
An Experimental Comparison of RDF Data

Management Approaches in a SPARQL

Benchmark Scenario

Michael Schmidt1⋆, Thomas Hornung1, Norbert Küchlin1, Georg Lausen1, and
Christoph Pinkel2

1 Freiburg University, Georges-Köhler-Allee 51, 79106 Freiburg, Germany
{mschmidt|hornungt|kuechlin|lausen}@informatik.uni-freiburg.de

2 MTC Infomedia OHG, Kaiserstr. 26, 66121 Saarbrücken, Germany
c.pinkel@mtc-infomedia.de

Abstract. Efficient RDF data management is one of the cornerstones
in realizing the Semantic Web vision. In the past, different RDF storage
strategies have been proposed, ranging from simple triple stores to more
advanced techniques like clustering or vertical partitioning on the predi-
cates. We present an experimental comparison of existing storage strate-
gies on top of the SP2Bench SPARQL performance benchmark suite and
put the results into context by comparing them to a purely relational
model of the benchmark scenario. We observe that (1) in terms of perfor-
mance and scalability, a simple triple store built on top of a column-store
DBMS is competitive to the vertically partitioned approach when choos-
ing a physical (predicate, subject, object) sort order, (2) in our scenario
with real-world queries, none of the approaches scales to documents con-
taining tens of millions of RDF triples, and (3) none of the approaches
can compete with a purely relational model. We conclude that future
research is necessary to further bring forward RDF data management.

1 Introduction

The Resource Description Framework [1] (RDF) is a standard format for en-
coding machine-readable information in the Semantic Web. RDF databases are
collections of so-called “triples of knowledge”, where each triple is of the form
(subject,predicate,object) and models the binary relation predicate between the
subject and the object. For instance, the triple (Journal1,issued,“1940”) might
be used to encode that the entity Journal1 has been issued in year 1940. By
interpreting each triple as a graph edge from a subject to an object node with
label predicate, RDF databases can be seen as labeled directed graphs.

To facilitate RDF data access, the W3C has standardized the SPARQL [2]
query language, which bases upon a powerful graph pattern matching facility. Its

⋆ The work of this author was funded by DFG, grant GRK 806/2.

very basic construct are simple triple graph patterns, which, during query evalu-
ation, are matched against components in the RDF graph. In addition, different
SPARQL operators can be used to compose more advanced graph patterns.

An efficient RDF storage scheme should support fast evaluation of such graph
patterns and scale to RDF databases comprising millions (or even billions) of
triples, as they are commonly encountered in today’s RDF application scenar-
ios (e.g., [3, 4]). The straightforward relational implementation, namely a single
Triples relation with three columns subject, predicate, and object that holds all
RDF triples, seems not very promising: The basic problem with this approach is
that the evaluation of composed graph patterns typically requires a large amount
of expensive self-joins on this (possibly large) table. For instance, the query “Re-
turn the year of publication of Journal1 (1940)” might be expressed in SQL as
follows (for readability, we use shortened versions of the RDF URIs).

SELECT T3.object AS yr

FROM Triples T1 JOIN Triples T2 ON T1.subject=T2.subject
JOIN Triples T3 ON T1.subject=T3.subject

WHERE T1.predicate=’type’ AND T1.object=’Journal’ AND T2.predicate=’title’
AND T2.object=’Journal 1 (1940)’ AND T3.predicate=’issued’

(1)

The Triples table access T1 and the associated Where-conditions extract
all Journal entities, T2 fixes the title, and T3 extracts the year of publication. We
observe that even this rather simple query requires two subject-subject self-joins
over the Triples table. Practical queries may involve much more self-joins.

To overcome this deficiency, other physical organization techniques for RDF
have been proposed [5–11]. One notable idea is to cluster RDF data, i.e. to group
entities that are similar in structure [9, 10] and store them in flattened tables
that contain all the shared properties. While this may significantly reduce the
amount of joins in queries, it works out only for well-structured data. However,
one strength of RDF is that it offers excellent support for scenarios with poorly
structured information, where clustering is not a feasible solution.

A conceptually simpler idea is to set up one table for each unique predicate in
the data [5, 11], which can be seen as full vertical partitioning on the predicates.
Each such predicate table consists of two columns (subject, object) and contains
all subject-object pairs linked through the respective predicate. Data is then
distributed across several smaller tables and, when the predicate is fixed, joins
do not involve the whole set of triples. By physically sorting data on the subject
column, subject-subject joins between two tables, a very frequent operation, can
be realized in linear time (w.r.t. the size of the tables) by merging their subject
columns [11]. In such a scenario, the query from above might be formulated as

SELECT DI.object AS yr
FROM type TY JOIN title TI ON TY.subject=DT.subject

JOIN issued IS ON TY.subject=IS.subject
WHERE TY.object=’bench:Journal’ AND TI.object=’Journal 1 (1940)’

(2)

, where type, title, and issued denote the corresponding predicates tables.
Predicate selection now is implicit by the choice of the predicate table (i.e., no
longer encoded in the WHERE-clause) and, given that the subject-column is sorted,
both joins might be efficiently implemented as linear merge joins.

In the experiments in [11] on top of the Barton library data [12], vertical
partitioning turns out to be clearly favorable to the triple table scheme and
always competitive to clustering. Although the scenario is a reasonable choice
that illustrates many advantages of vertical partitioning, several issues remain
open. One point is that, in the partitioned scenario, efficient subject-subject merge
joins on the predicate tables (which are possible whenever predicates are fixed)
are a key to performance. However, when physically sorting table Triples by
(predicate, subject, object), linear merge joins might also apply in a triple store.

A study of the Barton benchmark shows that one query (out of seven) re-
quires no join on the triple (resp., predicate) table(s), and each two involve (a) a
single subject-subject join, (b) two subject-subject joins, and (c) one subject-subject
plus one subject-object join. Thus, none involves more than two joins. The sim-
plicity of these join patterns to a certain degree contrasts with the Introduction
of [11], where the authors state that “almost all interesting queries involve many
self-joins” and motivate vertical partitioning using a five-way self-join query. We
agree that real-world queries often involve complex join-patterns and see an ur-
gent need for reevaluating the vertical approach in a more challenging scenario.

To this end, we present an experimental comparison of the triple and verti-
cally partitioned scheme on top of the the SP2Bench SPARQL benchmark [13].
The SP2Bench queries implement meaningful requests in the DBLP scenario [14]
and have been designed to test challenging situations that may arise in the con-
text of SPARQL and Semantic Web data. In contrast to the Barton queries, they
contain no aggregation, due to missing SPARQL language support. But except
for this construct, they cover a much wider range of operator constellations, RDF
data access paths, join patterns, and advanced features (e.g., Optional clauses,
solution modifiers). The queries for the vertical and the triple store are obtained
from a methodical SPARQL-to-SQL translation and reflect these characteristics.

To put our analysis into context, we consider two more scenarios. First, we
test the Sesame SPARQL engine [15] as a representative SPARQL processor that
relies on a native RDF store. Second, we translate the SP2Bench scenario into
a purely relational scheme, thus comparing the current state-of-the-art in RDF
data management against established relational database technologies.

Contributions. Among others, our experiments show that (1) when triple
tables are physically sorted by (predicate, subject, object), efficient merge joins
can be exploited (just like in the vertical scheme) and the triple table approach
becomes more competitive, (2) for the challenging SP2Bench queries neither the
vertical nor the triple scheme shows a good overall performance, and (3) while
both schemes typically outperform the Sesame SPARQL engine, the purely re-
lational encoding is almost always at least one order of magnitude faster. We
conclude that there is an urgent need for future research in this area.

Related Work. An experimental comparison of the triple table and a ver-
tically partitioned scheme has been provided in [5]. Among others, the authors
note the additional costs of predicate table unions in the vertical scenario, which
will be discussed later in this paper. Nevertheless, the setting in [5] differs in sev-
eral aspects, e.g. in the vertically partitioned scheme the RDF schema layer was

stored in separate tables and physical sorting on the subject-column (to allow
for subject-subject merge joins), a central topic in our analysis, was not tested.

We point the interested reader to the experimental comparison of the triple
and vertical storage scheme in [16]. This work has been developed independently
from us. It presents a reevaluation of the experiments from [11] and, in this line,
identifies situations where vertical partitioning is an insufficient solution. Several
findings there are similar to our results. While the latter experiments are carried
out in the Barton scenario (like the original experiments in [11]), we go one step
further, i.e. perform tests in a different scenario and put the results into context
by comparing them to a purely relational scheme, as well as a SPARQL engine.

The Berlin SPARQL Benchmark [17] is settled in an e-commerce scenario
and strictly use-case driven. In contrast, the language-specific SP2Bench suite
used in this work covers a broader range of SPARQL/RDF constructs and, for
this reason, is preferable for testing the generality of RDF storage schemes.

Structure. In the next section we summarize important characteristics of the
SP2Bench SPARQL performance benchmark [13], to facilitate the interpretation
of the benchmark results. In Section 3 we then sketch the tested storage schemes
and the methodical query translation into these scenarios. Finally, Section 4
contains the in-depth discussion of our experiments and a conclusion. In the
remainder, we assume the reader to be familiar with RDF [1] and SPARQL [2].

2 The SP2Bench Scenario

SP2Bench [13] is settled in the DBLP [14] bibliographic scenario. Central to the
benchmark is a data generator for creating DBLP-like RDF documents, which
mirror characteristics and relations found in the original DBLP data. It relies
on natural function families to capture social-world aspects encountered in the
DBLP data, e.g. the citation system is modeled by powerlaw distributions, while
limited growth functions approximate the number of publications per year. Sup-
plementary, the SP2Bench suite provides a set of meaningful SPARQL queries,
covering a variety of SPARQL operator constellations and data access patterns.

According to DBLP, the SP2Bench generator creates nine distinct types of
bibliographic entities, namely Article, Journal, Inproceedings, Proceed-

ings, Book, Incollection, PhDThesis, MastersThesis, and WWW doc-
uments, where each document is represented by a unique URI. In addition, there
are persons that act as authors or editors. They are modeled by blank nodes.

Each document (resp., person) is described by a set of properties, such as
dc:title, dc:creator (i.e., the author), or swrc:isbn. Outgoing citations are ex-
pressed through predicate dcterms:references, which points to a blank node of
type rdf:Bag (a standard RDF container class) that links to the set of all doc-
ument URIs referenced by the respective document. Attribute dcterms:partOf
links inproceedings to the proceedings they appeared in; similarly, swrc:journal
connects articles to journals. Several properties (e.g., dc:creator) are multi-valued.

The first part of Table 1 lists the number of document class instances of type
Inproceedings, Proceedings, Article, Journal, Incollection, and the

Table 1. Key characteristics of documents generated by the SP2Bench generator

#triples #Inpr. #Proc. #Art. #Journ. #Inc. #Oth. #auth./#dist. #prop. file size year

10k 169 6 916 25 18 0 1.5k/0.9k 23+34 1.0MB 1955
50k 1.4k 37 4.0k 104 56 0 6.8k/4.1k 23+34 5.1MB 1967
250k 9.2k 213 17.1k 439 173 39 34.5k/20.0k 23+43 26MB 1979
1M 43.5k 903 56.9k 1.4k 442 551 151.0k/82.1k 23+44 106MB 1989
5M 255.2k 4.7k 207.8k 4.6k 1.4k 1.4k 898.0k/429.6k 23+52 533MB 2001
25M 1.5M 24.4k 642.8k 11.7k 4.5k 2.4k 5.4M/2.1M 25+52 2.7GB 2015

remaining types #Oth. (Book, Www, PhD- and MastersThesis) for gener-
ated documents up to 25M RDF triples. Article and Inproceedings docu-
ments clearly dominate. The total number of authors (i.e., triples with predicate
dc:creator) increases slightly super-linear to the total number of documents. This
reflects the increasing average number of authors per paper in DBLP over time.

The table also lists the number #prop. of distinct properties. This value x+y

splits into x “standard” attribute properties and y bag membership properties
rdf: 1, . . ., rdf: y, where y depends on the maximum-sized reference list in the
data. We observe that larger documents contain larger reference lists, and hence
more distinct properties. As discussed later, this might complicate data process-
ing in the vertically partitioned scenario. Finally, we list the physical size of the
RDF file (in NTriples format) and the year up to which data was generated.

To support queries that access an author with fixed characteristics, the docu-
ments contain a special author, named after the mathematician Paul Erdös, who
gets assigned 10 publications and 2 editor activities in-between 1940–1996. As
an example, Q8 (Appendix A) extracts all persons with Erdös Number 1 or 2.3

3 The Benchmark Scenarios

We now describe the four benchmark scenarios in detail. The first system under
consideration is (1) the Sesame [15] SPARQL engine. Sesame constitutes a query
engine that, like the other three scenarios, relies on a physical DB backend. It
is among the fastest SPARQL engines that have been tested in the context of
the SP2Bench benchmark (cf. [13]) and has been chosen as a representative for
the class of SPARQL engines. The remaining scenarios are (2) the triple ta-
ble approach, (3) the vertically partitioned approach as described in [11], and
(4) a purely relational DBLP model. They are all implemented on top of a rela-
tional DBMS. Accordingly, a translation of the SP2Bench SPARQL queries into
SQL is required. We will sketch the detailed settings and our methodical query
translation approaches for scenarios (2)-(4) in the remainder of this section. The
resulting SQL queries are available online4; still, to be self-contained we will
summarize their key characteristics when discussing the results in Section 4.

3 See http://www.oakland.edu/enp/.
4 http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/translations.html

According to [11], to reach best performance all relational schemes should be
implemented on top of a column-store DBMS, which stores data physically by
column rather than row (see [11] for the advantages of column-oriented systems
in the RDF scenario). The C-Store research prototype [18] used in [11] misses sev-
eral SQL features that are essential for the SP2Bench queries (e.g. left joins), so
we fall back on the MonetDB [19] column-store, a complete, industrial-strength
relational DBMS. We note that MonetDB differs from C-Store in several as-
pects. First, data processing in MonetDB is memory-based while it is disk-based
in C-Store. Moreover, C-Store exhibits a carefully optimized merge-join imple-
mentation (on top of run-length encoded data) and makes heavy use of this
operation. Although we observe that MonetDB uses merge joins less frequently
(cf. Section 4), the system is known for its performance and has recently been
shown to be competitive to C-Store in the Barton Library RDF scenario [16].

3.1 The Triple Table Storage Scheme

In the triple table scheme a single table Triples(subject, predicate,object) holds
all RDF triples. Methodical translations of SPARQL into this scheme have been
proposed in [20–22]. The idea is to evaluate triple patterns separately against
table Triples, then combining them according to the SPARQL operators in the
query. Typically, SPARQL operator And is expressed by a relational join, Union

by a SQL union, Filter clauses result in Where-conditions, and Optional is
modeled by a left outer join. For instance, SPARQL query Q1 (Appendix A)
translates into query (1) from the Introduction (prefixes and data types are
omitted). Observe that Q1 connects three patterns through two And operators
(denoted as “.”), resulting in two SQL joins. The patterns are connected through
variable ?journal in subject position, so both are subject-subject joins. We em-
phasize that, although queries were translated manually, the scheme is very close
to the approaches used by SPARQL engines that build on the relational model.

Dictionary Encoding. URIs and Literals tend to be long strings; they
might blow up relational tables and make joins expensive. Therefore, we store
integer keys instead of the string value, while keeping the key-value mapping in
a Dictionary(ID,val) table (cf. [15, 23, 24, 11]). Note that dictionary encoding
implies additional joins with the Dictionary table in the translated queries.

Implementation. We sort data physically by (predicate, subject, object)
rather than (subject, predicate, object). While this contrasts with the experi-
ments in [11], we will show that this sort order makes the triple approach more
competitive, because fast linear merge joins across property tables in the vertical
scenario can now be realized by corresponding merge joins in the triple scenario.

We note that indexing in MonetDB differs from conventional DBMS; it in-
terprets INDEX statements as advices, feeling free to ignore them and create its
own indices.5 Though, we issue a secondary BTree index for all remaining per-
mutations of the subject, predicate, and object columns. The Dictionary table
is physically sorted by ID and we request a secondary index on column val.

5 See http://monetdb.cwi.nl/projects/monetdb/SQL/Documentation/Indexes.html.

3.2 The Vertically Partitioned Storage Scheme

The vertically partitioned relational store maintains one two-column table with
schema (subject, object) for each unique predicate in the data. The query trans-
lation for the vertical scenario is similar to the triple table translation. The
translation of SPARQL query Q1 into this scenario is exemplarily shown in the
Introduction, query (2). Here, data is extracted from the predicate tables, so
predicate value restrictions in the Where-clause are no longer necessary.

One major problem in the vertical scheme arises when predicates in queries
are not fixed (i.e., when SPARQL variables occur in predicate position). Then,
information cannot be extracted from a single predicate table, but queries must
compute the union over all these tables. As discussed in Section 2 (Table 1),
in our scenario the number of distinct properties (and hence, predicate tables)
increases with document size. Consequently, such queries require more unions
on large documents. This illustrates a basic drawback of the vertical approach:
Query translation depends on the structure of the data and, what is even more
urgent, queries may require a large number of unions over the predicate tables.

Implementation. We sort the predicate tables physically on (subject, object)
and issue an additional secondary BTree index on columns (object, subject).
Dictionary encoding is implemented analogously to the triple scheme.

3.3 The Purely Relational Scheme

We started from scratch and developed an Entity Relationship Model (ERM) of
DBLP. Using ERM translation techniques, we end up with the following tables,
where primary keys are underlined and foreign keys are marked by prefix “fk ”.

– Document(ID,address,booktitle,isbn,. . .,stringid,title,volume)
– Document_homepage(fk document,homepage)
– Document_seeAlso(fk document,seeAlso)
– Venue(ID,fk document,fk venue type)
– Publication(ID,chapter,fk document,fk publication type,fk venue,pages)
– Publication_cdrom(fk publication,cdrom)
– Abstract(fk publication,txt)
– PublicationType(ID,name) and VenueType(ID,name)
– Person(ID,name,stringid)
– Author(fk person,fk publication) and Editor(fk document,fk person)
– Reference(fk from,fk to)

The scheme distinguishes between venues (i.e., Journal and Proceedings)
and publications (such as Article, Inproceedings, or Book). The dictionary
tables PublicationType and VenueType contain integer IDs for the respective
venue and publication classes. Table Document constitutes a base table for both
document types, containing properties that are common to both venues and
publications. Supplementary, Venue and Publication store the properties that
are specific for the respective type. For instance, if a new Book document is

inserted, its base properties are stored in table Document, while publication-type
specific properties (e.g., chapter) are stored in table Publication. The entries
are linked through foreign key Publication.fk document; the type (in this case
Book) is fixed by linking Publication.fk publication type to the Book ID in
PublicationType. Properties foaf:homepage, rdf:seeAlso, and bench:cdrom are
multi-valued in the SP2Bench scenario, so they are stored in the separate tables
Document_homepage, Document_seeAlso, and Publication_cdrom. We use a
distinguished Abstract table for the larger-than-average abstract strings.

Finally, there is one table Person that stores person information, two tables
Author and Editor that store the author and editor activity of persons, and a
table Reference that contains all references between documents.

Implementation. The scheme was implemented in MonetDB exactly as de-
scribed above, using the specified PRIMARY and FOREIGN KEY constraints, with-
out additional indices. In the sense of a relational schema we omit prefix defini-
tions (such as “rdf:”, “dc:”). The data was translated using a conversion script.

4 Experimental Results

Setting. The experiments were carried out on a Desktop PC running ubuntu
v7.10 gutsy Linux, with Intel Core2 Duo E6400 2.13GHz CPU and 3GB DDR2
667 MHz nonECC physical memory. We used a 250GB Hitachi P7K500 SATA-II
hard drive with 8MB Cache. The relational schemes were executed with Mon-
etDB mserver v5.5.0, using the (more efficient) algebra frontend (flag “-G”).

As discussed in Section 3, we tested (1) the Sesame v2.0 engine SP (coupled
with its native storage layer, providing all possible combinations of indices) and
three MonetDB scenarios, namely (2) the triple store TR, (3) the vertically
partitioned store VP, and (4) the purely relational scheme RS. We report on
user (usr), system (sys), and elapsed time (total). While usr and sys were
extracted from the /proc file system, elapsed time was measured through a timer.
MonetDB follows a client-server architecture and we provide the sum of the usr

and sys times of the client and server processes. Note that the experiments were
run on a DuoCore CPU, where the linux kernel sums up usr and sys of the
individual processor units, so usr+sys might be greater than total.

For all scenarios we carried out three runs over all queries on documents of
10k, 50k, 250k, 1M , 5M , and 25M triples, setting a 30 minutes timeout and
2GB memory limit (using ulimit) per query. As our primary interest is the basic
performance of the approaches (rather than caching or learning strategies), we
performed cold runs, i.e. destroyed the database in-between each two consecutive
runs and always restarted it before evaluating a query. We provide average times
and omit the deviation from the average (which was always negligible).

Discussion of the Benchmark Results. All results were verified by com-
paring the outcome of the engines among each other (where possible). Table 2
summarizes the query result sizes and the physical DB sizes for each scenario on
all documents. The VP scheme requires less disk space than TR for large docu-
ments, since predicates are not explicitly stored for each triple. For Sesame, in-

Table 2. Query result sizes on documents up to 25M triples and physical DB size

Number of query results for individual queries Phys. DB size (MB)
Q1 Q2 Q3a Q3b Q3c Q4 Q5a/b Q6 Q7 Q8 Q9 Q10 Q11 SP TR VP RS

10k 1 147 846 9 0 23.2k 155 229 0 184 4 166 10 3 3 6 4
50k 1 965 3.6k 25 0 104.7k 1.1k 1.8k 2 264 4 307 10 14 5 8 5
250k 1 6.2k 15.9k 127 0 542.8k 6.9k 12.1k 62 332 4 452 10 69 18 20 13
1M 1 32.8k 52.7k 379 0 2.6M 35.2k 62.8k 292 400 4 572 10 277 63 58 42
5M 1 248.7k 192.4k 1.3k 0 18.4M 210.7k 417.6k 1.2k 493 4 656 10 1376 404 271 195
25M 1 1.9M 594.9k 4.1k 0 n/a 696.7k 1.9M 5.1k 493 4 656 10 6928 2395 1168 913

dices occupy more than half of the required space. In RS there is no redundancy,
no dictionary encoding, and no prefixes are stored, so least space is required.

The query execution times are shown in Figures 1, 2, and 3 (the y-axes are
always in log scale). Please note that the individual plots scale differently.

Q1. Return the year of publication of “Journal 1 (1940)”.

This simple query returns exactly one result on all documents. The TR and VP
translations are shown in the Introduction. The RS query joins tables Venue,
Document, and VenueType on the connecting foreign keys and then filters for
VenueType.name=“Journal” and Document.title=“Journal 1 (1940)”.

We observe that both the TR and VP scenario scale well for documents up to
5M triples, but total time explodes for 25M triples. The gap between total and
usr+sys for 25M indicates that much time is spent in waiting for data being read
from or written to disk, which is caused by query execution plans (QEPs) that
involve expensive fetch joins, instead of efficient subject-subject merge joins. We
claim that using merge joins would be more efficient here. Due to this deficiency,
both Sesame and the RS scenario outperform the TR and VP schemes.

Q2. Extract all inproceedings with properties dc:creator, bench:booktitle,
dc:title, swrc:pages, dcterms:partOf, rdfs:seeAlso, foaf:homepage, dcterms:issued, and
optionally bench:abstract, including these properties.

Q2 implements a star-join-like graph pattern. Result size grows with document
size (cf. Table 2) and the solution modifier Order By forces result ordering.
The nine outer SPARQL triple patterns translate into nine predicate (triple)
table accesses in the VP (TR) scenario, connected through eight subject-subject
joins, due to variable ?inproc. The Optional clause causes an additional left
outer join. The RS query gathers all relevant information from tables Document,
Publication, PublicationType, Author, Person, Document_seeAlso, Venue,
and Document_homepage, and also contains a left outer join with table Abstract.

Like for Q1, the subject-subject joins should be realized by merge joins in
the TR and VP scenario, but MonetDB chooses QEPs that mostly use fetch
joins, involving merge joins only in few cases. These fetch joins consume the
major part of execution time. Lastly, none of both schemes succeeds for the
25M triples document. Sesame is about one order of magnitudes slower. The RS
scheme requires less joins and is significantly faster than the other approaches.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q1
VP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q1
TR

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q1
SP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

S1 S2 S3 S4 S5 S6

Q1
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q2
VP

In
te

rn
al

 M
em

or
y

Fa
ilu

re
usr+sys

sys
total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q2
TR

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q2
SP

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q2
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q3b
VP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q3b
TR

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q3b
SP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

S1 S2 S3 S4 S5 S6

Q3b
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q4
VP

M
em

or
y

E
xh

au
st

io
n

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q4
TR

In
te

rn
al

 M
em

or
y

Fa
ilu

re

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q4
SP

T
im

eo
ut

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

S1 S2 S3 S4 S5 S6

Q4
RS

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

Fig. 1. Results on S1=10k, S2=50k, S3=250k, S4=1M, S5=5M, and S6=25M triples

Q3abc. Select all articles with property (a) swrc:pages, (b) swrc:month, or
(c) swrc:isbn.

We restrict on a discussion of Q3b, as the results for Q3a and Q3c are similar. As
explained in [13], the Filter in Q3b selects about 0.65% of all articles. The TR
translation contains a subject-subject join on table Triples and a Where value-
restrictions for predicate swrc:month. Although variable ?property occurs in pred-
icate position, we chose a VP translation that does not compute the union of
all predicate tables, but operates directly on the table for predicate swrc:month,
which is implicitly fixed by the Filter. The RS translation is straightforward.

The VP approach is a little faster than TR, because it operates on top of the
swrc:month predicate table, instead of the full triples table. The query contains
only one subject-subject join, and we observe that the VP and TR approaches
explode for the 25M document, again due to expensive fetch joins (cf. Q1, Q2).
Sesame is competitive and scales even better, while RS shows best performance.

Q4. Select all distinct pairs of article author names for authors that have
published in the same journal.

Q4 contains a long graph chain, i.e. variables ?name1 and ?name2 are linked
through the articles that different authors have published in the same journal.

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q5a
VP

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q5a
TR

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q5a
SP

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q5a
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q5b
VP

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q5b
TR

In
te

rn
al

 M
em

or
y

Fa
ilu

re

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q5b
SP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q5b
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q6
VP

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q6
TR

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q6
SP

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q6
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q7
VP

M
em

or
y

E
xh

au
st

io
n

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

S1 S2 S3 S4 S5 S6

Q7
TR

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q7
SP

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

S1 S2 S3 S4 S5 S6

Q7
RS

usr+sys
sys

total

Fig. 2. Results on S1=10k, S2=50k, S3=250k, S4=1M, S5=5M, and S6=25M triples

When translated into TR and VP, the chain is mapped to a series of subject-
subject, subject-object, and object-object joins. The RS query gathers all articles
and their authors from the relevant tables twice and joins them on Venue.ID.

As apparent from Table 2, the query computes very large results. Due to the
subject-object and object-object joins, the TR and VP scenarios have to compute
many expensive (non-merge) joins, which makes the approaches scale poorly.
Sesame is one order of magnitude slower. In contrast, RS involves simpler joins
(e.g., efficient joins on foreign keys) and shows the best performance.

Q5ab. Return the names of all persons that occur as author of at least one
inproceeding and at least one article.

Q5a joins authors implicitly on author names (through the Filter condition),
while Q5b explicitly joins on variable ?person. Although in general not equiv-
alent, the one-to-one mapping between authors and their names in SP2Bench
implies equivalence of Q5a and Q5b. All translations share these join character-
istics, i.e. all translations of Q5a model the join by an equality condition in the
SQL Where-clause, whereas translations of Q5b contain an explicit SQL Join.

Sesame scales bad for Q5a, probably due to the implicit join (it performs
much better for Q5b). In the SQL scenarios there are no big differences between
implicit and explicit joins; such situations are resolved by relational optimizers.

Q6. Return, for each year, the set of all publications authored by persons
that have not published in years before.

Q6 implements closed world negation (CWN), expressed through a combination
of operators Optional, Filter, and bound. The block outside the Optional

computes all publications and the inner one constitutes earlier publications from
authors that appear outside. The outer Filter then retains all publications
for which ?author2 is unbound, i.e. those from newcomers. In the TR and VP
translation, a left outer join is used to connect the outer to the inner part. The
RS query extracts, for each year, all publications and their authors, and uses a
SQL NOT EXISTS clause to filter away authors without prior publications.

One problem in the TR and VP queries is the left join on top of a less-than
comparison, which complicates the search for an efficient QEP. In addition, both
queries contain each two subject-object joins on the left and on the right side of
the left outer join. Ultimately, both scale poorly. Also Sesame scales very bad.
In contrast, the purely relational encoding is elegant and much more efficient.

Q7. Return the titles of all papers that have been cited at least once, but
not by any paper that has not been cited itself.

This query implements a double-CWN scenario. Due to the nested Optional

clauses, the TR and VP translations involve two nested left outer joins with join-
intensive subexpressions. The VP translation is complicated by three unions of
all predicate tables, caused by the SPARQL variables ?member2, ?member3,
and ?member4 in predicate position. When encoding them at the bottom of
the evaluator tree, the whole query builds upon these unions and the benefit of
sorted and indexed predicate tables gets lost. We tested different versions of the
query and decided for the most performant (out of the tested variants), where
we pulled off the outermost union, thus computing the union of subexpressions
rather than individual tables. The RS query uses two nested SQL Not In-clauses
to express double negation. We could have used nested Not Exists-clauses
instead (cf. Q6), but decided to vary, to test the impact of both operators.

Due to the unbound predicates, the VP approach has severe problems in
evaluating this query and behaves worse than the TR scheme. This illustrates
the disadvantages of the vertical approach in scenarios where unbound predicates
occur. Sesame also behaves very bad, while the nested Not In-clause in RS, a
common construct in relational queries, constitutes the only practical solution.

Q8. Compute authors that have published with Paul Erdoes or with an
author that has published with Paul Erdoes.

Q8 contains a SPARQL Union operator, so all translations contain a SQL union.
The TR and VP versions of this query are straightforward. The RS translation
separately retrieves persons that have published with Paul Erdoes and persons
that have published with one of its coauthors (each from the Author and the
Person table), and afterwards computes the union of both person sets.

Again, the TR scenario turns out to be competitive to VP, but both schemes
fail to find an efficient QEP for large documents, due to the subject-object and
object-object joins and the additional non-equality Where-condition over the

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q8
VP

M
em

or
y

E
xh

au
st

io
n

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q8
TR

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

Q8
SP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

S1 S2 S3 S4 S5 S6

Q8
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q9
VP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q9
TR

T
im

eo
ut

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q9
SP

usr+sys
sys

total

(n/a)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q10
VP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q10
TR

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

S1 S2 S3 S4 S5 S6

Q10
SP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

S1 S2 S3 S4 S5 S6

Q10
RS

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

S1 S2 S3 S4 S5 S6

tim
e

in
 s

ec
on

ds

Q11
VP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q11
TR

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S1 S2 S3 S4 S5 S6

Q11
SP

usr+sys
sys

total

 0.001

 0.01

 0.1

 1

 10

S1 S2 S3 S4 S5 S6

Q11
RS

usr+sys
sys

total

Fig. 3. Results on S1=10k, S2=50k, S3=250k, S4=1M, S5=5M, and S6=25M triples

subject and object columns. The Sesame engine scales surprisingly well for this
query, but is still one order of magnitude slower than the relational scheme.

Q9. Return incoming and outgoing properties of persons.

Both parts of the union in Q9 contain a fully unbound triple pattern, which
selects all RDF database triples. The TR translation is straightforward. Con-
cerning the unbound ?predicate variable, we again pulled off the union of the
predicate tables in the VP scenario, thus computing the same query separately
for each predicate table and building the union of the results afterwards. As
discussed in Q7, this was more efficient than the union at the bottom of the
operator tree. The result size is always 4 (the first part constitutes properties
dc:creator and swrc:editor, and the second one rdf:type and foaf:name). A mean-
ingful RS translation of this query, which accesses schema information, is not
possible: In RS, the properties are encoded as (fixed) table attributes names.6

Although a little bit slower than the TR approach for small documents, VP
succeeds in evaluating the 25M triple document. Though, both approaches seem
to have problems with the unbound triple pattern and scale poorly. Sesame’s
native store offers better support, but is still far from being performant.

6 A lookup query for fixed values in the DBMS system catalog is not very interesting.

Q10. Return all subjects that stand in any direct relation with Paul Erdoes.
In our scenario the query can be reformulated as “Return publications and
venues in which Paul Erdoes is involved as author or editor, respectively”.

Q10 implements an object bound-only RDF access path. The TR and RS trans-
lations are standard. Due to the unbound variable ?predicate, the VP query
involves a union of the predicate tables. As for Q9, the implementation of this
union on top of the operator tree turned out to be the most performant solution.

Recalling that “Paul Erdoes” is active between 1940 and 1996, the result
size has an upper bound (cf. Table 2 for the 5M and 25M documents). VP and
TR show very similar behavior. As illustrated by the results of Sesame, this
query can be realized in constant time (with an appropriate index). The index
selection strategy of MonetDB in TR and VP is clearly suboptimal. RS scales
much better, but (in contrast to Sesame) still depends on the document size.

Q11. Return (up to) 10 electronic edition URLs starting from the 51st

publication, in lexicographical order.

Q11 focuses on the combination of solution modifiers Order By, Limit, and
Offset, which arguably remains the key challenge in all three translations.

The VP query operates solely on the predicate table for rdfs:seeAlso and,
consequently, is a little faster than TR. Sesame scales superlinearly and is slower
than both. Once more, RS dominates in terms of performance and scalability.

Conclusion. Our results bring many interesting findings. First, the Mon-
etDB optimizer often produced suboptimal QEPs in the VP and TR scenario
(e.g., for Q1, Q2, and Q3b not all subject-subject join patterns were realized by
merge joins). This shows that relational optimizers may have problems to cope
with the specific challenges that arise in the context of RDF. Developers should
be aware of this when implementing RDF schemes on top of relational systems.

Using the SP2Bench queries we have identified limitations of the vertical ap-
proach. We observe performance bottlenecks in complex scenarios with unbound
predicates (e.g., Q7), for challenging operator constellations (e.g., CWN-queries
Q6, Q7), and identified queries with many non-subject-subject joins as a serious
weakness of the VP scheme. While the latter weakness has been noted before
in [11], our experiments reveal the whole extent of this problem. The material-
ization of path expressions might improve the performance of such queries [11],
but comes with additional costs (e.g., disk space), and is not a general solution.

Another finding is that a triple store with physical (predicate,subject,object)
sort order is more competitive to the vertical scheme, and might even outperform
it for queries (e.g., Q7) with unbound predicates (cf. [16]). This relativizes the
results from [11], where the triple store was implemented with (subject, predicate,
object) sort order and only tested in combination with a row-store DBMS.

Finally, none of the tested RDF schemes was competitive to a comparable
purely relational encoding. Although relational schemata are domain-specific
and, in this regard, optimized for the underlying scenario, we observed a gap of
at least one order of magnitude for almost all queries already on small documents,
typically increasing with document size. We therefore are convinced that there is

still room for optimization in RDF storage schemes, to reduce the gap between
RDF and relational data processing and bring forward the Semantic Web vision.

Acknowledgment. The authors thank the MonetDB team for its support in
setting up MonetDB and interesting discussions on RDF storage technologies.

References

1. W3C: Resource Description Framework (RDF). http://www.w3.org/RDF/.
2. W3C: SPARQL Query Language. http://www.w3.org/TR/rdf-sparql-query/.
3. Bizer, C., Cyganiak, R.: D2R Server – Publishing the DBLP Bibliography

Database. (2007) http://www4.wiwiss.fu-berlin.de/dblp/.
4. Tauberer, J.: U.S. Census RDF Data. http://www.rdfabout.com/demo/census/.
5. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On Storing

Voluminous RDF Descriptions: The case of Web Portal Catalogs. In: WebDB.
(2001)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: ISWC. (2002) 54–68

7. Bonstrom, V., Hinze, A., Schweppe, H.: Storing RDF as a Graph. In: Web
Congress. (2003) 27–36

8. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking RDF Repre-
sentations of RDF/S Stores. In: ISWC. (2005) 685–701

9. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF
Querying Scheme. In: VLDB. (2005) 1216–1227

10. Wilkinson, K.: Jena Property Table Implementation. In: International Workshop
on Scalable Semantic Web Knowledge Base. (2006) 35–46

11. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: VLDB. (2007) 411–422

12. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Using the Barton libraries
dataset as an RDF benchmark. Technical report, MIT-CSAIL-TR-2007-036, MIT.

13. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. Technical report, arXiv:0806.4627v1 cs.DB. (2008)

14. Ley, M.: DBLP Database. http://www.informatik.uni-trier.de/~ley/db/.
15. openRDF.org: Home of Sesame. http://www.openrdf.org/documentation.jsp.
16. Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S.: Column-store

Support for RDF Data Management: not all swans are white. In: VLDB. (2008)
17. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. http://www4.wiwiss.

fu-berlin.de/bizer/BerlinSPARQLBenchmark/.
18. Stonebraker, M, et al.: C-store: a Column-oriented DBMS. In: VLDB. (2005)

553–564
19. CWI Amsterdam: MonetDB. http://monetdb.cwi.nl/.
20. Chebotko, A., Lu, S., Yamil, H.M., Fotouhi, F.: Semantics Preserving SPARQL-

to-SQL Query Translation for Optional Graph Patterns. Technical report, TR-
DB-052006-CLJF. (2006)

21. Cyganiac, R.: A Relational Algebra for SPARQL. Technical report, HP Bristol.
22. Harris, S.: SPARQL Query Processing with Conventional Relational Database

Systems. In: SSWS. (2005)
23. SourceForge: Jena2. http://jena.sourceforge.net/DB/index.html.
24. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: PSSS. (2003)

A SP2Bench SPARQL Benchmark Queries

SELECT ?yr Q1

WHERE {

?journal rdf:type bench:Journal.
?journal dc:title "Journal 1 (1940)"^^xsd:string.

?journal dcterms:issued ?yr }

SELECT ?inproc ?author ?booktitle ?title Q2

?proc ?ee ?page ?url ?yr ?abstract
WHERE {

?inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?author.
?inproc bench:booktitle ?booktitle.

?inproc dc:title ?title.
?inproc dcterms:partOf ?proc.

?inproc rdfs:seeAlso ?ee.
?inproc swrc:pages ?page.
?inproc foaf:homepage ?url.

?inproc dcterms:issued ?yr
OPTIONAL { ?inproc bench:abstract ?abstract }

} ORDER BY ?yr

(a) SELECT ?article Q3

WHERE {
?article rdf:type bench:Article.
?article ?property ?value

FILTER (?property=swrc:pages) }

(b) Q3a, but "swrc:month" instead of "swrc:pages"

(c) Q3a, but "swrc:isbn" instead of "swrc:pages"

SELECT DISTINCT ?name1 ?name2 Q4

WHERE {
?article1 rdf:type bench:Article.
?article2 rdf:type bench:Article.

?article1 dc:creator ?author1.
?author1 foaf:name ?name1.

?article2 dc:creator ?author2.
?author2 foaf:name ?name2.

?article1 swrc:journal ?journal.
?article2 swrc:journal ?journal
FILTER (?name1<?name2) }

(a) SELECT DISTINCT ?person ?name Q5

WHERE {

?article rdf:type bench:Article.
?article dc:creator ?person.

?inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?person2.
?person foaf:name ?name.

?person2 foaf:name ?name2
FILTER(?name=?name2)

}

(b) SELECT DISTINCT ?person ?name

WHERE {
?article rdf:type bench:Article.

?article dc:creator ?person.
?inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?person.

?person foaf:name ?name
}

SELECT ?yr ?name ?doc Q6

WHERE {

?class rdfs:subClassOf foaf:Document.
?doc rdf:type ?class.
?doc dcterms:issued ?yr.

?doc dc:creator ?author.
?author foaf:name ?name

OPTIONAL {
?class2 rdfs:subClassOf foaf:Document.
?doc2 rdf:type ?class2.

?doc2 dcterms:issued ?yr2.
?doc2 dc:creator ?author2

FILTER (?author=?author2 && ?yr2<?yr)
} FILTER (!bound(?author2))

}

SELECT DISTINCT ?title Q7

WHERE {

?class rdfs:subClassOf foaf:Document.
?doc rdf:type ?class.

?doc dc:title ?title.
?bag2 ?member2 ?doc.

?doc2 dcterms:references ?bag2
OPTIONAL {
?class3 rdfs:subClassOf foaf:Document.

?doc3 rdf:type ?class3.
?doc3 dcterms:references ?bag3.

?bag3 ?member3 ?doc
OPTIONAL {

?class4 rdfs:subClassOf foaf:Document.

?doc4 rdf:type ?class4.
?doc4 dcterms:references ?bag4.

?bag4 ?member4 ?doc3
} FILTER (!bound(?doc4))

} FILTER (!bound(?doc3))
}

SELECT DISTINCT ?name Q8

WHERE {
?erdoes rdf:type foaf:Person.

?erdoes foaf:name "Paul Erdoes"^^xsd:string.
{

?doc dc:creator ?erdoes.
?doc dc:creator ?author.
?doc2 dc:creator ?author.

?doc2 dc:creator ?author2.
?author2 foaf:name ?name

FILTER (?author!=?erdoes &&
?doc2!=?doc &&

?author2!=?erdoes &&
?author2!=?author)

} UNION {

?doc dc:creator ?erdoes.
?doc dc:creator ?author.

?author foaf:name ?name
FILTER (?author!=?erdoes)

}

}

SELECT DISTINCT ?predicate Q9

WHERE {
{

?person rdf:type foaf:Person.
?subject ?predicate ?person

} UNION {

?person rdf:type foaf:Person.
?person ?predicate ?object

}
}

SELECT ?subj ?pred Q10

WHERE {
?subj ?pred person:Paul_Erdoes

}

SELECT ?ee Q11

WHERE {
?publication rdfs:seeAlso ?ee

} ORDER BY ?ee
LIMIT 10

OFFSET 50

