
TEDI: Efficient Shortest Path Query
Answering on Graphs

Fang Wei

University of Freiburg

SIGMOD 2010

Applications

Shortest Path Queries
A shortest path query on a(n) (undirected) graph finds the
shortest path for the given source and target vertices in the
graph.

1 ranked keyword search
2 XML databases
3 bioinformatics
4 social network
5 ontologies

State-of-the-art Research

Shortest Path

• Concept of compact BFS-trees (Xiao et al. EDBT09)
where the BFS-trees are compressed by exploiting the
symmetry property of the graphs.

• Dedicated algorithms specifically on GIS data. It is
unknown, whether the algorithms can be extended to
dealing the other graph datasets.

State-of-the-art Research

Reachability Query Answering
Well studied in the DB community
• 2-HOP approach: pre-compute the transitive closure, so

that the reachability queries can be more efficiently
answered comparing to BFS or DFS.

• interval labeling approach: first extract some tree from the
graph, then store the transitive closure of the rest of the
vertices.

Can not be extended to cope with the shortest path query
answering: require only a boolean answer (yes or no); the
transitive closure stored in the index can be drastically
compressed.

State-of-the-art Research

Reachability Query Answering
Well studied in the DB community
• 2-HOP approach: pre-compute the transitive closure, so

that the reachability queries can be more efficiently
answered comparing to BFS or DFS.

• interval labeling approach: first extract some tree from the
graph, then store the transitive closure of the rest of the
vertices.

Can not be extended to cope with the shortest path query
answering: require only a boolean answer (yes or no); the
transitive closure stored in the index can be drastically
compressed.

TEDI: Intuition of decomposing graphs

G2

G1

• Subgraphs G1 and G2 are connected through a small set
of vertices S.

• Then any shortest path from u ∈ G1 to v ∈ G2 has to pass
through some vertex s ∈ S.

• Do it recursively in G1 and G2.

TEDI: our approach

TEDI (TreE Decomposition based Indexing)
• an indexing and query processing scheme for the shortest

path query answering.
• we first decompose the graph G into a tree in which each

node contains a set of vertices in G.
• there are overlapping among the bags
• connectedness of the tree

TEDI: our approach

TEDI (TreE Decomposition based Indexing)
• Based on the tree index, we can execute the shortest path

search in a bottom-up manner and the query time is
decided by the height and the bag cardinality of the tree,
instead of the size of the graph.

• pre-compute the local shortest paths among the vertices in
every bag of the tree.

Tree Decomposition

Tree Decomposition

1 Tree with a vertex set (bag)
associated with every node

2 For every edge (v , w): there is
a bag containing both v and w

3 For every v : the bags that
contain v form a connected
subtree

a

b c

d e
f

g h

abc acf agf gh

cde

Tree Decomposition

Tree Decomposition

1 Tree with a vertex set (bag)
associated with every node

2 For every edge (v , w): there is
a bag containing both v and w

3 For every v : the bags that
contain v form a connected
subtree

a

b c

d e
f

g h

abc acf a gh

cde

gf

Tree Decomposition

Tree Decomposition

1 Tree with a vertex set (bag)
associated with every node

2 For every edge (v , w): there is
a bag containing both v and w

3 For every v : the bags that
contain v form a connected
subtree

a

b c

d e
f

g h

ab a ghgfc ac f

cde

Tree Decomposition

Tree Decomposition

1 Tree with a vertex set (bag)
associated with every node

2 For every edge (v , w): there is
a bag containing both v and w

3 For every v : the bags that
contain v form a connected
subtree

a

b c

d e
f

g h

 ghf

de

c

c

aab c ag f

Treewidth

• The width of a tree decomposition TG is its maximal bag
size (cardinality).

• The treewidth of G is the minimum width over all tree
decompositions of G.

 ghf

de

c

c

ab c g fabcd
efgh

a a

Example of tree decomposition

• Treenode: a pair (n, b) where n ∈ G and b is the bag
number in TG.

• There is a path from u to v in G iff there is a treepath from
(u, ∗) to (v , ∗).

• Treepath is composed of Inner edges (eg. ((1, 3), (2, 3)))
and Inter edges (e.g. ((2, 3), (2, 1))).

Shortest path over TD

• The Intuition: restricting the search space of the vertices in
the shortest path from u to v .

• For every vertex u in G, there is an induced subtree of u:
ru.

• Idea: checking the shortest distance from u (v) to the
vertices in the bags along the simple path from ru to rv .

Shortest path over TD

Correctness intuition: every path from u to v passes through all
the bags in the simple path from ru to rv .

Shortest path over TD

• Compute the shortest distances from ru (rv) to the
youngest common ancestor in a bottom-up manner.

• Pre-computation of the local shortest distances in every
bag.

Shortest path over TD: Complexity

• Query: O(tw2h), tw is the bag candinality, and h the height
of the tree decomposition.

• Index construction:
1 Decomposing graph: O(n) (see heuristic algorithm later)
2 Local shortest paths computation O(n2)

Tree Decomposition Algorithm

• NP-complete for the problem of given constant k , whether
there exists a tree decomposition for which the treewidth is
less then k .

• Heuristics and approximation

Tree Decomposition Algorithm

Definition (Simplicial)
A vertex v is simplicial in a graph G if the neighbors of v form a
clique in G.

Theorem
If v is a simplicial vertex in a graph G, then TG can be obtained
from TG−v by increasing the treewidth of maximal 1.

Tree Decomposition Algorithm

• Each time a vertex v with a specific degree k is identified.
First check whether all its neighbors form a clique, if not,
add the missing edges to construct a clique.

• Then v together with its neighbors are pushed into the
stack, then delete v and the corresponding edges in the
graph.

• Continue till either the graph is reduced to an empty set of
the upper bound of k is reached.

Algorithm Improvement

• Problem of the tree decomposition with big root size:
→ O(tw2h) not satisfying.

• Observation: only root has big size |R|, and the rest bags
have the size upper bound of k , which can be tuned in the
algrorithm
→ k � |R|

• Query answering algorithm modified: O(k2h) instead of
O(tw2h).

• Trade-off of k and |R|.

k − |R| Curve

 10

 100

 0 5 10 15 20 25 30

R
oo

t S
iz

e/
G

ra
ph

 S
iz

e(
%

)

k

Pfei
Geom Epa

Dutch Erdos PPI
Eva
Cal

Yea Homo
Inter

Experiment (1) Real Data

Graph n #TreeN #SumV h k |R|
Pfei 1738 1680 3916 16 6 60

Gemo 3621 3000 9985 10 5 623
Epa 4253 3637 11137 7 7 618

Dutsch 3621 3442 8700 9 5 258
Eva 4475 4457 9303 9 2 75
Cal 5925 5095 18591 14 10 832

Erdos 6927 6690 18979 9 7 405
PPI 1458 1359 3638 11 7 101

Yeast 2284 1770 6708 6 9 516
Homo 7020 5778 24359 10 15 1244
Inter 22442 21757 67519 10 13 687

Table: Statistics of real graphs and the properties of the index

Experiment (1) Real Data

Index Size (MB) Index Time (s)
Graph paths tree TEDI SYMM ttree tpaths TEDI SYMM
Pfei 0.025 0.008 0.033 7.9243 0.003 0.099 0.102 2.688

Gemo 1.81 0.020 1.830 44.9907 0.068 0.878 0.946 14.859
Epa 1.63 0.022 1.652 28.1992 0.056 0.97 1.026 37.14

Dutsch 0.404 0.016 0.420 20.8559 0.011 0.311 0.322 13.687
Eva 0.026 0.018 0.044 5.5447 0.006 0.239 0.245 289.532
Cal 3.04 0.038 3.078 92.026 0.145 2.535 2.680 34.094

Erdos 0.516 0.018 0.534 32.2695 0.038 0.849 0.887 90.453
PPI 0.052 0.008 0.060 5.954 0.004 0.130 0.134 1.547

Yeast 1.08 0.014 1.094 19.4457 0.019 0.566 0.585 7.578
Homo 6.88 0.048 6.928 21.574 0.198 7.745 7.943 53.985
Inter 1.66 0.136 1.796 744.07478 0.796 15.858 16.654 1709.64

Table: Comparison between TEDI and SYMM on index construction
of real dataset.

Experiment (1) Real Data

TEDI SYMM
Graph TEDI (ms) BFS Speedup Speedup
Pfei 0.003420 0.052 15.2 13.04

Gemo 0.002933 0.123 42.4 41.10
Epa 0.002096 0.105 50.0 39.62

Dutsch 0.002655 0.097 37.3 28.21
Eva 0.002299 0.089 38.7 20.20
Cal 0.003325 0.187 56.7 59.31

Erdos 0.002037 0.146 71.9 57.72
PPI 0.002629 0.050 19.2 13.30

Yeast 0.002463 0.071 28.4 25.63
Homo 0.007666 0.226 29.7 N.a.
Inter 0.004178 0.693 169.0 N.a.

Table: Comparison between TEDI and SYMM on query time over real
dataset.

Experiment (2) Synthetic Data

Graph n #TreeN #SumV h k |R|
1k 1000 808 2131 9 3 194
2k 2000 1730 4786 11 5 272
3k 3000 2641 7362 10 6 361
4k 4000 3559 10131 10 7 443
5k 5000 4460 12758 10 8 542
6k 6000 5355 15371 10 9 612
7k 7000 6292 18626 12 9 710
8k 8000 7201 20790 11 9 801
9k 9000 8089 23497 12 9 913

10k 10000 8983 26224 11 9 1019

Table: Statistics of the synthetic graphs and the properties of the
index

Experiment (2) Synthetic Data

 0.1

 1

 10

 100

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Comparison of Index Construction Time (s)

TEDI
SYMM

 0.1

 1

 10

 100

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Comparison of Index Size (MB)

TEDI
SYMM

Experiment (3) Scalability over Large
Datasets

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70

R
oo

t S
iz

e/
G

ra
ph

 S
iz

e(
%

)

k

DBLP
BAY

Experiment (3) Scalability over Large
Datasets

Graph n #TreeN #SumV h k |R|
DBLP 592 983 589 164 1 309 710 30 100 3821
BAY 321 272 321 028 1 298 993 351 80 245

Table: Statistics of large graphs and the properties of the index

Experiment (3) Scalability over Large
Datasets

Index Size (MB) Index Time (s)
Graph paths tree TEDI ttree tpaths TEDI
DBLP 117.2 2.6 119.8 102.4 2124.0 2226.4
BAY 24.7 2.6 27.3 182.2 2859.7 3041.9

Table: Index construction of large dataset.

Query Time
Graph TEDI (ms) BFS (ms) Speedup
DBLP 0.055 32.47 590.0
BAY 0.258 20.54 80.0

Table: Comparison of TEDI query time on large datasets to BFS

Conclusion

Main Results

• An index structure based on tree decomposition for
answering shortest path queries over (un)directed graph.

• Efficiency on query answering, index construction.
• Can be extended to weighted graphs: query answering

remains same, takes longer time for index construction.

Future Work

• Ranked keyword search over graph data.

Conclusion

Main Results

• An index structure based on tree decomposition for
answering shortest path queries over (un)directed graph.

• Efficiency on query answering, index construction.
• Can be extended to weighted graphs: query answering

remains same, takes longer time for index construction.

Future Work

• Ranked keyword search over graph data.

	Motivation
	Tree Decomposition
	Algorithm
	Conclusion

