TEDI: Efficient Shortest Path Query
Answering on Graphs

Fang Wei

University of Freiburg

SIGMOD 2010

Applications

Shortest Path Queries
A shortest path query on a(n) (undirected) graph finds the
shortest path for the given source and target vertices in the
graph.

© ranked keyword search

® XML databases

® bioinformatics

@ social network

@ ontologies

State-of-the-art Research

Shortest Path

e Concept of compact BFS-trees (Xiao et al. EDBT09)
where the BFS-trees are compressed by exploiting the
symmetry property of the graphs.

e Dedicated algorithms specifically on GIS data. It is
unknown, whether the algorithms can be extended to
dealing the other graph datasets.

State-of-the-art Research

Reachability Query Answering
Well studied in the DB community
e 2-HOP approach: pre-compute the transitive closure, so
that the reachability queries can be more efficiently
answered comparing to BFS or DFS.
e interval labeling approach: first extract some tree from the

graph, then store the transitive closure of the rest of the
vertices.

State-of-the-art Research

Reachability Query Answering
Well studied in the DB community

e 2-HOP approach: pre-compute the transitive closure, so
that the reachability queries can be more efficiently
answered comparing to BFS or DFS.

e interval labeling approach: first extract some tree from the
graph, then store the transitive closure of the rest of the
vertices.

Can not be extended to cope with the shortest path query
answering: require only a boolean answer (yes or no); the
transitive closure stored in the index can be drastically
compressed.

TEDI: Intuition of decomposing graphs

&
8
L

e Subgraphs G; and G, are connected through a small set
of vertices S.

e Then any shortest path from u € G; to v € G, has to pass
through some vertex s € S.

e Do it recursively in Gy and Go.

u]
o)
I
ul
it

TEDI: our approach

TEDI (TreE Decomposition based Indexing)

e an indexing and query processing scheme for the shortest
path query answering.

e we first decompose the graph G into a tree in which each
node contains a set of vertices in G.

¢ there are overlapping among the bags
e connectedness of the tree

TEDI: our approach

TEDI (TreE Decomposition based Indexing)

e Based on the tree index, we can execute the shortest path
search in a bottom-up manner and the query time is
decided by the height and the bag cardinality of the tree,
instead of the size of the graph.

e pre-compute the local shortest paths among the vertices in
every bag of the tree.

Tree Decomposition

Tree Decomposition a_ g h

© Tree with a vertex set (bag) p
associated with every node

® For every edge (v, w): there is

a bag containing both v and w | — |_| — H o |__| " |

® For every v: the bags that
contain v form a connected cde
subtree

Tree Decomposition

Tree Decomposition a_g h

© Tree with a vertex set (bag) p
associated with every node

@® For every edge (v, w): there is

a bag containing both v and w | — |_| — H > |__| " |

® For every v: the bags that
contain v form a connected cde
subtree

Tree Decomposition

Tree Decomposition a_g h

© Tree with a vertex set (bag) p
associated with every node

® For every edge (v, w): there is
a bag containing both v and w | abc|_| > H > |__| " |
@® For every v: the bags that

contain v form a connected cde
subtree

Tree Decomposition

Tree Decomposition a_ g h

© Tree with a vertex set (bag) g
associated with every node

® For every edge (v, w): there is
a bag containing both v and w | " |_| e H o H " ‘
@® For every v: the bags that

contain v form a connected cde
subtree

Treewidth

e The width of a tree decomposition T is its maximal bag
size (cardinality).

e The treewidth of G is the minimum width over all tree
decompositions of G.

abcd
efgh

abc — acf — agf +—{ gh

cde

Example of tree decomposition

2—3 0

0 1 234 [033 2

e Treenode: a pair (n, b) where n € G and b is the bag
number in Tg.

e There is a path from u to v in G iff there is a treepath from
(u,*) to (v, *).

o Treepath is composed of Inner edges (eg. ((1,3),(2,3)))
and Inter edges (e.g. ((2,3),(2,1))).

Shortest path over TD

¢ The Intuition: restricting the search space of the vertices in
the shortest path from u to v.

e For every vertex u in G, there is an induced subtree of u:
ry.

¢ Idea: checking the shortest distance from u (v) to the
vertices in the bags along the simple path from r, to r,.

Shortest path over TD

Correctness intuition: every path from u to v passes through all
the bags in the simple path from r, to r,.

Shortest path over TD

e Compute the shortest distances from r, (r,) to the
youngest common ancestor in a bottom-up manner.

e Pre-computation of the local shortest distances in every
bag.

Shortest path over TD: Complexity

 Query: O(tw?h), tw is the bag candinality, and h the height
of the tree decomposition.
e Index construction:

© Decomposing graph: O(n) (see heuristic algorithm later)
® Local shortest paths computation O(n?)

Tree Decomposition Algorithm

¢ NP-complete for the problem of given constant k, whether
there exists a tree decomposition for which the treewidth is
less then k.

e Heuristics and approximation

Tree Decomposition Algorithm

\/ \/

[v v

Definition (Simplicial)
A vertex v is simplicial in a graph G if the neighbors of v form a
clique in G.

Theorem
If v is a simplicial vertex in a graph G, then Tg can be obtained
from Tg_,, by increasing the treewidth of maximal 1.

Tree Decomposition Algorithm

Each time a vertex v with a specific degree k is identified.
First check whether all its neighbors form a clique, if not,
add the missing edges to construct a clique.

Then v together with its neighbors are pushed into the
stack, then delete v and the corresponding edges in the
graph.

Continue till either the graph is reduced to an empty set of
the upper bound of k is reached.

22—

1

=
CoiNof!
[SyENEN

Algorithm Improvement

Problem of the tree decomposition with big root size:

— O(tw?h) not satisfying.

Observation: only root has big size |R|, and the rest bags
have the size upper bound of k, which can be tuned in the
algrorithm

— k < |R|

Query answering algorithm modified: O(k?h) instead of
O(tw?h).

Trade-off of k and |R].

Root Size/Graph Size(%)

100

[
o

k — |R| Curve

Pfei

Geom Epa
Dutch Erdos PPI
Eva

Cal

YeaHomo

Inter

Experiment (1) Real Data

Graph | n| #TreeN [#SumV | h| k| |R

k
Pfei 1738 1680 3916 | 16 | 6 60
Gemo | 3621 3000 9985 | 10 | 5| 623
Epa 4253 3637 | 11137 | 7| 7| 618
Dutsch | 3621 3442 8700 | 9| 5| 258
Eva 4475 4457 9303 | 9| 2 75
Cal 5925 5095 | 18591 | 14 | 10 | 832
Erdos 6927 6690 | 18979 | 9| 7| 405
PPI 1458 1359 3638 | 11 | 7| 101
Yeast 2284 1770 6708 | 6| 9| 516
Homo 7020 5778 | 24359 | 10 | 15 | 1244

Inter | 22442 | 21757 | 67519 | 10 | 13 | 687

Table: Statistics of real graphs and the properties of the index

Experiment (1) Real Data

Index Size (MB)

Index Time (s)

Graph [paths | tree [TEDI || SYMM tree | toahs | TEDI [[SYMM
Pfei 0.025 | 0.008 | 0.033 7.9243 | 0.003 0.099 0.102 2.688
Gemo 1.81 0.020 | 1.830 44.9907 | 0.068 0.878 0.946 14.859
Epa 1.63 | 0.022 | 1.652 28.1992 | 0.056 0.97 1.026 37.14
Dutsch | 0.404 | 0.016 | 0.420 20.8559 | 0.011 0.311 0.322 13.687
Eva 0.026 | 0.018 | 0.044 5.5447 | 0.006 0.239 0.245 289.532
Cal 3.04 | 0.038 | 3.078 92.026 | 0.145 2.535 2.680 34.094
Erdos 0.516 | 0.018 | 0.534 32.2695 | 0.038 0.849 0.887 90.453
PPI 0.052 | 0.008 | 0.060 5.954 | 0.004 0.130 0.134 1.547
Yeast 1.08 | 0.014 | 1.094 19.4457 | 0.019 0.566 0.585 7.578
Homo 6.88 | 0.048 | 6.928 21.574 | 0.198 7.745 7.943 53.985
Inter 1.66 | 0.136 | 1.796 744.07478 | 0.796 | 15.858 | 16.654 1709.64

Table: Comparison between TEDI and SYMM on index construction

of real dataset.

Experiment (1) Real Data

TEDI SYMM

Graph | TEDI(ms) | BFS | Speedup || Speedup
Pfei 0.003420 | 0.052 15.2 13.04

Gemo 0.002933 | 0.123 42 .4 41.10
Epa 0.002096 | 0.105 50.0 39.62

Dutsch | 0.002655 | 0.097 37.3 28.21
Eva 0.002299 | 0.089 38.7 20.20

Cal 0.003325 | 0.187 56.7 59.31

Erdos 0.002037 | 0.146 71.9 57.72
PPI 0.002629 | 0.050 19.2 13.30

Yeast 0.002463 | 0.071 28.4 25.63
Homo 0.007666 | 0.226 29.7 N.a.
Inter 0.004178 | 0.693 169.0 N.a.

Table: Comparison between TEDI and SYMM on query time over real
dataset.

Experiment (2) Synthetic Data

Graph | n | #TreeN | #SumV | h |

1k 1000 808 2131 | 9
2K 2000 1730 4786 | 11
3k 3000 2641 7362 | 10 361
4k 4000 3559 | 10131 | 10 443

k| IR
3
5
6
7
5k | 5000 | 4460 | 12758 |10 |8 | 542
9
9
9
9
9

194
272

6k 6000 5355 | 15371 | 10 612
7k 7000 6292 | 18626 | 12 710
8k 8000 7201 | 20790 | 11 801
9k 9000 8089 | 23497 | 12 913
10k | 10000 8983 | 26224 | 11 1019

Table: Statistics of the synthetic graphs and the properties of the
index

Experiment (2) Synthetic Data

Comparison of Index Construction Time (s) Comparison of Index Size (MB)
100 T T T T T T T T T = T T T T T T T T
TEDI —— — - -
SYMM == oM 10F 1Ep M
_ SYMM == A
10 £
10

-

| Ll

lk 2k 3k 4k 5k 6k 7k 8 9%k 10k lk 2k 3k 4k 5k 6k 7k 8 9%k 10k

Root Size/Graph Size(%)

100

10 ¢

0.1

Experiment (3) Scalability over Large
Datasets

" DBLP -
BAY

10 20 30 40 50 60 70

Experiment (3) Scalability over Large
Datasets

Graph | n| #TreeN | #SumV | h| k| |R|

DBLP | 592983 | 589 164 | 1309 710 | 30 | 100 | 3821
BAY | 321272 | 321028 | 1298993 | 351 | 80 | 245

Table: Statistics of large graphs and the properties of the index

Experiment (3) Scalability over Large
Datasets

Index Size (MB) Index Time (s)

Graph | paths | tree | TEDI tree | toams | TEDI

DBLP | 117.2 | 2.6 | 119.8 | 102.4 | 2124.0 | 2226.4
BAY 24.7 | 26| 27.3 | 182.2 | 2859.7 | 3041.9

Table: Index construction of large dataset.

Query Time
Graph | TEDI (ms) | BFS (ms) | Speedup
DBLP 0.055 32.47 590.0
BAY 0.258 20.54 80.0

Table: Comparison of TEDI query time on large datasets to BFS

Conclusion

Main Results
¢ An index structure based on tree decomposition for
answering shortest path queries over (un)directed graph.
e Efficiency on query answering, index construction.

e Can be extended to weighted graphs: query answering
remains same, takes longer time for index construction.

Conclusion

Main Results

¢ An index structure based on tree decomposition for
answering shortest path queries over (un)directed graph.
e Efficiency on query answering, index construction.

e Can be extended to weighted graphs: query answering
remains same, takes longer time for index construction.

Future Work

¢ Ranked keyword search over graph data.

	Motivation
	Tree Decomposition
	Algorithm
	Conclusion

