, (vn, v) ∈ E. Note that in
this paper, we consider the more general definition of path, that is, a path is not
necessarily a simple path.

Let us consider the graph vertices in the tree nodes. Since each vertex occurs
in more than one bag, a vertex can be identified with {v, i}, where v is a vertex
and i the node in the tree, meaning that vertex v is located in the tree node i.
We denote it as tree vertex. Now we define the so-called inner edge and inter
edge in the tree decomposition.

Definition 2 (Inner edge, Inter edge, Tree path). Let G = (V,E) be a
directed graph and TG = ({Xi | i ∈ I}, T ) its tree decomposition.

1 The original definition of the width is max{|Xi| | i ∈ I}−1, due to esthetic reasons.
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– The inner edges of TG are precisely the pairs of tree vertices defined as
follows: {({u, i}, {v, i}) | (u, v) ∈ E, u, v ∈ Xi(i ∈ I)}.

– The inter edges of TG are the pairs of tree vertices with the form ({v, i}, {v, j})
where v ∈ Xi and v ∈ Xj, and either (i, j) ∈ F or (j, i) ∈ F holds.

– A tree path from {u, i} to {v, j} is a sequence of tree vertices connected with
either inter or inner edges.

Intuitively, the set of inner edges consists precisely of those edges in E,
with the extra information of the bags in which the edges are located. For in-
stance, the inner edges of the tree decomposition of the graph in Example 1 are:
({0, 2}, {5, 2}), ({1, 3}, {2, 3}), ({2, 1}, {3, 1}), ({3, 2}, {0, 2}), . . .. Note that it
happens that the same pair of vertices occurs in more than one bag. For instance,
the edge (4, 3) occurs in both bags X0 and X1. Thus there are two inner edges:
({4, 1}, {3, 1}) and ({4, 0}, {3, 0}) For instance, in Example 1, ({5, 0}, {5, 2}) is
an inter edge, as well as ({5, 2}, {5, 0}).

Lemma 1. Let G = (V,E) be a directed graph and TG = ({Xi | i ∈ I}, T ) its
tree decomposition. Let u, v ∈ V . Let further {u, i} and {v, j} be tree vertices in
TG. There is a path from u to v in G if and only if there is a tree path from
{u, i} to {v, j}.

Example 2. Consider the graph in Figure 1(a). Vertex 4 reaches vertex 0 with
the path {4, 1, 2, 3, 0}. In the tree decomposition in Figure 1(b), there is a tree
path from {4, 1} to {0, 2} as follows: { {4, 1}, {4, 3}, {1, 3}, {2, 3}, {2, 1}, {3, 1},
{3, 0}, {3, 2}, {0, 2} }.

2.3 Reachability Test on Tree Decomposition

With the definition of tree path, to find a path from u to v, we can simply
search in the tree decomposition for a corresponding tree path. Moreover, over
the tree decomposition, we only need to concentrate on the simple path between
the corresponding tree vertices. There is a well known property of trees that says
for any two nodes i and j in a tree, there exists a unique simple path, denoted
as SPi,j , such that every path from i to j contains all the nodes in SPi,j .

Proposition 1. Let G = (V,E) be a directed graph and TG = ({Xi | i ∈ I}, T )
its tree decomposition. Let u, v ∈ V . Let further ru (resp. rv) be the root node of
the induced subtree of u (resp. v). Then u → v if and only if for every node n
in SPru,rv , there is at least one vertex t ∈ Xn, such that u→ t and t→ v.

Proof. The ”if” direction is trivial: given a tree path from {u, i} to {v, j}, we
only need to consider the inner edges. Since for each inner edge {u, i}, {v, i},
there is an edge (u, v) ∈ E, the path from u to v can be easily constructed.

Now we prove the ”only if” direction: assume that there is a path from u to
v in G. We prove it by induction on the length of the path.
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– Basis: if u reaches v with a path of length 1, that is, (u, v) ∈ E. Then there
exists a node k in the tree decomposition, s.t. u ∈ Xk and v ∈ Xk. We start
from {u, i}, traverse along the induced subtree of u, till we reach {u, k}.
Since the induced subtree is connected, the path from {u, i} to {u, k} can be
constructed with inter edges. Then we reach from {u, k} to {v, k} with an
inner edge. Now we traverse from {v, k} to {v, j} along the induced subtree
of v, which can again be constructed with inter edges. The tree path from
{u, i} to {v, j} is thus completed.

– Induction: assume that the lemma holds with paths whose length is less than
or equal to n− 1, we prove that it holds for paths with length of n. Assume
that there is a path from u to v with length n, where u reaches w with length
n − 1 and (w, v) ∈ E. From induction hypothesis, we know that there is a
tree path form {u, i} to {w, l} in the tree decomposition, where l is a node
in the induced subtree of w. Since (w, v) ∈ E, there is a node n such that
w ∈ Xn and v ∈ Xn. Thus {w, n} can be reached from {w, l} with inter
edges. Then {w, n} can reach {v, n} with an inner edge. Finally {v, n} can
reach {v, j} with a sequence of inter edges. This completes the proof.

ut

Proposition 1 shows that for the reachability test from u to v, although the
tree path from {u, ru} to {v, rv} may possibly visit any node in the tree, we only
need to concentrate on the reachability test for those vertices which occur in the
simple path SPru,rv

. More precisely, we can simply take any node n from SPru,rv
,

and check whether there is a vertex t ∈ Xn, such that u → t and t → v hold.
In order to further accelerate the query process, we can execute the reachability
test along the path tree in a bottom-up manner, as shown in Figure 2. In order
to enable the bottom up operation, we need to store the transitive closure for
each bag in the tree decomposition. That is, in every bag X, for every pair of
vertices x, y ∈ X, the boolean values of x→ y and y → x are pre-computed. We
show in the following proposition how the reachability queries from u to all the
vertices in SPru,k can be answered.

Fig. 2. Bottom-up processing on the simple tree path
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Proposition 2. Let G = (V,E) be a directed graph and TG = ({Xi | i ∈ I}, T )
its tree decomposition. Let u, v ∈ V . Let k be the lowest common ancestor of
ru and rv. The reachability queries from u to all the vertices in SPru,k can be
answered in O(w2h), where h = |SPru,k| and w is the maximal width of the bags
in SPru,k.

Proof. Assume that the transitive closure in every bag from SPru,k is available.
The reachability test starts with node ru. From the information of transitive
closure, we can simply obtain the set Yru

⊆ Xru
such that every vertex in Yru

can
be reached from u. Next, we consider ru as the child node and process its parent
node, with the available reachability information. This process is recursively
executed h times, until k is reached.

Next we show that at each step of the processing, all the vertices in the
current bag reachable from u can be found in w2 time, where w is the width
of the current bag. Assume p is the current node, c its child node, and we have
obtained Yc ⊆ Xc, where Yc contains all the vertices reachable from u. Now we
have to decide the set Yp ⊆ Xp, i.e. identify all the vertices reachable from u in
Xp.

Let z be a vertex in Xp. We want to decide whether u → z. We have the
following two cases:

1. z ∈ Xp and z ∈ Xc. Since at the child node we know whether z ∈ Yc, we set
z ∈ Yp if z ∈ Yc.

2. z ∈ Xp and z /∈ Xc. This is a more complex case. We show that z ∈ Yp (i.e.
z is reachable from u) if and only if there exists a vertex t, such that t ∈ Xp,
t ∈ Yc and t→ z holds.
(a) ”if” direction is trivial.
(b) ”only if: Assume that u→ z holds. Since z does not occur in Xc, accord-

ing to the connectedness condition, z does not occur in any bag in the
subtree rooted with c. Thus the induced subtrees of u and z do not share
any common node in TG. Since u→ z, there is a tree path from {u, ru}
to {z, rz}, and c, p ∈ SPru,rz . The tree path from {u, ru} to {z, rz} must
contain an inter edge of the form ({t, c}, {t, p}), where t ∈ Xp, Xc, be-
cause this is the only possible edge to traverse from c to p. Clearly u→ t
holds. From the assumption u→ z, we obtain that t→ z must hold.

Given the set Yc ⊆ Xc and the transitive closure in Xp, we can obtain Yp

as follows: First set Yp as Yc ∩Xp. Then for each vertex t ∈ Yp, we add the
vertex s into Yp, if t→ s holds. Clearly the time consumption is in the worst
case O(w2) where w is the width of Xp.

ut

3 Algorithms and Complexity Results

In this section, we present the detailed algorithms for both the index construc-
tion and the reachability query answering. In Section 3.1 we begin with the
introduction of algorithmic issues on the tree decomposition from a complexity
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theory perspective, and then justify our choice of an efficient but suboptimal
decomposing algorithm. In Section 3.2 we first analyze the reachability query
answering algorithm proposed in Theorem 2 from the previous section. Then,
we point out that the time and space improvement can be made to achieve higher
efficiency of our algorithm.

3.1 Index Construction via Tree Decomposition

Since its introduction by Robertson and Seymour [12], the concepts of tree de-
composition has been proved to be of great importance in computational com-
plexity theory [4]. The theoretical significance of the tree decomposition based
approach lies in the fact that many intractable problems can be solved in poly-
nomial time (or even in linear time) for graphs with treewidth bounded by a
constant. Problems which can be dealt with in this way include many well known
NP-complete problems, such as the Independent Set, the Hamiltonian Circuits,
etc. Recent applications of tree decomposition based approaches can be found
in Constraint Satisfaction [10] and database design [7].

However, the practical usefulness of tree decomposition based approaches has
been limited due to the following two problems: (1) Calculating the treewidth
of a graph is hard. In fact, determining whether the treewidth of a given graph
is at most a given integer w is NP-complete [2]. Although for fixed w, linear
time algorithms exist to solve the decision problem ”treewidth ≤ w” [3], there
is a huge hidden constant factor, which prevents it to be useful in practice.
There exist many heuristics and approximation algorithms for determining the
treewidth, unfortunately few of them can deal with graphs containing more than
1000 nodes [11]. (2) The second problem lies in the fact that even if the treewidth
can be determined, it still can not be guaranteed that good performance will be
obtained since the time complexity of most of the algorithms is exponential to
the treewidth. Therefore, to solve really hard problems efficiently by using the
tree decomposition based approaches, we have to require that the underlying
graphs have bounded treewidth (i.e. less than 10).

As far as the efficiency is concerned, we can only search for an approxi-
mate solution, which yields a tree decomposition whose width is greater than
the treewidth. On the other hand, we can tolerate a tree decomposition whose
treewidth is not bounded. As we have seen from Proposition 2, the time com-
plexity is in the worst case quadratic of the maximal bag size. We will show
later in this section that our query answering algorithm does not depend on the
treewidth, but with some parameter which can be enforced to be bounded, due
to the nice property of our dedicated decomposing algorithm, and the height of
the tree.

Inspired from the so-called pre-processing methods by Bodlaender et al. [5],
we apply the reduction rules on the graph by reducing stepwise a graph to
another one with fewer vertices, due to the following simple fact.

Definition 3 (Simplicial). A vertex v is simplicial in an undirected graph G
if the set of neighbors of v form a clique in G.



9

Figure 3 shows some special cases. If a vertex v has degree of one (Figure
3(a)), then we can remove v without increasing the treewidth. Figure 3(b), 3(c)
illustrate the cases of degree 2 and 3 respectively.

(a) (b) (c)

Fig. 3. A undirected graph containing a vertex v with degree 1 (a), 2 (b) and 3 (c)

The main idea of our decomposition algorithm is to reduce the graph by
removing the vertices one by one from the graph, and at the same time push
the removed vertices into a stack, so that later on the tree can be constructed
with the information from the stack. First a vertex v with a specific degree is
identified. We first check whether all its neighbors form a clique, if not, we add
the missing edges to construct a clique. Then v together with its neighbors are
pushed into the stack, which is followed by the deletion of v and its edges in the
graph. See Algorithm 2.

Algorithm 1 tree decomp(G)
Input: G = (V, E) is a directed graph.
Output: return the tree decomposition TG.
1: Transform G into an undirected graph UG;
2: graph reduction(UG); {output the vertex stack S}
3: tree construction(S, G); {output the tree decomposition}

The program begins with removing isolated vertices and vertices with degree
1. Then, the reduction process proceeds with the vertices with degree of 2, 3, . . ..
We denote such procedure of removing all the vertices with degree x as degree-x
reduction.

Example 3. Consider the undirected version of the graph in Example 1. Figure 4
illustrates the reduction process. The process starts with a degree-2 reduction by
removing vertex 0 and its edges, after adding the edge between 3 and 5. Vertex
0 and its neighbors are then pushed in the stack. Next vertex 1 is removed,
following the same principle as of 0. After vertex 2 is removed, a single triangle
is then left.

The procedure graph reduction will terminate when one of the following
conditions is fulfilled. (1) The graph is reduced to an empty set. For instance, if
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Fig. 4. The reduction process on the undirected graph of Example 1

the graph contains only simple cycles, it will be reduced to an empty set after
degree-2 reductions. This is usually the case for extremely sparse graphs. (2) For
graphs which are not sparse, one has to define a upper bound l for the reduction,
so that the program stops after the degree-l reduction. Note that as the degree
increases, the effectiveness of the reduction will decrease, because in the worst
case, we need to add x(x− 1)/2 edges in order to remove x edges.

Algorithm 2 graph reduction(UG)
Input: UG is the undirected graph of G, l is the upper bound for the reduction.
Output: stack S and the reduced graph UG′

1: initialize stack S;
2: for i = 1 to l do
3: remove upto(i);
4: end for
5: return S, UG;

6: procedure remove upto(x)
7: while TRUE do
8: if there exists a vertex v with degree less than x then
9: {v1, . . . , vx} = neighbors of v;

10: build a clique for {v1, . . . , vx};
11: push v, v1, . . . , vx into S;
12: delete v and all its edges from UG;
13: else
14: break;
15: end if
16: end while

After the reduction process, the tree decomposition can be constructed as
follows: (1) At first we collect all the vertices which were not removed by the
reduction process and assign this set as the bag of the tree root. The size of the
root depends on the structure of the graph (i.e. how many vertices are left after
the reduction). (2) The rest of the tree is generated from the information stored
in stack S. Let Xc be the set of vertices {v, v1, . . . , vx} which is popped up from
the top of S. Here v is the removed vertex and {v1, . . . , vx} are the neighbors
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of v which form a clique. After the parent bag Xp which contains {v1, . . . , vx}
is located in the tree, Xc is added as a child bag of Xp. This process proceeds
until S is empty. Algorithm 3 illustrates the process.

Algorithm 3 tree construction(S,G,UG′)
Input: S is the stack storing the removed vertices and their neighbors, G is the directed

graph, UG′ is the reduced graph of UG.
Output: return tree decomposition TG

1: construct the root of TG containing all the vertices of UG′;
2: while S is not empty do
3: pop up a bag Xc = {v, v1, . . . , vx} from S;
4: find the bag Xp containing {v1, . . . , vx};
5: add Xc into T as the child node of Xp;
6: end while
7: generate transitive closure in all bags;

The last step of the tree construction process is to generate the transitive
closure for every bag.

The correctness of our tree decomposition algorithm can be shown by the
induction on the reduction steps. Note that during the reduction process, edges
are inserted into the original graph. Therefore, the tree decomposition we obtain
according to the algorithm is based on a graph consisting of extra edges. However,
this does not affect the correctness proof due to the following proposition.

Proposition 3. Let G = (V,E) and G′ = (V,E′) be graphs where E ⊆ E′.
Then any tree decomposition of G′ is a tree decomposition of G.

Proof. Let TG′ be the tree decomposition of G′. By checking the three properties
of Definition 1, it is obvious that TG′ is also a tree decomposition of G.

3.2 Reachability Query Answering

Recall from Proposition 2 that the time complexity of the bottom-up query
answering is O(w2h). This upper bound is optimal, only if the following two
conditions are fulfilled: (1) the treewidth of the underlying graph is bounded
(that is, w2 � n), and (2) there is an efficient tree decomposition algorithm
for it. The first condition has to be fulfilled, since otherwise the linear time
BFS algorithm would be more efficient. Unfortunately, as we have seen in the
previous section, given an arbitrary graph, it is clear that neither (1) nor (2)
can be fulfilled. Therefore, we have to inspect the tree decomposition heuristics
applied in Section 3.1 for improvements.

From Treewidth to |R| and l According to Algorithm 2, a graph G can
be decomposed by the degree-l reductions by increasing x from 1 to l. As soon
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as the degree-l reduction is done, all the vertices which are not yet removed
are the elements in R of the tree decomposition. Usually if the graph is not
extremely sparse, the relationship l � |R| holds. In fact, we could even enforce
such a relationship by setting l to be small enough in the tree decomposition
algorithm. Hence, the resulting tree decomposition has the following properties:
(1) the root is of big size (|R|), and (2) the rest of the bags have smaller size
(the upper bound is l).

If we inspect the bottom-up query processing more carefully, we could observe
that the quadratic time computation over the root can be always be avoided. To
see this, let us consider the vertices u and v and the lowest common ancestor of
ru and rv is the root R. Assume that X1 (resp. X2) is the child node of R which
locates in the simple path from ru (resp. rv) to R. Consider now that for all
x ∈ X1, reach(u, x) (resp. all y ∈ X2, reach(y, v)) have been computed. Clearly,
any path from u to v has to pass through a vertex in X1 and X2 respectively.
Therefore, at the root node R, we can first calculate X1 ∩R and X2 ∩R. Since
all the paths from u to v has to pass one vertex in X1 ∩R and another vertex in
X2 ∩R, we only need to execute a nested loop on X1 ∩R and X2 ∩R to decide
the reachability. Since both |X1| and |X2| have the upper bound of l, the overall
time consumption is of O(l2h), thus independent of |R|. Note that if both u and
v are located in R, then the shortest path can be immediately obtained from the
local shortest path from u to v, which are pre-computed.

Algorithm 4 reach(TG, u, v)
Input: TG is the tree decomposition of G and u, v vertices in G.
Output: return TRUE if u→ v, otherwise FALSE

1: c = ru = root of induced subtree of u; c = rv = root of induced subtree of v;
2: k = lowest common ancestor of ru and rv;
3: Ru = reachable vertices from u in Xc;
4: while c.parent 6= k do
5: p = c.parent; Ru = Ru ∩ Xc ∩ Xp;
6: for all t in Ru do
7: Rt= set of vertices reachable from t in Xp; Ru = Ru ∪Rt;
8: end for
9: c = p;

10: end while
11: Rv = all vertices that reach v in Xc;
12: while c.parent 6= k do
13: p = c.parent; Rv = Rv ∩ Xc ∩ Xp;
14: for all t in Rv do
15: Rt= set of vertices reach t in Xp; Rv = Rv ∪Rt;
16: end for
17: c = p;
18: end while

19: Ru = Ru ∪Xk; Rv = Rv ∪Xk;
20: return (reach(x, y) | ∃x ∈ Ru ∧ ∃y ∈ Rv);
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The algorithm for the reachability query answering is presented in Algorithm
4. Comparing with the bottom-up query processing shown in Proposition 2,
Algorithm 4 is customized with respect to our dedicated tree decomposition
algorithm, in the sense that the query time complexity is adapted to be related
to l, instead of the treewidth.

3.3 Complexity

Index construction time. For the index construction, we have to (1) generate
the tree decomposition, and (2) at each tree node, generate the local transitive
closures. For (1), both of the reduction step and the tree construction procedure
take time O(n). For (2), we deploy the classic BFS algorithm, which costs in
worst case O(m). In fact, we need to run for each vertex in G exactly one BFS
procedure. Therefore, the overall index construction time is O(nm).
Index size. In each bag X, for each pair of vertices u, v in X, if u reaches v, we
need to store a boolean value. Thus the index size is |X|2, Since the relationship
l� |R| holds, the root size (|R|) is dominant among all the bags. Therefore, the
index size is |R|2. The index size consists of the tree structure, constructed by
using the tree decomposition algorithm. However, this space overhead is linear
to n, thus can be ignored.
Query. The bottom-up query processing for reachability query answering takes
time O(l2h), where l is the number of the reductions and h is the height of
the tree decomposition. Note that the proposed tree decomposition algorithm
is independent of the treewidth of the underlying graph, since the reduction
parameter l can be adjusted according to the property of the graph. On the
other hand, there is no guarantee that the optimal tree decomposition can be
obtained. In the worst case, if tree-width is approximately n, there are Θ(n2)
edges to be stored. So the running time of the query algorithm in the worst
case is worse than the one of the BFS (or DFS): if tw(G) = Θ(|G|). Clearly our
algorithm is not suitable for such graphs.

4 Experiments

In this section we evaluate the tree decomposition method on real datasets. We
are interested in the following parameters: Index size, Index construction time,
and Query time. Note that the index size is measured as the size of transitive
closures, which takes up the major part of the overall index size. Besides the
standard measurements, we are also interested in the structure of the tree de-
composition, which may influence the performance of the algorithm. These are:
the number of tree nodes (#TreeN), the number of all the vertices stored in the
bags (#SumV), the height of the tree (h), the number of vertex reductions (l),
and the root size of the tree (|R|). Note that we have chosen the optimal l, in
order to achieve the best query time performance.

We tested our algorithm over real large datasets with density being larger
than or close to 2 used in [8]. All graphs are extracted from real-world large
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datasets with density being larger than or close to 2. Among them, arXiv is
extracted from a dataset of citations among scientific papers from the arxiv.org
website. Citeseer contains citations among scientific literature publications from
the CiteSeer project, and pubmed was extracted from an XML registry of open
access medical publications from the PubMed Central website. GO contains
genetic terms and their relationships from the Gene Ontology project. Yago
describes the structure of relationships among terms in the semantic knowledge
database from the YAGO project. The details of the datasets can be found in
[8]. All tests are run on an Intel(R) Core 2 Duo 2.4 GHz CPU, and 2 GB of main
memory. All algorithms were implemented in C++ with the Standard Template
Library (STL). A query is generated by randomly picking a pair of nodes for
a reachability test. We measure the query time by answering a total of 10000
randomly generated reachability queries. We make a comparison of the query
time with the linear time Breadth First Search method (BFS).

Graph #V #E #TreeN #SumV h l |R| Index Query Time

Time(s) Size TD (ms) BFS (ms)

Arxiv 6000 66707 4713 28300 12 30 1288 12.5 362228 49.6 449.5
Citeseer 10720 44258 8291 33411 9 8 2430 3.6 91067 8.8 135.5

Go 6793 13361 5186 19262 9 5 1608 1.2 29674 5.8 77.1
Pubmed 9000 40028 6482 26746 6 9 2519 2.9 185065 5.8 127.4

Yago 6642 42392 6161 19677 8 8 482 1.2 11673 3.2 78.9

Table 1. Statistics of real graphs, the properties of the index and query performance

As shown in Table 1, the time costs for query answering are substantially
improved with respect to the naive BFS algorithm. As expected, there is a cor-
relation between the index size and the size of the root size of the tree decom-
position |R|. Note that the size of the index structure should be approximately
|R|2. However, we can reduce the size by only store those pairs which are reach-
able from one to the other. We obtain a query time speedup with respect to the
naive BFS approach between 11% (Arxiv) and 4% (Yago).

5 Conclusions and Future Work

In this paper, we introduced the tree decomposition as the index structure for
large directed graphs to answer reachability queries efficiently. With both the-
oretical and empirical analysis, we demonstrated that our approach is intuitive
and efficient. The algorithms achieve good transitive closure compression rates
and scale well on large size graphs.

In the future we plan to investigate the following problems: (1) Develop-
ment of scalable tree decomposition algorithms. We expect to investigate more
heuristics and integrate them into our implementation. (2) How to update the
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of the index structure is the underlying graph is changed. Furthermore, we will
consider on-disk algorithms for both index construction and query answering.
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