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Abstract— Recently, the SPARQL query language for RDF with traditional engines, thus falling back on established
has reached the W3C recommendation status. In response to gptimization techniques implemented in conventional eegi
this emerging standard, the database community is currenyl As a proof of concept, most of these approaches have

exploring efficient storage techniques for RDF data and evala- b | d . IIv either i defined si
tion strategies for SPARQL queries. A meaningful analysis ad PE€€N evaluated experimentally either in user-defined scena

comparison of these approaches necessitates a compreheesind 0N top of the LUBM benchmark [18], or using the Barton
universal benchmark platform. To this end, we have develop# Library benchmark [19]. We claim that none of these sce-

SP’Bench, a publicly available, language-specific SPARQL per- narios is adequate for testing SPARQL implementations in a
formance benchmark. SPBench is settled in the DBLP scenario general and comprehensive way: On the one hand, user-defined

and comprises both a data generator for creating arbitrarily large . . . . .
DBLP-like documents and a set of carefully designed benchmia ~ SCENarios are typically designed to demonstrate very Bpeci

queries. The generated documents mirror key characteristis and properties and, for this reason, lack generality. On therth
social-world distributions encountered in the original DBLP data  hand, the Barton Library Benchmark is application-orielnte
set, while the queries implement meaningful requests on topf  while LUBM was primarily designed to test the reasoning
this data, covering a variety of SPARQL operator constellaions and inference mechanisms of Knowledge Base Systems. As a
and RDF access patterns. As a proof of concept, we apply . .
SP’Bench to existing engines and discuss their strengths and trade-off, in both benchmarks _Central ‘_S_PARQL operatoms lik
weaknesses that follow immediately from the benchmark redts. OPTIONAL and UNION, or solution modifiers are not covered.
With the SPARQL PerformanceBenchmark (SPBench)
we propose a language-specific benchmark framework specif-

. INTRODUCTION ically designed to test the most common SPARQL constructs,

The Resource Description Framework [1] (RDF) has bé&perator constellations, and a broad range of RDF data sicces
come the standard format for encoding machine-readapRiterns. The SBench data generator and benchmark queries
information in the Semantic Web [2]. RDF databases céi€ available for download in a ready-to-use format.
be represented by labeled directed graphs, where each edde contrast to application-specific benchmarks?Béhch
connects a so-calleslibjectnode to arobjectnode under label aims at a comprehensive performance evaluation, rather tha
predicate The intended semantics is that thbjectdenotes assessing the behavior of engines in an application-driven
the value of thesubjects propertypredicate Supplementary to scenario. Consequently, it is not motivated by a single ase c
RDF, the W3C has recommended the declarative SPARQL 3]t instead covers a broad range of challenges that SPARQL
query language, which can be used to extract informati@igines might face in different contexts. In this line, ibals
from RDF graphs. SPARQL bases upon a powerful graj® assess the generality of optimization approaches and to
matching facility, allowing to bind variables to componeit compare them in a universal, application-independeningett
the input RDF graph. In addition, operators akin to relaion\We argue that, for these reasons, our benchmark provides
joins, unions, left outer joins, selections, and projetti@an excellent support for testing the performance of engines in
be combined to build more expressive queries. a comprising way, which might help to improve the quality of

By now, several proposals for the efficient evaluation diture research in this area. We emphasize that such larguag
SPARQL have been made. These approaches comprise a vigecific benchmarks (e.g., XMark [20]) have found broad
range of optimization techniques, including normal formi; [ acceptance, in particular in the research community.
graph pattern reordering based on selectivity estimatjphs It is quite evident that the domain of a language-specific
(similar to relational join reordering), syntactic revimg [6], benchmark should not only constitute a representativeasizen
specialized indices [7], [8] and storage schemes [9], ]}, that captures the philosophy behind the data format, bot als
[12], [13] for RDF, and Semantic Query Optimization [14]leave room for challenging queries. With the choice of the
Another viable option is the translation of SPARQL intdBLP [21] library we satisfy both desiderata. First, RDF has
SQL [15], [16] or Datalog [17], which facilitates the evaticm been particularly designed to encode metadata, which makes

*The work of this author was funded by DFG grant GRK 806/2. Ihttp://dbis.informatik.uni-freiburg.de/index.php@jEct=SP2B



DBLP an excellent candidate. Furthermore, DBLP reflects [l. BENCHMARK DESIGN DECISIONS
interesting social-world distributions (cf. [22]), and rioe _ _
captures the social network character of the Semantic WebBenchmarking. The Benchmark Handbook [23] provides

whose idea is to integrate a great many of small databageSummary of important database benchmarks. Probably the
into a global semantic network. In this line, it facilitatdge MOSt “complete” benchmark suite for relational systems is
design of interesting queries on top of these distributions TPC, which defines performance and correctness benchmarks

Our data generator supports the creation of arbitrarilgdar 0" @ large variety of scenarios. There also exists a broagera
DBLP-like models in RDF format, which mirror vital key of benchmarks for other data models, such as object-odente
characteristics and distributions of DBLP. Consequery, databases (e.g., 007 [24]) and XML (e.g., XMark [20]).
framework combines the benefits of a data generator forCOming along with its growing importance, different bench-
creating arbitrarily large documents with interestingadétat Marks for RDF have been developed. The Lehigh University
contains many real-world characteristics, i.e. mimicsuradt Beénchmark [18] (LUBM) was designed with focus on infer-
correlations between entities, such as power law disidhst €NCce and reasoning capabilities of RDF engines. Howewer, th
(found in the citation system or the distribution of papersPARQL specification [3] disregards the semantics of RDF
among authors) and limited growth curves (e.g., the inimgas @"d RDFS [25], [26], i.e. does not involve automated reagpni
number of venues and publications over time). For this reas8n top of RDFS constructs such as subclass and subproperty
our generator relies on an in-depth study of DBLP, whiciglations. With tr_us regard, LUBM does not constlt_ute an
comprises the analysis of entities (e.g. articles and asitho _adequate_ scenario for SPARQL performance evaluation. This
their properties, frequency, and also their interaction. is underlined by the fact that central SPARQL. operatorshsuc

Complementary to the data generator, we have d@s UNION and CPTIONAL, are not addressed in LUBM.
signed 17 meaningful queries that operate on top of theThe Barton Library benchmark [19] queries implement a
generated documents. They cover not only the most import&§€r browsing session through the RDF Barton online catalog
SPARQL constructs and operator constellations, but alsp vaY design, the benchmark is application-oriented. All deer
in their characteristics, such as complexity and resuét.sthe are encoded in SQL, assuming that the RDF data is stored in
detailed knowledge of data characteristics plays a cruolel @ relational DB. Due to missing language support for aggrega
in query design and makes it possib|e to predict the Ch%engion, most queries cannot be translated into SPARQL On the
that the queries impose on SPARQL engines_ This, in tur(ht,her hand, central SPARQL features like left outer JOlm’E(t
facilitates the interpretation of benchmark results. relational equivalent of SPARQL operatorP@ONAL) and

The key contributions of this paper are the following. solution modifiers are missing. In summary, the benchmark

« We present S¥Bench, a comprehensive benchmark foeffers only limited support for testing native SPARQL eregn

the SPARQL query language, comprising a data generatorThe application-oriented Berlin SPARQL Benchmark [27]
and a collection of 17 benchmark queries. (BSBM) tests the performance of SPARQL engines in a pro-

« Our generator supports the creation of arbitrarily largetypical e-commerce scenario. BSBM is use-case driven and

DBLP documents in RDF format, reflecting key charagdoes not particularly address language-specific issueh. it/i
teristics and social-world relations found in the originafocus, it is supplementary to the Eench framework.
DBLP database. The generated documents cover varioughe RDF(S) data model benchmark in [28] focuses on
RDF constructs, such as blank nodes and containers. structural properties of RDF Schemas. In [29] graph feature
« The benchmark queries have been carefully designel RDF Schemas are studied, showing that they typically
to test a variety of operator constellations, data accesshibit power law distributions which constitute a valuabl
patterns, and optimization strategies. In the exhaustibasis for synthetic schema generation. With their focus on
discussion of these queries we also highlight the specifichemas, both [28] and [29] are complementary to our work.
challenges they impose on SPARQL engines. A synthetic data generation approach for OWL based on

« As a proof of concept, we apply 8Bench to selected test data is described in [30]. There, the focus is on rapidly

SPARQL engines and discuss their strengths and weajenerating large data sets from representative data of d fixe
nesses that follow from the benchmark results. Thiomain. Our data generation approach is more fine-graised, a
analysis confirms that our benchmark is well-suited twe analyze the development of entities (e.g. articles) tiner

identify deficiencies in SPARQL implementations. and reflect many characteristics found in social commumitie
« We finally propose performance metrics that capture Design Principles.In the Benchmark Handbook [23], four
different aspects of the evaluation process. key requirements for domain specific benchmarks are pos-

Outline. We next discuss related work and design decisionglated, i.e. it should be (1jelevani thus testing typical
in Section Il. The analysis of DBLP in Section Il forms theoperations within the specific domain, {@jrtablg i.e. should
basis for our data generator in Section V. Section V gives & executable on different platforms, &alable e.g. it should
introduction to SPARQL and describes the benchmark queriég possible to run the benchmark on both small and very large
The experiments in Section VI comprise a short evaluatiatata sets, and last but not least (4) it musubeerstandable
of our generator and benchmark results for existing SPARQL
engines. We conclude with some final remarks in Section VII. 2See http:/imww.tpc.org.



For a language-specific benchmark, the relevance require- [1l. THE DBLP DATA SET

ment (1) suggests that queries implement realistic reguestthe subsequent study of DBLP lays the foundations for our
on top of the data. Thereby, the benchmark should ngta generator. The analysis of frequency distributionscin
focus on correctness verification, but on common operai@htific production was introduced in [32], and charactissbf
constellations that impose particular challenges. FaRite®, pBLP have been investigated in [22]. The latter work studies
two SP'Bench queries test negation, which (under closedypset of DBLP, restricted to publications in database gsnu
world assumption) can be expressed in SPARQL throughigs shown that this subset reflects vital social relationd a
combination of operators RYIONAL, FILTER, andBOUND.  forms a small world on its own. Although this analysis forms
Requirements (2) portability and (3) scalability bringrao yajuable groundwork, our approach is much more pragmatic,
technical challenges concerning the implementation ofifta a5 we approximate distributions by concrete functions.
generator. In response, our data generator is determsinisti \we uyse function families that naturally reflect the sce-
platform independent, and accurate w.r.t. the desired sizenarios, e.g. logistics curves for modeling limited growth o
generated documents. MoreOVer, |t iS Vel’y effiCient a.nd mts power equations for power law distributions. All approxi_
with a constant amount of main memory, and hence suppoigtions have been done with tH&unZun data modeling
the generation of arbitrarily large RDF documents. tool (http://www.zunzun.com) and thgnuplot curve fitting
From the viewpoint of engine developers, a benchmagkodule (http:/www.gnuplot.info), whereas data extraati
should give hints on deficiencies in design and implementgom the DBLP XML document was realized with the Mon-
tion. This is where (4) understandability comes into pla,it  etDB/XQuery processor (http://monetdb.cwi.nl/XQuery/)
is important to keep queries simple and understandablééAtt An important objective of this section is to provide insight
same time, they should leave room for diverse optimizationgto key characteristics of DBLP. We analyze the structure
In this regard, the queries are designed in such a way that thg DBLP entities and work out a variety of interesting
are amenable to a wide range of optimization strategies. correlations and distributions, gaining insights thaablish
DBLP. We settled SPBench in the DBLP [21] scenario.a deep understanding of the benchmark queries and their
The DBLP database contains bibliographic information abogpecific challenges. As an exampi@3a, Q3b, andQ3c (see
the field of Computer Science and, particularly, databases. Appendix) look similar, but pose different challenges lshse
In the context of semi-structured data one often dign the probability distribution of article propertie@7, on the
tinguishes between data- and document-centric scenarigger hand, heavily depends on the DBLP citation system.
Document-centric design typically involves large amousfts ~ While the generated data is very similar to the original
free-form text, while data-centric documents are morecstruDBLP data for years up to the present, we can of course
tured and usually processed by machines rather than humayig no guarantees that they go hand in hand for future years.
RDF has been specifically designed for encoding informatiefowever, generated future data follows reasonable and well
in a machine-readable way, so it basically follows the dat&nown social-world distributions. The queries are built on
centric approach. DBLP, which contains structured data amsp of these distributions, thus being realistic, predittaand
little free text, constitutes such a data-centric scenario understandable. For instance, we query the citation system
As discussed in the Introduction, our generator mirroralvitwhich is mirrored by our generator, but ignore the distiidut
real-world distributions found in the original DBLP datahi$ of article release months, as this property is not mimicked.
constitutes an improvement over existing generators tieate  In the rest of this section we study key characteristics of
purely synthetic data, in particular in the context of a lamge- DBLP and introduce the function families that we use to model
specific benchmark. Ultimately, our generator might also heem. The interested reader will find more details and cdacre
useful in other contexts, whenever large RDF test data ifsstances of these functions in our Technical Report [33].
required. We point out that the DBLP-to-RDF translation o
the original DBLP data in [31] provides only a fixed amou
of data and, for this reason, is not sufficient for our purpose Our starting point for the discussion is the DBLP DTD
We finally mention that sampling down large, existing datand the February 25, 2008 version of DBLP. An extract of
sets such as U.S. Cendu@bout 1 billion triples) might the DTD is provided in Figure 1. Theblp element defines
be another reasonable option to obtain data with real-wogight child entities, namely ATICLE, INPROCEEDINGS ...,
characteristics. The disadvantage, however, is that sagpland WWW resources. We call these entitieeument classes
might destroy more complex distributions in the data, thid instances thereabcumentsFurthermore, we distinguish
leading to unnatural and “corrupted” RDF graphs. In comtra®etween ROCEEDINGS documents, calledtonferencesand
our decision to build a data generator from scratch allows usinstances of the remaining classes, caltedblications
customize the structure of the RDF data, which is in line with The DTD allows 22 possible child tags such asuthor
the idea of a comprehensive, language-specific benchmatk.url for each document class. Thedescribedocuments,
This way, we easily obtain documents that contain a rich s¥d we call themattributes Documents might be described

of RDF constructs, such as blank nodes or containers. by arbitrary, even repeated, attribute combinations, ary.
article might have several authors. In practice, howevdy; a

Shttp://www.rdfabout.com/demo/census/ subset of all document class/attribute combinations acdtor

. Structure of Document Classes



<IELEMENT dblp TABLE |
(articlelinproceedings|proceedings|book| PROBABILITY DISTRIBUTION FOR SELECTED ATTRIBUTES
incollection|phdthesis|mastersthesis|www) *>
<IENTITY % field Article  Inproc. Proc. Book  Incoll.  WwwW
"author|editor|title|booktitle|pages|year|address|
journallvolume|number|month|url|ee|cdrom|cite| aythor 0.9895 0.9970 0.0001 0.8937 0.8459 0.9973
publisher|note|crossref|isbn|series|school|chapter” > cite 0.0048  0.0104  0.0001 0.0079 0.0047  0.0000
<IELEMENT article (%field;) x> <IELEMENT www (%field;) — *> editor 0.0000  0.0000  0.7992  0.1040  0.0000 ~ 0.0004
isbn 0.0000 0.0000 0.8592 0.9294 0.0073 0.0000
Fig. 1. Extract of the DBLP DTD journal  0.9994  0.0000  0.0004 0.0000  0.0000  0.0000

month 0.0065 0.0000 0.0001 0.0008 0.0000 0.0000
pages 0.9261 0.9489 0.0000  0.0000 0.6849  0.0000

instance, attribut@ages is never associated with WWW, but tite 1.0000  1.0000 1.0000 1.0000 1.0000  1.0000

typically with ARTICLE documents. In Table | we show, for

selected document class/attribute pairs, the probaltiléythe B. Key Characteristics of DBLP

attribute describes a document of this class. For instaimgt We noticed that DBLP contains only few and incomplete

92.61% of all ARTICLES are described by attribueages.  information in its early years, but also found anomalieshie t
This probability distribution constitutes the basis fomge fi5| years, mostly in form of lowered growth rates. It might

erating instances of the individual document classes. NQIg it in the coming years, some more entries for thess year

that we simplify and ignore conditional probabilities argon,iii pe added belatedly (i.e., data might still be missingp,

attributes. We will elaborate on this decision in Section. VI we base our discussion on DBLP data in-between 1960-2005.
Repeated Attributes: A study of DBLP reveals_ that,_in Figure 2(b) plots the number ofRRCEEDINGS JOURNAL,

practice, only few attributes occur repeatedly within #n9\oroceepiNGs and ARTICLE documents as a function of

documents. For the majority of them, the number of repeatgq, They-axis is in log scale. Note thabURNAL is not an

occurrences is d|m|n|sh|ng, so we rgstnct ourselves on tg?plicit document class, but implicitly defined by tiirnal
most frequentepeated attributesite, editor, andauthor. attribute of ARTICLES. Inproceedings and articles are closely

Figure 2(a) exemplifies our analysis for attribuiee. For coupled to the proceedings and journals, e.g. there is an
the set of documents with at least asie attribute, we plot the average of abou0-60 inproceedings per proceeding

proba_lbility (-axis) that the_ attribute occurs exacblzytimes_ We observe exponential growth in all cases, with decreasing
(z-axis). Note that, accolrdlng to Talgle | only a small fraCt'OBrovvth rates of GURNAL and ARTICLE documents in the

of documents are described by attribate, e.g.4.8% of all 5 vears. This suggests a limited growth scenario, which
ARTICLE documents (arguably, in a complete scenario thig ynically modeled by logistic curves, i.e. functions hvia

value should be close t)0%). For this reason, in Figure 2(a) o\er and an upper asymptote that either continuously aszre
we exclude documents without outgoing citation; thougRy, yacrease for increasing We use curves of the form
in order to mirror the original distribution when assigning

citations, we first use the attribute probability distribat Jiogistic(¥) = Trp==

(Table I) to estimate the number of documents with at least on where a,b,¢ € R.,. Parametera constitutes the upper

citation and afterwards apply the distribution in Figur@)2( asymptote and the:-axis forms the lower asymptote. The
Based on experiments with different function families, weurve is “caught” in-between its asymptotes and increases

decided to use bell-shaped Gaussian curves for the appr@gntinuously, i.e. isS-shaped. The logistic curve for the

mation of the citation distribution. These curves are 8¢ number of dURNAL documents in Figure 2(b) is defined as
used to model normal distributions. Strictly speaking, data def .
40.43

is not normally distributed (due to the left limit=1), however, fiournat(yr) := 17 126.280—0-12(57—1950) -
these curves nicely fit the data far > 1 (cf. Figure 2(a)).
Gaussian curves are described by functions

pé’éfs)s(x) S 1 -05(25)? C. Author and Editor Characteristics

wherep € R fixes thex-position of the peak and € R~

We omit the concrete approximations for the other classes.

T oV2m

Using the yearly counts of the document classes, the
specifies the statistical spread. The approximation forciee probability distribution of attributeauthor (Table 1), anq the
T def (16.82,10.07) (yearly) average number of authors per paper (Section )II-A
distribution isdcite(z) = pgauss (). Analogously, for \ye can estimate thtal number of authorger year, i.e. the
the editor distribution we setlegiior () (:ie:f pf]?l'jggl'ls)(x). number ofauthor attributes in the data. We also approximate
The approximation function for repeatedthor attributes the number of distinct persons that appear as authors dcalle
bases on a Gaussian curve, too. However, we observed thatdiséinct authory and the number ohew authorsin a given
average number of authors per publication has increased oyear, i.e. persons that have not published before.
the years. In [22] this is explained by the increasing prestu Publications. In Figure 2(c) we plot (in log-log scale), for
publish and the proliferation of new communication platisr selected year and publication countthe number of authors
In order to mimic this property, we model parameters with exactlyz publications in this year. We observe a typical
and o as functions over time, which yield higher values fopower law distribution, i.e. only a couple of authors have a
later years. We refer the interested reader to our Technitaige number of publications, while lots of authors have few
Report [33] for a more detailed discussion. publications. Power law distributions are captured by fioms
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Fig. 2. (a) Distribution of citations, (b) Number of docuni@tass instances, and (c) Publication counts of authors

of the form fpoweriaw(x) = az® +b, with constants: € R+, RDF graphs may contain three types of elemehiRIs
exponentt € Ry, andb € R. Parameter affects ther-axis (Uniform Resource Identifiers) are strings that uniquebnid
intercept, exponenk defines the gradient, and constitutes tify abstract or physical resources, such as conferences or
a shift in y-direction. For the given parameter restriction, thpurnals.Blank nodedave an existential character, are locally
functions decrease steadily for increasing 0. unigue, and may be used in place of URIs. URIs and blank
Figure 2(c) indicates that, throughout the years, the aurveodes are modeled by ellipses; we distinguish blank nodes by
move upwards. This means that the publication count of titee prefix “.:". Literals constitute (possibly typed) values, such
leading author(s) has steadily increased over the3lagears, as strings or integers. They are represented by quotedstrin
and also reflects an increasing number of authors. We estimatThe RDF standard [1] introduces a fixed base vocabulary,

the number of authors with publications in yearr as e.g. rdf:type for type specifications, ordf:Bag to model bag
def e containers. RDFS [25] extends RDF by meta-level vocabu-

Jawp(@,yr) := 1.50 fpupi (yr)a™lewr¥") — 5, where lary with predefined semantics, such rs:subClassOf and
awp(YT) = aTea bt T 3.08, and rdf:subPropertyOf to specify subclass and subproperty rela-

h | ber of publicati , tions. On top of RDF and RDFS vocabulary, user-defined
Foubi (yg) returnslt eftota num Ier_o pg lcat|onsyv;; _domain-specific vocabulary collections can be developed. O
Coauthors. We also _ac_tor_ inre atlons_ ctween 5_““ ors It g| p scheme builds upon such domain-specific vocabulary.

coauthors. For space limitations, we omit the details. The DBLP RDF Scheme.Our RDF scheme basically
Editors. We associate editors with authors by investigatinQ)"OWS the RDF encoding approach presented in [31], which

the editors’ number of publications in earlier venues. Wﬁrovides an XML-to-RDF mapping of the original DBLP
observe_ that editors ‘YP'Ca”Y have published bgfore,_are. data set. However, as we want to generate arbitrarily-sized
known in the community. The concrete formula is omitted. y5.uments we provide lists of first and last names, publisher

D. Citations and random words to our data generator. Conference and

j&urnal names are always of the forl@6nferenceh ($year)

In Section IllI-A we have studied repeated occurrences . .
P and “Journal § ($year), where $i is a unique conference

attributecite, i.e. outgoing citations. Concerning tircoming ively i | ber in th
citations (i.e. the count of incoming references for pa):)eréresDeC Ively journal) number in the yegyea.

L SR We follow the approach from [31] and borrow vocabulary
we observed a characteristic power law distribution: Most . :
; . o . . from FOAF, SWRC, and Dublin Core (DC) to describe persons
papers have few incoming citations, while only few are cited o " ;
. . - and scientific resourcésAdditionally, we introduce a names-
often. Hence, the resulting formula is structurally simita

the distribution of publications among authors pacebench, which defines DBLP-specific document classes,

We found that, in the original data, there are much mo}SUCh asbench:Book — and bench:Article - Figure 3(2)

outgoing than incoming citations, because DBLP contaisbOWs the translation of attributes to RDF properties. Bohe

many untargeted citations (in form of emptiye tags). Given a?tnbute, we also list Its range restriction, I.€. the typie
. - elements it refers to. For instance, attribatehor is mapped
that only few papers have outgoing citations (cf. Table g, w, . )
- . . to dc:creator and references objects of tyfpeaf:Person
conclude that the DBLP citation system is very incomplete: ; :
The generated data reflects this incompleteness We want to test our queries on a rich set of RDF constructs,
9 P ' so we model authors as blank nodes (instead of URIs) of

IV. DATA GENERATION the form “_:givennamdastnamé. All outgoing references of
The RDF Data Model. Figure 3(b) shows a sample RDF® Publication are grouped together using the RDF standard
graph. Each edge in the graph encodes a single knowledge fggfitainer classdf.Bag . We also enriched a small fraction
e.g. the arc from nod@roceedinglto node_:JohnDue rep- of ARTICLE and INPROCEEDINGSdocumentS with t_h_e new
resents the RDF triplePfoceedinglswrc:editor_JohnDue), Propertybench:abstract (about1%, keeping the modification
meaning thatlohn Dueis an editor ofProceedingl Dashed low). Abstracts are not contained in the original DBLP data;

lines d_en_ote edges with |abe]f:typ_e_ an_d scis used as an 4See http://www.foaf-project.org/, http://ontoware /prgjects/swrc/, and
abbreviation for the subclass specificatiofs:subClassOf. http://dublincore.org/.



attribute mapped to prop. refers to : “donn_Du),
address swrc:address xsd:string . swreedtor — |
author dc:creator foaf:Person bench:PhDThesis \
booktitle bench:booktitle xsd:string “JohnDue*
cdrom bench:cdrom xsd:string 1(1940)°  “2007" \
chapter swrc:chapter xsd:integer §
cite dcterms:references foaf:Document | T\ ¥/ s/ - =z \
crossref dcterms:partOf foaf:Document ; f | g
editor swrc:editor foaf:Person
ee rdfs:seeAlso xsd:string - XML® df_2 —
isbn swrctisbn xsd:string . i
journal swrc:journal bench:Journal % / !
month swrc:month xsd:integer i /
note bench:note xsd:string /
number swrc:number xsd:integer Ly
page swrc:pages xsd:string !
publisher  dc:publisher xsd:string /
school dc:publisher xsd:string /
series swrc:series xsd:integer /
title dc:title xsd:string

url foaf:homepage xsd:string

volume swrc:volume xsd:integer

year dcterms:issued xsd:integer SPARGL™ 72008 “Frank Ness*

Fig. 3. (a) Translation of attributes, and (b) DBLP samplgtance in RDF format

foreach year:
calculate counts for and generate document classes;
calculate nr of total, new, distinct, and retiring autho

choosepublishing authors;

assignnr of new publications, nr of coauthors, and
nr of distinct coauthors to publishing authors;

/I s.t. constraints for nr of publications/author hold

assignfrom publishing authors to papers;
/I satisfying authors per paper/co authors constraint$

chooseeditors and assign editors to papers;
/I s.t. constraints for nr of publications/editors hold

generateoutgoing citations;

assignexpected incoming/outgoing citations to pape
write output until done or until output limit reached;
/I permanently keeping output consistent

they contribute comparably large strings (we use a Gaussian
distribution with u = 150 expected words and = 30).

Figure 3(b) shows a sample DBLP instance. On the log-
ical level, we distinguish betweeschemalayer and in-
stance layer (gray vs. white). Reference lists are blank
nodes of typerdf:Bag (see node_references)l Authors
and editors are typed witfoaf:Person . The superclass
foaf:Document  splits up into the individual document
classesbench:Journal , bench:Article , and so on.

The sample graph defines three persons, one proceeding, two
inproceedings, one journal, and one article. For readgbili
reasons, we plot only selected predicates. As also illtiestra
propertydcterms:partOf links inproceedings and proceedings
together, whileswrc:journal connects articles to their journals.
aul'[rr]1 O()rrsdae‘;éotopijogiii anz?;(?; F\)Acl)iltut ﬁf)?édql;(:]geksr]g:;; 2ﬁg?iﬁj_bl_icgtion and coauthor characterist_ics, as well as thetirn
teristics, we created a special author, named after theu‘am(())f distinct and new _authors (_Cf‘ Section 1II-C).

mathematician Paul Erdds. Per year, we assigpublications Al random functions (which, for example, are used to
and?2 editor activities to this prominent person, starting fror@SSign the attributes according to Table 1) base on a fixed

year 1940 up to 1996. For the ease of access, Paul Erd-ogqu, which makes data generation deterministic. Moreover
modeled by a fixed URI. As an example query consieér the implementation is platform-independent, so we ensat t
which extracts all persons witrdds Numbet 1 or 2. experimental results from different machines are comparab

Data Generation. Our data generator takes into account
all relationships and characteristics that have been edudi
in Section IIl. As shown in Figure 4, we simulate year by The SPARQL Query Language.SPARQL is a declarative
year and generate data according to the structural comsstralanguage and bases upon a powerful graph matching facility,
in a carefully selected order. Data generation is increaientallowing to match query subexpressions against the RDRinpu
i.e. small documents are always contained in larger doctsne@raph. The very basic SPARQL constructs are triple patterns

The generator is imp|emented in C++ and offers two pésubject,predicate, object), where variables mlght be used in
rameters, to fix either a triple count limit or the year up t®lace of fixed values for each of the three components. In
which data will be generated. When the triple count limit i§valuating SPARQL, these patterns are mapped against one
set, we make sure to end up in a “consistent” state, e.g. wH@hmore input graphs, thereby binding variables to matching
proceedings are written, their conference also will betided. hodes or edges in the graph(s). Since we are primarily inter-

The generation process is simulation-based. Among othefgted in database aspects, such as operator constellatidns
this means that we assign life times to authors, and indalidu access patterns, we focus on queries that access a singte gra

estimate their future behavior, taking into account global The SPARQL standard [3] defines four query formg- S
LECT queries retrieve all possible variable-to-graph mappings

while Ask queries returnyesif at least one such mapping

]

u

Fig. 4. Data generation algorithm

V. BENCHMARK QUERIES

5See http://www.oakland.edu/enp/.



TABLE Il
SELECTED PROPERTIES OF THE BENCHMARK QUERIESHORTCUTS ARE INDICATED BY BOLD FONT

Query 1 2 3abc 4 5ab 6 7 8 9 10 11 12c
1  OperatorsAND,FILTER,UNION,OPTIONAL A A0 AF AF AF AFO AFO AFU AU -
2 Modifiers: DISTINCT,LIMIT,Of FSET,ORDER bY - Ob - D D D D D L,Ob,Of
4 Filter Pushing Possible? - - v - vI- v v v - -
5 Reusing of Graph Patternss Possible? - - - v - v v v v o 5
6 Data AccessBLANK NODES,LITERALS,URIS, LU L,ULa LU B,L,U B,L,U B,L,U L,U,C B,L,U B,L,U U LU U

LaRGE LITERALS,CONTAINERS

exists, andho otherwise. [ESCRIBE extracts additional infor-  One characteristic SPARQL feature is operat®T@NAL.
mation related to the result mappings (e.g. adjacent npde&h expressionA OPTIONAL B joins result mappings from
while CONSTRUCT transforms the result mappings into and with mappings fromB and retains all mappings from
RDF graph. Most appropriate for our purpose isL8CT, for which no join partner inB is found, leaving variables
which best reflects SPARQL core evaluation. The interestitigat occur only inB unbound. By combining ©TIONAL
challenge in Ak queries is to efficiently locate a witnesswith FILTER and BOUND (which checks for a variable being
CoNsTRUCT and DescRIBE basically build upon the core bound),closed world negatiortan be encoded. Many inter-
evaluation of &LECT, i.e. transform its result in a post-esting queries involve such an encoding @6 and Q7).
processing step, which is not very challenging from a dat@aba SPARQL operates on graph-structured data, thus engines
perspective. Therefore, we focus oBLECT and Ask queries. should perform well on different kinds of graph patterns. By
The most important SPARQL operator isvA (denoted as now there exist only few real world SPARQL scenarios and
“™. An expressionsA AND B is evaluated by joining the a meaningful analysis of graph patterns that frequentlyeari
result mappings ofi and B on their shared variables [4]. Letin practice cannot yet be performed. In the absence of this
us conside1 from the Appendix, which defines three triplepossibility, we distinguish betwedang path chainsi.e. nodes
patterns interconnected throughNnB. When first evaluating linked to each other via a long patiushy patternsi.e. single
the patterns individually, variabl@journal is bound to nodes nodes linked to several other nodes, anthbinationghereof.
with (1) edgerdf:type pointing to the URIbench:Journal , Clearly, a precise definition of “long” and “bushy” is not
(2) edgedc:title pointing to the Literal Journal 1 (1940) possible, so we designed meaningful queries wimparably
of type string, and (3) edgécterms:issued, respectively. The long chains (i.eQ4, Q6) and bushy patterns (i.€)2). They
next step is to join the individual mapping sets on variableontribute to the broad variety of characteristics we cover
?journal. The result then contains all mappings fr@purnal SPARQL Optimization. Our objective is to design queries
to nodes that satisfy all three patterns. FinallsLBCT projects that are amenable to a variety of SPARQL optimization
for variable?yr, which has been bound in the third pattern. approaches. To this end, we discuss possible optimization
Other SPARQL operators areNtbN, OPTIONAL, and FL- techniques. One promising approach is fierdering of triple
TER, akin to relational unions, left outer joins, and selectionpatternsbased on selectivity estimations [5], akin to relational
respectively. For space limitations, we omit an explamatib join reordering. Closely related iSIFER pushing which aims
these constructs and refer the reader to the official SPAR@Lan early evaluation of filter conditions, similar to piijen
specification [3]. Beyond all these operators, SPARQL preushing in Relational Algebra. Both techniques might speed
vides functions to be used inIFER expressions, e.g. for up evaluation by decreasing the size of intermediate esult
regular expression testing. We expect these functions Iy odoin reordering might apply to most of our queries. Rbin
marginally affect engine performance, since their implameTable Il lists queries that supporttFER pushing.
tation is mostly straightforward (or might be realized thgh Another idea is taeuse evaluation results of triple patterns
efficient libraries). They are unlikely to bring insightgarthe (or even combinations thereof). This is possible wherehver t
core evaluation capabilities, so we omit them intentignallsame pattern is used multiple times (for instance, the first t
This decision also facilitates benchmarking of researdhopr triple patterns inQ4 select exactly the same nodes). We survey
types, which typically do not implement the full standard. the applicability of this technique in Table Il, rod
Our queries also cover SPARQL solution modifiers (such RDF Characteristics and Storage. Recalling that persons
as DSTINCT, ORDERBY), as they might affect the choice ofare modeled as blank nodes, all queries that deal with pgrson
the execution plan. We point out that the previous discussiaccess blank nodes. Quefy7 operates on top of the RDF
captures virtually all key features of the SPARQL queripag container for reference lists, whifg2 accesses the large
language. In particular, SPARQL (currently) does not suppabstract literals@2). Row 6 in Table Il provides a survey.
aggregation, nesting, recursion, and inferencing. A comparison of RDF storage strategies is provided in [12].
SPARQL Characteristics. Rows1 and2 in Table Il survey Storage scheme and indices imply a selection of efficient
the operators used in the benchmark querigk2¢ andQ12b data access path€ur queries impose varying challenges to
share the characteristics f5a and @8, resp., and are not the storage scheme, e.g. test data access through thetsubjec
shown). As shown, we cover various operator constellationmedicate, or object. Typically, predicates are fixed arijestis
combined with different solution modifiers combinations. or objects vary, but we also test uncommon access patterns.



We will resume this discussion when discuss@ and Q10.
Benchmark Queries. Our queries also vary in general

Q6. Return, for each year, the set of all publications authorgd b
persons that have not published in years before.

characteristics likeselectivity query and output sizeand

Q6 implements (closed world) negation, expressed through a

different types of joindVe will point come back to these issues combination of operators RX1ONAL, FILTER, andBOUND. The

in the subsequent discussion of the benchmark querieseln t

following, we distinguish betweem-memoryengines, which

Hdea of the construction is that the block outside theT@NAL

expression computes all publications, while the inner ooe- c
stitutes earlier publications from authors that appearsidat

load documents from file and process queries in main memory;he outer FLTER expression then retains publications for which
and native engines, which rely on a physical database. WherPauthor2is unbound, i.e. exactly the publications of those authors

discussing evaluation strategies for native engines, \senas

that have not published in earlier years.

that the document has been loaded into the database before

While, in this paper we focus on the SPARQL versions ¢

Q7. Return the titles of all papers that have been cited at least
once, but not by any paper that has not been cited itself.

the SPBench queries, we also point the interested reader

the SQL translations of these queries. They are availaliieeon
at our project page and a discussion can be found in [34].

Q1. Return the year of publication of “Journal 1 (1940)".

This simple query returns exactly one result (for arbityaiarge
documents). Native engines might use index lookups in cwaer

This query implements double negation. We expect only few
results, due to the incomplete citation system (cf. Sectibn
D). Though, double negation makes the query very challengin
Engines might also reuse graph pattern results here, e.tplabk
?class|i] rdf:type foaf:Document. ?doc]i] rdf:type ?class]i].
occurs three times, for empty], [¢|=3, and [i]=4.

answer this query in (almost) constant time, i.e. executiome
should be independent from document size.

Q8. Compute authors that have published with Paul Erdds or
with an author that has published with Paul Erdos.

Q2. Extract all inproceedings with propertiesdc:creator,
bench:booktitle, dcterms:issued, dcterms:partOf, rdfs:seeAlso,
dc:title, swrc:pages, foaf:homepage, and optionallybench:abstract,
including their values.

This query implements a bushy graph pattern. It contains a

For this query, the evaluation of the secondviON part is
“contained” in the evaluation of the first part. Again, gragttern

(or subexpression) results might be reused. It might also be
promising to decompose the filter expressions and push d@wn i
components, in order to decrease the size of intermediatdtse

single QPTIONAL expression, and accesses large strings (i.e. the

abstracts). Result size grows with database size, and adisalt

Q9. Return incoming and outgoing properties of persons.

ordering is necessary due to operatorIER BY. Both native
and in-memory engines should scale linearly to documegt siz

Q3abc. Select all articles with property (a)swrc:pages,
(b) swrc:month, or (c) swrc:isbn.

This query tests ETER expressions with varying selectivity.
Following Table I, the filter inQ3a retains abou®2.61% of all
articles. While data access through an unclustered indexdwvo
be inefficient here, it might pay off fo)3b, which retains only
about0.65% of the articles. The filter ifQ3c is never satisfied,
since no articles are described dyrc:isbn. Statistics might be
used to answe@3c in constant time, even without data access.

Q4. Select all distinct pairs of article author names for author
that have published in the same journal.

Q9 has been designed to test non-standard data access patterns
Naive implementations would compute the triple patternshim
UNION subexpressions separately, thus evaluating patternswher
no component is bound. As an improvement, engines might
start with the first triple in each MWION subexpression and
use the resulting bindings for variab®personto evaluate the
second one more efficiently. In this case, joins on Psebject
and ?object variable are necessary, in which only tAsubject
(resp. the?objec) variables are bound. The query extracts schema
information and result size is (at most) Native engines might
also use summary statistics about incoming/outgoing ptigse

of Persontyped objects to answer this query in constant time
without data access. In-memory engines must load the datume
and, in the best case, might scale linearly to document size.

Q4 contains a comparably long graph chain, i.e. variaBlesmel
and ?name?2are linked through articles that (different) authors
have published in the same journal. It is obvious that theyque
computes very large result sets. Instead of evaluating tier o

Q10. Return all subjects that stand in any relation to pers@adil
Erdos”. In our scenario the query can be reformulatedRasurn
publications and venues in whichP8ul Erdos” is involved either
as author or as editor.

pattern block and applying thelFER afterwards, engines should

embed the RTER expression into this computation. Ultimately,

the DISTINCT modifier further complicates the query. We expect
superlinear behavior for both native and in-memory engines

Q5ab. Return the names of all persons that occur as author of
at least one inproceeding and at least one article.

@10 implements an object bound-only access pattern. In cdntras
to 9, statistics are not immediately useful, since the result
includes subjects. Recall that “Paul Erdods” is active drdyween
1940 and 1996, so result size stabilizes for sufficientlydar
documents (cf. Table V). Native engines could exploit iedic
and might reach (almost) constant execution time.

Queries Q5a and Q5b test different variants of joinsQ5a
implements an implicit join on author names, which is encbde
in the FALTER condition, while @Q5b explicitly joins the authors

Q11. Return (up to) 10 electronic edition URLSs starting from the
51" publication, in lexicographical order.

on variable ?name While different in general, the one-to-one

This query focuses on the combination of solution modifiers

mapping between authors and their names (i.e. author namesORDER BY, LIMIT, and OFFSET. In-memory engines have to

constitute primary keys) in our scenario implies equivaéemof

the queries. In [14], semantic optimization for RDF has been
proposed. Such an approach might detect this equivalende an
might always execute the more efficient representation.

read, process, and sort electronic editions prior to psiegs
LimiT and CFFSET. In contrast, native engines might exploit
indices to access only a fraction of all electronic editi@ms,
as the result is limited td0, could reach constant runtimes.



Q12. (a) Return yes if a person is an author of at least one in- TABLE I

proceeding and article; (b) Return yes if an author has patmid CHARACTERISTICS OF GENERATED DOCUMENTS
with Paul Erdds or with an author that has published withatil #TTiples Tok 50k 250K ™ oM 25M
Erdos”; (c) Return yes if person John Q. Public” exists. —

file size [MB] 1.0 5.1 26 106 533 2694
®12a and Q12b share the properties of theirEBECT counter- data up to 1955 1967 1979 1989 2001 2015
partsQ5a and @8, respectively. Both returyesfor sufficiently #Tot. Auth. 15k 6.8k 345k 1510k 898.0k  5.4M
large documents. The challenge in evaluatingkAqueries is to #Dist Auth. 0.9k 4.1k 20.0k 821k 429.6k  2.1M
efﬂuently Iocate. a witness, to break as soon as pps&blelhfﬁo #lournals 25 104 139 12k 26k 117k
end, engines might even adapt the query execution planite.g. #Articles 916 4.0k 17.1k  56.9k 207.8k 642.8k
might be favorable to evaluate the second part of thedd in #Proc. 6 37 213 903 47k 24.4k
Q120 first. Both native and in-memory engines should answer z:np“l’lc- 1233 1-‘5“é 9-127k3 43-4:”‘:‘2 255-122k 1-5:1M5k
these queries very fast, independent from document size. e = e . B -
Q_ch _asks for a s_ingle triple that_is not present in the d_atabase. #Other 0 0 0 186 424 302
With indices, native engines might reach constant time. In-
memory engines must scan and load the whole document. TABLE IV

SUCCESS RATES FOR QUERIE®4, Q5a, Q5b, Q6, AND Q7, WHERE

VI. EXPERIMENTS
. . +:=SUCCESS T:=TIMEOUT, M:=MEMORY EXHAUSTION, AND E:=ERROR
All experiments were conducted under Linux ubuntu v7.10

gutsy, on top of an Intel Core2 Duo E6400 2.13GHz CPU and ARQ Sesamg; Sesamgp  Virtuoso

3GB DDR2 667 MHz nonECC physical memory. We used a Query 45 67 45 67 45 67 45 67

250GB Hitachi P7K500 SATA-II hard drive with BIB Cache. 250k  TH+++  +T+T+ +T+TT TT+E+

The Java engines were executed with JRE v108.0 ém E:E g:'Tr'Tr KATT:TTTT TTTTTTEETT
Data Gene_rator. We_ measured generation times for_d_oc— %M TTTTT MMTMM  TT+TT (RG]

uments of different sizes. Our generator is very efficient,

e.g. creates one hillion triples (about 108 of data) in less

than four hours. It scales almost linearly to document sif'éne_' memory gonsumptlon, per-query performance, ant-arit
and gets by with a constant main memory consumption, usi tic/geometric mean. They capture different aspects alf ev

(at most) 1.Z:B RAM for arbitrarily-sized documents. We U tion and help to repor_t on results in a standard_ized way.
exemplarily generated RDF documents ugtbillion triples. ~ Benchmark Results.Itis beyond the scope of this paper to
In addition, we verified that the characteristics extradted Provide an in-depth comparison of existing SPARQL engines.

Section Ill are reflected in the generated data. Table Iliwsho Rathe_r, we want.tg give first |ns!ghts into the state-of-the a
selected properties of generated documents @5 1 triples. and highlight de_flcu_enues of engines ba;ed on Fhe benchmark
We list the size of the output file, the year in which simulatio®Utcome. In this line, we are not primarily interested in
ended, the number of total and distinct authors contained GANCTete values (which, however, in general might be of
the data (cf. Section III-C), and counts for the individuagreat interest), _bUt focus_ on the principal behavior of Beg)
document types (cf. Section 1II-B). The superlinear growtHSiNg. the metrics mentioned before. For space restrigtions
of the authors is primarily caused by the increasing averagg dls_,cuss only selected cases and refer the reader to our
number of authors per paper (cf. Section Ill-A). The growt echnical Report for thg complete benchmark results.

rate of proceedings and inproceedings is also superlinear/Ve conducted experiments for (1) the Java enghiQ
whereas journals and articles increase sublinearly. Hfisats V-2 0N top of Jena 2.5.5, (2) tieedland RDF Processor

the yearly document class counts in Figure 2(b). Like i41.0.7 (written in C), using the Raptor Parser Toolkit v.164

the original DBLP data, in the early years several documeiftd Rasqal Library v0.9.15, (HDB, which links ARQ to an
classes (e.g. Bok and Www) are not yet contained. SQL database back-end (i.e., we used mysql v5.0.34), (4) the

Table V surveys the result sizes for the queries on dod@v@ implementatiolBesamev2.2beta2, and finally (5) the
penLinkVirtuoso system v5.0.6 (written in C9.

uments up to5M triples. We observe for example that theO \ ! ]

outcome ofQ3a, Q3b, and Q3¢ reflects the selectivities of ~FOF Sesame we tested two configuratidBesamgy, which

their ALTER attributesswrc:pages, swrc:month, andswrc:isbn ~ PFOCESSES quEries in-memory, aﬁésamgg, which phys-
ically stores data in a database, using talgara SAIL

(cf. Table I and II). We will come back to the result sizeiligt e i
when discussing the benchmark results later in this section’1-3betal as backend. We thus distinguish between the in-
Metrics. We report on user timeugr ), system timegys ), 'memory enginesARQ Sesamgr) and native enginesRed-
land, SBD, Sesamgp, Virtuosg. For native engines we cre-

and the high watermark of resident memormém). These e _ _
values were extracted from thoc file system. Furthermore, &t€d indices wherever possible (after loading the docuspent
and consider loading and execution time separately (we in-

we assess elapsed timeng) through timers. Please note tha - : ) i ] -
experiments were carried out on a DuoCore CPU, where tfidde index creation time in the loading times).
linux kernel sums upisr andsys of the processor units. As e performed three cold runs over all queries and docu-

a consequence, the sumr +sys might be greater thatme.
q Y 9 Y 6ARQ: http://jena.sourceforge.net/ARQ/, Redland: htiprdf.org/,

In our TeChmcal_Repo_rt [33] we propose several pe_gDB: http://jena.sourceforge.net/SDB/, Sesame: hitpw.openrdf.org/,
formance metrics, including success rate reports, loadiviguoso: http:/mwww.openlinksw.com/virtuoso/




TABLE V
NUMBER OF QUERY RESULTS ON DOCUMENTS UP T MILLION TRIPLES

Query | Q1 Q2 Q3a Q3b Q3¢ Q4 Q5a Q5b Q6 Q7 Q8 Q9 Q10 Qll

10k 1 147 846 9 0 23226 155 155 229 0 184 4 166 10
50k 1 965 3647 25 0 104746 1085 1085 1769 2 264 4 307 10
250k 1 6197 15853 127 0 542801 6904 6904 12093 62 332 4 452 10
1M 1 32770 52676 379 0 2586733 35241 35241 62795 292 400 4 572 10

5M 1 248738 192373 1317 0 18362955 210662 210662 417625 1200 492 656 10

ments of10k, 50k, 250k, 1M, 5M, and25M triples, i.e. in- Q6 and Q7 implement simple and double negation, re-
between each two runs we restarted the engines and cleaekctively. Both engines show insufficient behavior. At the
the database. We set a timeout30min (tme) per query and first glance, we might expect thé7 (which involves double
a memory limit of 2.6GB, either usinglimit or restricting the negation) is more complicated to evaluate, but we observe
JVM (for higher limits, the initialization of the JVM failgd that Sesamg scales even worse foR6. We identify two
Negative and positive variation of the average (over thesyurpossible explanations. Firs)7 “negates” documents with
was < 2% in almost all cases, so we omit error bars. Fancoming citations, but — according to Section IlI-D — only
SDB and Virtuosg which follow a client-server architecture,a small fraction of papers has incoming citations at all. In
we monitored both processes and sum up these values. contrast,Q6 negates arbitrary documents, i.e. a much larger
We verified all results by comparing the outputs, observirggt. Another reasonable cause might be the non-equaley filt
that SDB and Redlandreturned wrong results for a couplesubexpressio®yr2 < ?yr inside the inner ETER of Q6.
of queries, so we restrict ourselves on the discussion of theFor Ask query Q12a both engines scale linearly with
remaining four engines. Table IV shows the success ratdscument size. However, from Table V and the fact that our
All queries that are not listed succeeded, except ARQ data generator is incremental and deterministic, we knat th
and Sesamg; on the25M document (either due to timeouta “witness” is already contained in the firdk triples of the
or memory exhaustion) and Virtuoso @6 (due to missing document. It might be located even without reading the whole
standard compliance). Henc@4, Q5a, Q6, and Q7 are the document, so the strategies of both engines are suboptimal.
most challenging queries, where we observe many timeouts\ative Engines.The leftmost plot at the bottom of Figure 5
even for small documents. Note that we did not succeed dRows the loading times for the native engiSesamg s and
loading the25/ triples document into th¥irtuosodatabase. Virtuosa Both engines scale well concerningr andsys ,
Main Memory. For the in-memory engines we observessentially linear to document size. Feesamg g, however,
that the high watermark of main memory consumption durirtgne grows superlinearly (e.g., loading of t26 M/ document
query evaluation increases sublinearly to document siae. ks about ten times slower than loading of th&/ document).
instance, for ARQ we measured an average (over all rumhis trend might cause serious problems for larger docusnent
and queries) o85MB on 10k, 166MB on 50k, 318MB on  The running times forQ2 increase superlinear for both
250k, 526MB on 1M, and 1.3GB on 5/ triples. Somewhat engines (in particular for larger documents). This reflehes
surprisingly, also the memory consumption of the nativeuperlinear growth of inproceedings and the growing result
engines/irtuosoandSesamg s increased with document size sjze (cf. Tables Ill and V). What is interesting here is thg si
Arithmetic and Geometric Mean. For the in-memory nificant difference betweeunsr+sys andtme for Virtuosq
engines we found th&@esamg; is superior tcARQregarding which indicates disproportional disk I/O. SinG&esamealoes
both means. For instance, the arithmefl¢)(and geometric not exhibit this peculiar behavior, it might be an intenegti
(T,) mean on thé M document over all queries (we penalizedtarting point for further optimizations in thértuosoengine.
failure queries with3600s) are 77" = 683.16s, ;" = QueriesQ3a and@3c have been designed to test the intel-
106.84s, T,9 = 901.73s, and ;9 = 179.42s. ligent choice of indices in the context ofiLFER expressions
The means for the native engines dm/ triples are: with varying selectivity.Virtuoso gets by with an economic
T7esPB = 653.17s, Tp*PP = 10.17s, T'"" = 850.06s, consumption ofusr andsys time for both queries, which
and T;’i” = 3.03s. The arithmetic mean ofesamgg is suggests that it makes heavy use of indices. While thisegjyat
superior, which is mainly due to the fact that it failed only o pays off for @3¢, the elapsed time fo€3a is unreasonably
4 (vs. 5) queries. The geometric mean moderates the impduitjh and we observe th&esamg scales better for this query.
of these outliersVirtuososhows a better overall performance ()10 extracts subjects and predicates that are associated with
for the success queries, so its geometric mean is superior.paul Erdds First recall that, for each year up 1®96, Paul
In-memory Engines. Figure 5 (top) plots selected result€Erdods has exactlyl0 publications and occurs twice as editor
for in-memory engines. We start witQ5a and@Q5b. Although  (cf. Section V). Both engines answer this query in about
both queries yield the same result, the engines perform mumnstant time, which is possible due to the upper result size
better for the explicit join inQ5b. We may suspect that thebound (cf. Table V). Regardingsr+sys , Virtuosois even
implicit join in @5a is not recognized, i.e. that both enginesnore efficient: These times are diminishing in all cases.dden
compute the cartesian product and apply the filter aftersvardhis query constitutes an example for desired engine behavi
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VIl. CONCLUSION

We have presented the ench performance benchmark [
for SPARQL, which constitutes the first methodical approach
for testing the performance of SPARQL engines w.r.t. differ [°]
ent operator constellations, RDF access paths, typical ROF,
constructs, and a variety of possible optimization appneac

Our data generator relies on a deep study of DBLP. Al
though it is not possible to mirrall correlations found in the
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[3] “SPARQL Query Language for RDF,” http://www.w3.org/Traf-
spargl-query/. W3C Rec. 01/2008.

J. Perez, M. Arenas, and C. Gutierrez, “Semantics and flexty of
SPAQRL,” in ISWG 2006, pp. 30—43.

M. Stocker et al., “SPARQL Basic Graph Pattern OptimizatUsing
Selectivity Estimation,” inWWW 2008, pp. 595-604.

O. Hartwig and R. Heese, “The SPARQL Query Graph ModelQoery
Optimization,” in ESWGC 2007, pp. 564-578.

S. Groppe, J. Groppe, and V. Linnemann, “Using an Inde®&com-
puted Joins in order to speed up SPARQL ProcessingCHEIS 2007,
pp. 13-20.

original DBLP data (e.g., we simplified when assuming indef8] A.Harth and S. Decker, “Optimized Index Structures faregying RDF
pendence between attributes in Section I1I-A), many aspecfgl from the Web,” inLA-WEB 2005, pp. 71-80.

are modeled in faithful detail and the queries are designed
such a way that they build on exactly those aspects, whipla]

makes them realistic, understandable, and predictable.

Even without knowledge about the internals of engines, wey

S. Alexaki et al., “On Storing Voluminous RDF descript@ The case
of Web Portal Catalogs,” inwvebDB 2001.

J. Broekstra, A. Kampman, and F. van Harmelen, “Sesan@&eneric
Architecture for Storing and Querying RDF and RDF SchenralSWG

2002, pp. 54-68.

S. Harris and N. Gibbins, “3store: Efficient Bulk RDF &tge,” inPSS$S

identified deficiencies and reasoned about suspected causes 2003.

We expect the benefit of our benchmark to be even higher &1

developers that are familiar with the engine internals.

To give another proof of concept, in [34] we have suc-
cessfully used StBench to identify previously unknown lim- [14]
itations of RDF storage schemes: Among others, we ide[ql—3

D. J. Abadi et al., “Scalable Semantic Web Data Managenising
Vertical Partitioning,” inVLDB, 2007, pp. 411-422.

C. Weiss, P. Karras, and A. Bernstein, “Hexastore: @get Indexing
for Semantic Web Data Management,”\#ti DB, 2008.

G. Lausen, M. Meier, and M. Schmidt, “SPARQLing Constta for
RDF,” in EDBT, 2008, pp. 499-509.

] R. Cyganiac, “A relational algebra for SPARQL,” HP Labtories

[13]

tified scenarios where the advanced vertical storage scheme Bristol, Tech. Rep., 2005.

from [12] was slower than a simple triple store approach.
With the understandable DBLP scenario we also clegk,
the way for coming language modifications. For instance,
SPARQL update and aggregation support are currently di&8]
cussed as possible extensidrispdates, for instance, could be
realized by minor extensions to our data generator. Coimagrnigj
aggregations, the detailed knowledge of the document class

counts and distributions (cf. Section IIl) facilitates ttesign
of challenging aggregate queries with fixed charactesistic
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APPENDIX

SELECT ?yr Q1
WHERE { -
?journal rdf:type bench:Journal.

?journal dc:title "Journal 1 (1940)""xsd:string.

?journal dcterms:issued ?yr }

SELECT ?inproc ?author ?booktitle ?title
?proc ?ee ?page ?url ?yr ?abstract
WHERE {

?inproc rdf:itype bench:lnproceedings.

?inproc dc:creator ?author.

?inproc bench:booktitle ?booktitle.

?inproc dc:title ?title.

?inproc dcterms:partOf ?proc.

?inproc rdfs:seeAlso ?ee.

?inproc swrc:pages ?page.

?inproc foaf:homepage ?url.

?inproc dcterms:issued ?yr

OPTIONAL { ?inproc bench:abstract ?abstract }
} ORDER BY ?yr

(@) SELECT ~?article
WHERE { ?article rdf:type bench:Atrticle.
?article ?property ?value
FILTER (?property=swrc:pages) }
(b) Q3a, but "swrc:month" instead of “"swrc:pages”
(c) Q3a, but "swrc:isbn" instead of "swrc:pages"”

SELECT DISTINCT ?namel ?name2
WHERE { ?articlel rdf:itype bench:Article.

?article2 rdf:itype bench:Article.

?articlel dc:creator ?authorl.

?authorl foaf:name ?namel.

?article2 dc:creator ?author2.

?author2 foaf:name ?name2.

?articlel swrc:journal ?journal.

?article2 swrc:journal ?journal

FILTER (?namel<?name2) }

(2) SELECT DISTINCT ?person ?name
WHERE { 7article rdfitype bench:Atrticle.

?article dc:creator ?person.

?inproc rdf:type bench:Inproceedings.

?inproc dc:creator ?person2.

?person foaf:name ?name.

?person2 foaf:name ?name2
FILTER(?name=?name2) }

(b) SELECT DISTINCT ?person ?name
WHERE { ?article rdf:type bench:Atrticle.
?article dc:creator ?person.
?inproc rdf:type bench:lnproceedings.
?inproc dc:creator ?person.
?person foaf:name ?name }

SELECT ?yr ?name ?doc
WHERE {
?class rdfs:subClassOf foaf:Document.
?doc rdfitype ?class.
?doc dcterms:issued ?yr.
?doc dc:creator ?author.
?author foaf:name ?name
OPTIONAL {

?class2 rdfs:subClassOf foaf:Document.

?doc2 rdfitype ?class2.
?doc2 dcterms:issued ?yr2.
?doc2 dc:creator ?author2

FILTER (?author=?author2 && ?yr2<?yr) }

FILTER ('bound(?author2)) }

SELECT DISTINCT ?title

WHERE {
?class rdfs:subClassOf foaf:Document.
?doc rdfitype ?class.
?doc dc:title ?title.
?bag2 ?member2 ?doc.
?doc2 dcterms:references ?bag2
OPTIONAL {

?class3 rdfs:subClassOf foaf:Document.

?doc3 rdfitype ?class3.

?doc3 dcterms:references ?bag3.
?bag3 ?member3 ?doc
OPTIONAL {

?class4 rdfs:subClassOf foaf:Document.

?doc4 rdfitype ?class4.
?doc4 dcterms:references ?bag4.
?bag4 ?member4 ?doc3 }
FILTER ('bound(?doc4)) }
FILTER ('bound(?doc3)) }

SELECT DISTINCT ?name
WHERE {
?erdoes rdfitype foaf:Person.
?erdoes foaf:name "Paul Erdoes
{ ?doc dc:creator ?erdoes.
?doc dc:creator ?author.
?doc2 dc:creator ?author.
?doc2 dc:creator ?author2.
?author2 foaf:name ?name
FILTER (?author!=?erdoes &&
?doc2!=?doc &&
?author2!=?erdoes &&
?author2!=?author)

} UNION {
?doc dc:creator ?erdoes.
?doc dc:creator ?author.
?author foaf:name ?name
FILTER (?author!=?erdoes) } }

xsd:string.

SELECT DISTINCT ?predicate
WHERE {
{ ?person rdf:type foaf:Person.

?subject ?predicate ?person } UNION

{ ?person rdf:type foaf:Person.
?person ?predicate ?object } }

SELECT ?subj ?pred Q10
WHERE { ?subj ?pred person:Paul_Erdoes }

SELECT ?ee Q11
WHERE { ?publication rdfs:seeAlso ?ee }

ORDER BY ?ee LIMIT 10 OFFSET 50

(&) Q5a as ASK query Q12

(b) Q8 as ASK query

(c) ASK {person:John_Q_Public rfd:type foaf:Person}




